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Abstract. Motivated by many practical applications, in this paper we
study budget feasible mechanisms where the goal is to procure inde-
pendent sets from matroids. More specifically, we are given a matroid
M = (E, I) where each ground (indivisible) element is a selfish agent.
The cost of each element (i.e., for selling the item or performing a ser-
vice) is only known to the element itself. There is a buyer with a budget
having additive valuations over the set of elements E. The goal is to de-
sign an incentive compatible (truthful) budget feasible mechanism which
procures an independent set of the matroid under the given budget that
yields the largest value possible to the buyer. Our result is a determinis-
tic, polynomial-time, individually rational, truthful and budget feasible
mechanism with 4-approximation to the optimal independent set. Then,
we extend our mechanism to the setting of matroid intersections in which
the goal is to procure common independent sets from multiple matroids.
We show that, given a polynomial time deterministic blackbox that
returns α−approximation solutions to the matroid intersection prob-
lem, there exists a deterministic, polynomial time, individually rational,
truthful and budget feasible mechanism with (3α+1)−approximation to
the optimal common independent set.

1 Introduction

Procurement auctions (a.k.a. reverse auctions), often carried out by governments
or private companies, deal with the scenarios where a buyer would like to pur-
chase objects from a set of sellers. These objects are not limited to physical items.
For instance they can be services provided by sellers. In this work we consider the
problem where a buyer with a budget is interested in a set of indivisible objects
for which he has additive valuations. We assume that each object is a selfish
agent. More specifically, we assume agents have quasi-linear utilities and they
are rational (i.e., they aim to maximize the differences between the payments
they receive and their true costs). We also restrict ourself to the case where the
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buyer is constrained to purchase a subset of objects that forms an independent
set with respect to an underlying matroid structure. A wide variety of research
studies have shown that matroids are linked to many interesting applications,
for example, auctions [2, 9, 13], spectrum market [17], scheduling matroids [8]
and house market [14].

One challenge in such procurement auctions involves providing incentives to
sellers for declaring their true costs when those costs are their private informa-
tion. A classical mechanism, namely Vickrey-Clark-Groves (VCG) mechanism [7,
11, 18], provides an intuitive solution to this problem. The VCG mechanism re-
turns a procurement that maximizes the valuation of the buyer and the payments
for sellers are their externalities to the procurement. The VCG mechanism is a
truthful mechanism, i.e., no seller will improve its utility by manipulating its cost
regardless the costs declared by others. However, the VCG mechanism also has
its drawbacks. One of the drawbacks, which makes VCG mechanism impractical,
is that the payments to sellers could be very high. To overcome this problem two
different approaches have been proposed and investigated. The first one is study-
ing the frugality of mechanisms [12], which studies the minimum payment the
buyer needs to pay for a set of objects when sellers are rational utility maximiz-
ers. The other approach is developing budget feasible mechanisms [16], where the
goal is to maximize the buyer’s value for the procurement under a given budget
when sellers are rational utility maximizers. Singer [16] showed that budget feasi-
ble mechanisms could approximate optimal procurements that “magically” know
the costs of sellers, when buyers have nondecreasing submodular valuations.

Our Results. The goal of this study is to design budget feasible mechanisms
for procuring objects that form an independent set in a given matroid structure.
To the best of our knowledge it is the first time that matroid constraints are con-
sidered in the budget feasible mechanisms setting examined here. Previous work
was mainly devoted to different types of valuations for the buyer (see the Related
Work subsection). Our results are positive. In Section 3 we give a deterministic,
polynomial time, individually rational, truthful and budget feasible mechanism
with 4-approximation to the optimal independent set (i.e., the independent set
with maximum value for the buyer under the given budget) within the budget
of the buyer when the buyer has additive valuations. To generalize this result
we also provide a similar mechanism to procure the intersection of independent
sets in multiple matroids. In particular, given a deterministic polynomial time
α-approximation algorithm for the matroid intersection problems as a blackbox,
in Section 4 we present a deterministic, polynomial time, individually rational,
truthful and budget feasible mechanism with (3α+1)-approximation to the opti-
mal independent set within the budget of the buyer when the buyer has additive
valuations. It is also good to know the limitations (e.g. lower bounds) of such
budget feasible mechanisms. In particular the lower bound to any deterministic
mechanism of 1 +

√
2 for additive valuations with one buyer presented in [6] (it

is worth noticing that such lower bound do not rely on any computational or
complexity assumption), suggests that our mechanisms are not far away from
the optimal ones.
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Due to space limitations, some of the proofs are available in the full version.
Related Work. The study of budget feasible mechanisms was initiated in [16].
It essentially focuses on the procurement auctions when sellers have private costs
for their objects and a buyer aims to maximize his valuation function on subsets
of objects, conditioned on that the sum of the payments given to sellers cannot
exceed a given budget of the buyer. In particular Singer [16] considered budget
feasible mechanisms when the valuation function of the buyer is nondecreasing
submodular. For general nondecreasing submodular functions, Singer [16] gave
a lower bound of 2 for deterministic budget feasible mechanisms and a random-
ized budget feasible mechanism with 112-approximation. When the valuation
function of the buyer is additive, a special class of nondecreasing submodular
functions, Singer [16] gave a polynomial deterministic budget feasible mecha-
nism with 6-approximation and a lower bound of 2 for any deterministic budget
feasible mechanism. All results were improved in [6], for example, a determin-
istic budget feasible mechanism with 2 +

√
2-approximation and an improved

lower bound of 1+
√

2 for any deterministic budget feasible mechanism for addi-
tive valuations were given. Furthermore, Bei et al. [3] gave a 768-approximation
mechanism for XOS valuations and extended their study to Bayesian settings.
Chan and Chen [5] studied budget feasible mechanisms in the settings in which
each seller processes multiple copies of the objects. They gave logarithmic mech-
anisms for concave additive valuations and sub-additive valuations.

Budget feasible mechanisms are attractive to many communities due to their
various applications. In crowdsourcing the goal is to assign skilled workers to
tasks when workers have private costs. By injecting some characteristics in
crowdsourcing, budget feasible mechanisms have been further developed and
improved. For example, Goel et al. [10] developed budget feasible mechanisms
that achieve 2e−1

e−1 -approximation to the optimal social welfare by exploiting the
assumption that one worker has limited contribution to the social welfare. Fur-
thermore Anari et al. [1] gave a budget feasible mechanism that achieves a com-
petitive ratio of 1 − 1/e ≈ 0.63 by using the assumption that the cost of any
worker is relatively small compared to the budget of the buyer. Another work
close to ours is [4], which studies the “dual” problem of maximizing the revenue
by selling the maximum independent set of a matroid. They proposed a truthful
ascending auction in which a seller is constrained to sell objects that forms a
basis in a matroid.

2 Preliminaries

Matroids. A matroid M is a pair of (E, I) where E is a ground set of finite
elements and I ⊆ 2E consists of subsets of the ground set satisfying the following
properties:

– Hereditary property: If I ∈ I, then J ∈ I for every J ⊂ I.
– Exchange property: For any pair of sets I, J ∈ I, if |I| < |J |, then there

exists an element e ∈ J such that I ∪ {e} ∈ I.
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The sets in I are called independent sets. Given a matroid M = (E, I)
and T ⊆ E is a subset of E, the restriction of M to T , denoted by M|T ,
is the matroid in which the ground set is T and the independent sets are the
independent sets of M that are contained in T . That is, M|T = (T, I(M|T ))
where I(M|T ) = {I ⊆ T : I ∈ I}. Similarly, the deletion of M, denoted by
M \T , is the matroid in which the ground set is E−T and the independent sets
are the independent sets of M that do not contain any element in T . That is,
M\ T = (E − T, I(M\ T )) where I(M\ T ) = {I ⊆ E − T : I ∈ I}.

Matroid Budget Feasible Mechanisms. In an instance of the matroid budget fea-
sible mechanism design problem, we are given a matroid M = (E, I) consisting
of n ground elements, each of whom is associated with a weight we ∈ R+. Each
element e ∈ E is also associated with a private cost ce ∈ R+, which is only
known to the element itself. Our goal is to design a truthful mechanism that
gives incentives to elements for declaring their private costs truthfully and then
selects an independent set conditioned on that the total payment given to the
elements does not exceed a given budget b. Given an independent set I ∈ I, the
value of the independent set is defined by w(I) =

∑
e∈I w(e). We compare the

value of the independent set selected by the mechanism against the value of the
maximum-value independent set in which the total true cost of elements does
not exceed the budget.

We use w = 〈w1, . . . , wn〉 to denote the weight of the ground elements and
use d = 〈d1, . . . , dn〉 to denote the costs declared by the ground elements. Let
τ be the maximum-weight element (breaking ties arbitrarily), that is, wτ =
maxe∈E we. We assume that de ∈ R+ and de ≤ b for any e ∈ E since elements
with costs greater than b cannot be selected by any mechanism due to the bud-
get constraint. This also implies that no element could improve its utility by
declaring di > b. Given a subset of element T , we use w−T and d−T to denote
the weight and cost vector excluding elements in T . Similarly, we use wT and
dT to denote the weight and cost vector only including elements in T . For each
element e ∈ E, bb(e) = de

we
is called the buck-per-bang rate for element e.4

A deterministic mechanism M = (f, p) consists of an allocation function
f : M,w,d, b → I ∈ I and a payment function p : M,w,d, b → Rn+. Given
the weights and declared costs of the ground elements, the allocation func-
tion returns an independent set in the matroid and the payment function in-
dicates the payments for all elements. Let fM (M,w,d, b) and pM (M,w,d, b)
be the independent set and payments returned by M , respectively. If element e
is in the independent set obtained by M , then fMe (M,w,d, b) = 1. Otherwise,
fMe (M,w,d, b) = 0. It is assumed that pMe (M,w,d, b) = 0 if fMe (M,w,d, b) =
0. The utility of an element is the difference between the payment received from
the mechanism and its true cost. More specifically, the utility of element e is
given by uMe (M,w,d, b) = pMe (M,w,d, b)− fMe (M,w,d, b) · ce.

4 we
ce

is usually known as the bang-per-buck rate. To simplify the presentation, we call
de
we

the buck-per-bang rate.
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Individual Rationality: A mechanismM is individually rational if pMe (M,w,d, b)−
fMe (M,w,d, b) · de ≥ 0 for any M, any w ∈ Rn+, any d ∈ Rn+, any b ∈ R+ and
any element e ∈ E. That is, no element in the selected independent set is paid
less than the cost it declared.

Truthfulness: A mechanism M is truthful if it holds uMe (M,w,d−e, ce, b) ≥
uMe (M,w,d−e, de, b) for any M, any w ∈ Rn+, any d−e ∈ Rn−1+ , any de ∈ R+,
any ce ∈ R+, b ∈ R+ and any e ∈ E, where d−e = 〈d1, . . . , de−1, de+1, . . . , dn〉.
When the context is clear, we sometimes abuse some notations. For example,
here we write uMe (M,w,d−e, ce, b) instead of uMe (M,w, 〈d−e, ce〉, b). A truthful
mechanism prevents any element improving its utility by mis-declaring its cost
regardless the costs declared by other elements.

Budget Feasibility: A mechanism M is budget feasible if
∑
e∈E p

M
e (M,w,d, b) ≤

b for any M,w ∈ Rn+, any d ∈ Rn+ and any b ∈ R+.

Competitiveness: A mechanism M is α-competitive if w(fM (M,w,d, b)) ≥
1
αw(OPT(M,w,d, b)) for any w ∈ Rn+,d ∈ Rn+ and b ∈ R+, where OPT(M,w,d, b)
is the maximum-value independent set in which the total cost of the elements
is at most b. We often call OPT(M,w,d, b) the optimal independent set and
simplify it as OPT(M, b) throughout the paper when the weights and the costs
of elements are clear. Similarly we use MAX(M,w), shorten by MAX(M), to de-
note the maximum-value independent set in M without the budget constraint.

Simplifying notations: From now on to avoid heavy notations we sometimes
simplify the notations. For example we will write fM , fMe , pM , pMe when the
inputs of the mechanism are clear. And we will use OPT(M \ T, b) instead of
OPT(M\T,w−T ,d−T , b) to denote the optimal independent set in matroidM\
T . Similarly we will use OPT(M|T, b) instead of OPT(M|T,wT ,dT , b) to denote
the optimal independent set in matroid M |T . Furthermore we use MAX(M\T )
instead of MAX(M\ T,w−T ) to denote the maximum-value independent set in
M\ T without considering the costs of the elements and the budget.

3 Mechanisms for Matroids

In this section we provide our main result. We give a deterministic, polynomial
time, individually rational, truthful and budget feasible mechanism that is 4-
approximating the optimal independent set. Before providing the mechanism we
discuss some intuition that guides us in the design of Mechanism 1. First imagine
that there exists an element with a very high weight, i.e., any independent set
without this element results in a poor value compared to the optimal indepen-
dent set. In this case that element may strategically declare a high cost in order
to increase its utility as it knows that any competitive mechanism has to select
it. To avoid that this happens we remove element τ (i.e., the element with the
largest weight) from the matroid via matroid deletion operation, and compare it
with the independent set computed later by the mechanism. Second we observe
that most of the existing budget feasible mechanisms adopt proportional pay-
ment schemes, where elements (i.e., agents) are paid proportionally according
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to their contribution in the solution. In other words in a proportional payment
scheme there is an uniform price such that the payments for elements in the
solution are the products of their contribution and this price. In addition greedy
algorithms are commonly used in matroid systems. Combining these two obser-
vations our plan is to start from a high price and compute the maximum-value
independent set in the matroid at each iteration. If there is enough budget to
pay this independent set at the current price then we proceed to the final step
of the mechanism. Otherwise we reduce the price and remove an element from
the matroid. The buck-per-bang rate of that element becomes an upper bound
of the payment on each contribution in the next iteration. The mechanism per-
forms the procedure described above until the payment of the maximum-value
independent set is within budget b. As we will show next, if the value of the op-
timal independent set does not come from a single element, we are able to retain
most of the value of the optimal independent set after removing those elements.
Finally, we show that returning the better solution between the maximum-value
independent set found and element τ approximates the value of the optimal
independent set within a factor of 4.

Mechanism 1: A budget feasible mechanism for procuring independent
sets in matroids
Input:M = (E, I),w,d, b
Output: f ,p

1 Sort elements in E − τ in a non-increasing order of buck per bang, i.e.
bb(i) ≥ bb(j) if i < j, break ties arbitrarily;

2 Let bb(0) = +∞, i = 1 and T = ∅;
3 Set r = bb(i);
4 while w(MAX(M\ (T ∪ τ))) · r > b do
5 T = T ∪ {i} and i = i+ 1;
6 r = bb(i);

7 r = min{ b
w(MAX(M\(T∪τ))) , bb(i− 1)};

8 if w(MAX(M\ (T ∪ τ))) > wτ then
9 For each e ∈ E, if e ∈ MAX(M\ (T ∪ τ)), fe = 1 and pe = r · we. Otherwise,

fe = 0 and pe = 0;

10 else
11 fτ = 1, pτ = b. For edge e ∈ E − τ, fe = 0, pe = 0;

12 return f ,p;

Theorem 3.1. Mechanism 1 is a deterministic, polynomial time, individually
rational, truthful and budget feasible mechanism that is 4-competitive against the
optimal independent set given a budget.
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3.1 Approximation

Recall that T is the set of elements removed from the matroid. MAX(M\(T ∪τ))
is the independent set found when Mechanism 1 stops, and it is also the maximal-
value independent set in matroid M \ (T ∪ τ). The roadmap of the proof is to
first show that, the independent set MAX(M\ (T ∪ τ)) well approximates the
optimal independent set in matroid M \ τ . Next we show that returning the
maximum between τ and MAX(M\(T∪τ)) gives 4-approximation to the optimal
independent set in matroid M.

Lemma 3.1. Given anyM,w,d, b, when Mechanism 1 stops, it holds

w(OPT(M\ τ, b)) ≤ 2w(MAX(M\ (T ∪ τ))) + wτ

Proof. It is trivial to see that this lemma holds when τ is the only element in
matroid M. The rest of the proof uses a similar idea in [10] and is divided
into two cases depending on whether the full budget b is spent or not. Consider
E − {τ} is partitioned into two disjoint sets, E − {τ} − T and T . The value of
maximum-value independent set w(OPT(M\ τ, b)) is bounded by

w(OPT(M|T, b)) + w(OPT(M\ (T ∪ τ), b))

As the buck-per-bang is at least r for every element in T , the weight of the
optimal independent set given a budget b in M|T , i.e. w(OPT(M|T, b)), is at
most b/r. When the full budget is spent, the weight of independent set fM is b/r
in Mechanism 1. On the other hand, fM is the maximum-value independent set
inM\ (T ∪ τ). It implies that w(MAX(M\ (T ∪ τ))) ≥ w(OPT(M\ (T ∪ τ), b)).
The above analysis concludes that

w(OPT(M\ τ, b)) ≤ 2w(MAX(M\ (T ∪ τ)))

Now we turn to the case that some budget is left in Mechanism 1. Note that it
happens because r = bb(i−1) (see Line 7) during the execution of Mechanism 1.
Since Mechanism 1 does not stop while considering r = bb(i − 1) at previous
iterations in the loop, it implies that the maximum-value independent set found
was not budget feasible at previous iteration. After removing element i− 1, the
maximum-value independent set becomes budget feasible. These together imply

w(MAX(M\ (T ′ ∪ τ))) · bb(i− 1) > b > w(MAX(M\ (T ∪ τ))) · bb(i− 1)

where T ′ = T−{i−1}. This further implies that budget left is at most bb(i− 1)·
wi−1. By the similar argument as in previous case, the optimal independent set
inM|T is at most b/r, while the value of the independent set MAX(M\ (T ∪τ))
is at least (b − bb(i − 1) · wi−1)/r, which is at least b/r − wi−1. Therefore, we
have

w(OPT(M\ τ, b)) ≤ 2w(MAX(M\ (T ∪ τ))) + wi−1

Substituting wi−1 with wτ completes the proof. ut
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Next, we show that returning the maximum between τ and MAX(M\(T ∪τ))
is 4−competitive against the optimal independent set in M.

Lemma 3.2. Given any M,w,d, b, the independent set returned by Mecha-
nism 1, i.e., the maximum between τ and MAX(M\ (T ∪ τ)), is 4−competitive
against the optimal independent set.

Proof. The optimal independent set in M is bounded by

w(OPT(M, b)) ≤ wτ + w(OPT(M\ τ, b))

By Lemma 3.1, we have

w(OPT(M, b)) ≤ 2wτ + 2w(MAX(M\ (T ∪ τ)))

Therefore, the maximum between τ and MAX(M \ (T ∪ τ)) approximates the
optimal independent set within a factor of 4. ut

3.2 Truthfulness

We show that Mechanism 1 is truthful by considering following different cases.

Lemma 3.3. The element with the maximum weight, i.e., element τ , could not
improve his utility by declaring cost dτ 6= cτ .

Lemma 3.4. Assume an element k is in T when it declares its cost truthfully.
Then, element k could not improve his utility by declaring a cost dk 6= ck.

Lemma 3.5. Assume an element k is in E − τ − T −MAX(M\ (T ∪ τ)) when
it declares its cost truthfully. Then, element k could not improve his utility by
declaring a cost dk 6= ck.

Lemma 3.6. Assume an element k is in MAX(M \ (T ∪ τ)) when it declares
its cost truthfully. Then, element k could not improve his utility by declaring a
cost dk 6= ck.

3.3 Individual Rationality

When Mechanism 1 returns τ , the utility of τ is non-negative as cτ ≤ b. The
utilities for other edges are zero. When Mechanism 1 returns MAX(M\ (T ∪ τ)),
for any element e ∈ MAX(M\ (T ∪ τ)), that is, fe = 1, its utility is r · we − ce
which is non-negative since r ≥ bb(e). For other edges, their utilities are zero.

3.4 Budget Feasibility

When Mechanism 1 returns τ , it only pays b to edge τ . Hence, it is budget
feasible. On the other hand, when Mechanism 1 returns MAX(M\ (T ∪ τ)), r is
used as payment per contribution. As r = min{ b

w(MAX(M\(T∪τ))) , bb(i − 1)}, it

guarantees the budget feasibility.
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3.5 Remarks

In Mechanism 1, we iteratively compute the maximum-value independent set
(e.g. Line 4). In the case that the maximum-value independent set is not unique,
we assume there is a deterministic tie-breaking rule. Note that all the results still
hold under this assumption. For example, the truthfulness of the mechanism will
not be compromised since the the maximum-value independent set only consider
the weights of the elements that is the public knowledge.

4 Mechanisms for matroid intersections

In this section we extend our mechanism to matroid intersections. The matroid
intersection problem (i.e., finding the maximum-value common independent set)
is NP-hard in general when more than three matroids are involved. Some inter-
esting cases of matroid intersection problems can be solved efficiently (i.e., they
can be formulated as the intersection of two matroids), for example, matchings
in bipartite graphs, arborescences in directed graphs, spanning forests in undi-
rected graphs, etc. Nevertheless we point out that a very similar mechanism to
the one presented in last section achieves a 4 approximation for the case when,
instead of a matroid, we are given an undirected weighted (general) graph where
the selfish agents are the edges of the graph and the buyer wants to procure a
matching under the given budget that yields the largest value possible to him.

For general matroid intersections, our main result is the following. Given a
deterministic polynomial time blackbox APX that achieves an α-approximation
to k-matroid intersection problems, we provide a polynomial time, individually
rational, truthful and budget feasible deterministic mechanism that is (3α+ 1)-
competitive against the maximum-value common independent set. The mecha-
nism is similar to Mechanism 1 by changing MAX to APX. It is well-known that
the VCG payment rule does not preserve the property of truthfulness in the
presence of approximated solutions (i.e., non-optimal outcome). However unlike
the VCG mechanism, we show that Mechanism 2 preserves its truthfulness when
APX is used. This result will make our contribution more practical.

4.1 Matroid intersections

Given k-matroid M1, . . . ,Mk, let M = (E, I) be the“true matroid” where E
is the common ground elements and I =

⋂
j Ij is the “true independent sets”.

Similar as the notations we used before, let OPT(M\ T , b) and OPT(M|T , b)
denote the optimal independent set satisfying the budget constraint in matroid
M\ T and M|T , respectively. Let APX(M\ T , b) be the maximum-value inde-
pendent set in matroid M\ T returned by the α-approximation algorithm.

4.2 Obtaining O(α) approximation

We show the following key lemma, which is similar to Lemma 3.1 and implies
the approximation of our mechanism for matroid intersections.
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Mechanism 2: A budget feasible mechanism for procuring independent
sets in matroid intersections
Input:M = (E, I),w,d, b
Output: f ,p

1 Sort elements in E − τ in a non-increasing order of buck per bang, i.e.
bb(i) ≥ bb(j) if i < j, break ties arbitrarily;

2 Let bb(0) = +∞, i = 1 and T = ∅;
3 Set r = bb(i);
4 while w(APX(M\ T )) · r > b do
5 T = T ∪ {i} and i = i+ 1;
6 r = bb(i);

7 r = min{ b
w(APX(M\T ))

, bb(i− 1)};
8 if w(APX(M\ T )) > wτ then
9 For each e ∈ E, if e ∈ APX(M\ T ), fe = 1 and pe = r · wk. Otherwise,

fe = 0 and pe = 0;

10 else
11 fτ = 1, pτ = b. For edge e ∈ E − τ, fe = 0, pe = 0;

12 return f ,p;

Lemma 4.1. Given anyM,w,d, b, when Mechanism 2 stops, it holds

w(OPT(M\ τ, b)) ≤ 2 · α · w(APX(M\ (T ∪ τ))) + α · wτ

Proof. The proof has the same spirit as the proof of Lemma 3.1. We consider two
cases depending on whether the full budget b is spent or not. Consider E − {τ}
is partitioned into two disjoint sets, E − {τ} − T and T . Similar to Lemma 3.1,
when the full budget is spent, we get

w(OPT(M\ τ, b)) ≤w(OPT(M|T, b)) + w(OPT(M\ (T ∪ τ), b))

≤ b
r

+ α · w(APX(M\ (T ∪ τ)))

≤(α+ 1) · w(APX(M\ (T ∪ τ)))

When there is some budget left in Mechanism 2, the analysis involves one more
step compared to Lemma 3.1 although the idea is still to bound the budget left.
Since Mechanism 2 does not stop when r = bb(i − 1), it implies that the inde-
pendent set returned by APX was not budget feasible at previous iteration. It
further implies that the maximum-value independent set is not budget feasible
either if the payment per weight is r. After removing element i−1, the indepen-
dent set returned by APX becomes budget feasible when r = bb(ei−1). These
together imply

w(MAX(M\ (T ′ ∪ τ))) · bb(i− 1) ≥ w(APX(M\ (T ′ ∪ τ))) · bb(i− 1)

> b

> w(APX(M\ (T ∪ τ))) · bb(i− 1)

10



where T ′ = T − {i− 1}. As the sum of w(APX(M\ (T ∪ τ))) and w(i− 1) is at
least 1

α fraction of w(MAX(M\ (T ′ ∪ τ))), we get(
w(APX(M\(T ∪τ))+wi−1

)
·bb(i−1) ≥ 1

α
·w(MAX(M\(T ′∪τ)))·bb(i−1) >

b

α

Hence, we get w(APX(M\ (T ∪ τ)) + wi−1 >
b

α·bb(i−1) . Finally,

OPT(M\ τ, b) ≤w(OPT(M|T, b)) + w(OPT(M\ (T ∪ τ), b))

≤ b

bb(i− 1)
+ α · w(APX(M\ (T ∪ τ)

≤2 · α · w(APX(M\ (T ∪ τ) + α · wi−1

Substituting wi−1 with wτ completes the proof. ut

4.3 Preserving the truthfulness

In this section, we will show that replacing MAX by APX preserve the truthful-
ness of the mechanism for matroid intersections. The reason behind is that the
mechanism works in a greedy fashion and at each iteration the cost declared by
elements does not affect the independent set computed in the mechanism. The
property of the truthfulness replies on the greedy approach instead of the opti-
mality of the independent set. The proofs are similar to the proofs in Section 3.2.

5 Applications

Uniform Matroid Additive valuation has been studied in the design of budget
feasible mechanisms, e.g. [16, 6]. In such settings a buyer would like to maximize
his valuation by procuring items under the constraint that his payment is at
most his budget. Our result generalizes to the case where the buyer has not only
the budget constraint but also has a limit on the number of items he can buy.
For example hiring people in companies is not only constraint by budgets but
also limited by the office space.

Scheduling Matroid Our mechanism could be used to purchase processing
time in the context of job scheduling. One special case is the following. Each
job is associated with a deadline and a profit, and requires a unit of processing
time. As jobs may conflict with each other, only one job can be scheduled at
the same time. The buyer would like to maximize his profit by completing jobs
under the constraint that he does not spend more than his budget in purchasing
processing time.

Spectrum Market Tse and Hanly [17] showed that the set of achievable rates
in a Gaussian multiple-access, known as the Cover-Wyner capacity region, forms
a polymotroid. It is known there is a pseudopolynomial reduction from integral
polymatroids to matroids [15]. Therefore, our mechanism can be used to purchase
transmission rates by tele-communication companies.
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