2,505 research outputs found

    Budget feasible mechanisms on matroids

    Get PDF
    Motivated by many practical applications, in this paper we study budget feasible mechanisms where the goal is to procure independent sets from matroids. More specifically, we are given a matroid =(,) where each ground (indivisible) element is a selfish agent. The cost of each element (i.e., for selling the item or performing a service) is only known to the element itself. There is a buyer with a budget having additive valuations over the set of elements E. The goal is to design an incentive compatible (truthful) budget feasible mechanism which procures an independent set of the matroid under the given budget that yields the largest value possible to the buyer. Our result is a deterministic, polynomial-time, individually rational, truthful and budget feasible mechanism with 4-approximation to the optimal independent set. Then, we extend our mechanism to the setting of matroid intersections in which the goal is to procure common independent sets from multiple matroids. We show that, given a polynomial time deterministic blackbox that returns -approximation solutions to the matroid intersection problem, there exists a deterministic, polynomial time, individually rational, truthful and budget feasible mechanism with (3+1) -approximation to the optimal common independent set

    On Revenue Monotonicity in Combinatorial Auctions

    Full text link
    Along with substantial progress made recently in designing near-optimal mechanisms for multi-item auctions, interesting structural questions have also been raised and studied. In particular, is it true that the seller can always extract more revenue from a market where the buyers value the items higher than another market? In this paper we obtain such a revenue monotonicity result in a general setting. Precisely, consider the revenue-maximizing combinatorial auction for mm items and nn buyers in the Bayesian setting, specified by a valuation function vv and a set FF of nmnm independent item-type distributions. Let REV(v,F)REV(v, F) denote the maximum revenue achievable under FF by any incentive compatible mechanism. Intuitively, one would expect that REV(v,G)REV(v,F)REV(v, G)\geq REV(v, F) if distribution GG stochastically dominates FF. Surprisingly, Hart and Reny (2012) showed that this is not always true even for the simple case when vv is additive. A natural question arises: Are these deviations contained within bounds? To what extent may the monotonicity intuition still be valid? We present an {approximate monotonicity} theorem for the class of fractionally subadditive (XOS) valuation functions vv, showing that REV(v,G)cREV(v,F)REV(v, G)\geq c\,REV(v, F) if GG stochastically dominates FF under vv where c>0c>0 is a universal constant. Previously, approximate monotonicity was known only for the case n=1n=1: Babaioff et al. (2014) for the class of additive valuations, and Rubinstein and Weinberg (2015) for all subaddtive valuation functions.Comment: 10 page

    Optimal Multi-Unit Mechanisms with Private Demands

    Full text link
    In the multi-unit pricing problem, multiple units of a single item are for sale. A buyer's valuation for nn units of the item is vmin{n,d}v \min \{ n, d\} , where the per unit valuation vv and the capacity dd are private information of the buyer. We consider this problem in the Bayesian setting, where the pair (v,d)(v,d) is drawn jointly from a given probability distribution. In the \emph{unlimited supply} setting, the optimal (revenue maximizing) mechanism is a pricing problem, i.e., it is a menu of lotteries. In this paper we show that under a natural regularity condition on the probability distributions, which we call \emph{decreasing marginal revenue}, the optimal pricing is in fact \emph{deterministic}. It is a price curve, offering ii units of the item for a price of pip_i, for every integer ii. Further, we show that the revenue as a function of the prices pip_i is a \emph{concave} function, which implies that the optimum price curve can be found in polynomial time. This gives a rare example of a natural multi-parameter setting where we can show such a clean characterization of the optimal mechanism. We also give a more detailed characterization of the optimal prices for the case where there are only two possible demands

    Truthful Multi-unit Procurements with Budgets

    Full text link
    We study procurement games where each seller supplies multiple units of his item, with a cost per unit known only to him. The buyer can purchase any number of units from each seller, values different combinations of the items differently, and has a budget for his total payment. For a special class of procurement games, the {\em bounded knapsack} problem, we show that no universally truthful budget-feasible mechanism can approximate the optimal value of the buyer within lnn\ln n, where nn is the total number of units of all items available. We then construct a polynomial-time mechanism that gives a 4(1+lnn)4(1+\ln n)-approximation for procurement games with {\em concave additive valuations}, which include bounded knapsack as a special case. Our mechanism is thus optimal up to a constant factor. Moreover, for the bounded knapsack problem, given the well-known FPTAS, our results imply there is a provable gap between the optimization domain and the mechanism design domain. Finally, for procurement games with {\em sub-additive valuations}, we construct a universally truthful budget-feasible mechanism that gives an O(log2nloglogn)O(\frac{\log^2 n}{\log \log n})-approximation in polynomial time with a demand oracle.Comment: To appear at WINE 201

    Approximate Revenue Maximization with Multiple Items

    Full text link
    Maximizing the revenue from selling _more than one_ good (or item) to a single buyer is a notoriously difficult problem, in stark contrast to the one-good case. For two goods, we show that simple "one-dimensional" mechanisms, such as selling the goods separately, _guarantee_ at least 73% of the optimal revenue when the valuations of the two goods are independent and identically distributed, and at least 50%50\% when they are independent. For the case of k>2k>2 independent goods, we show that selling them separately guarantees at least a c/log2kc/\log^2 k fraction of the optimal revenue; and, for independent and identically distributed goods, we show that selling them as one bundle guarantees at least a c/logkc/\log k fraction of the optimal revenue. Additional results compare the revenues from the two simple mechanisms of selling the goods separately and bundled, identify situations where bundling is optimal, and extend the analysis to multiple buyers.Comment: Presented in ACM EC conference, 201
    corecore