42,195 research outputs found

    Renewable electricity generation and transmission network developments in light of public opposition: Insights from Ireland. ESRI Working Paper No. 653 March 2020

    Get PDF
    This paper analyses how people’s attitudes towards onshore wind power and overhead transmission lines affect the costoptimal development of electricity generation mixes, under a high renewable energy policy. For that purpose, we use a power systems generation and transmission expansion planning model, combined with information on public attitudes towards energy infrastructure on the island of Ireland. Overall, households have a positive attitude towards onshore wind power but their willingness to accept wind farms near their homes tends to be low. Opposition to overhead transmission lines is even greater. This can lead to a substantial increase in the costs of expanding the power system. In the Irish case, costs escalate by more than 4.3% when public opposition is factored into the constrained optimisation of power generation and grid expansion planning across the island. This is mainly driven by the compounded effects of higher capacity investments in more expensive technologies such as offshore wind and solar photovoltaic to compensate for lower levels of onshore wind generation and grid reinforcements. The results also reveal the effect of public opposition on the value of onshore wind, via shadow prices. The higher the level of public opposition, the higher the shadow value of onshore wind. And, this starkly differs across regions: regions with more wind resource or closest to major demand centres have the highest shadow prices. The shadow costs can guide policy makers when designing incentive mechanisms to garner public support for onshore wind installations

    Energy Production Analysis and Optimization of Mini-Grid in Remote Areas: The Case Study of Habaswein, Kenya

    Get PDF
    Rural electrification in remote areas of developing countries has several challenges which hinder energy access to the population. For instance, the extension of the national grid to provide electricity in these areas is largely not viable. The Kenyan Government has put a target to achieve universal energy access by the year 2020. To realize this objective, the focus of the program is being shifted to establishing off-grid power stations in rural areas. Among rural areas to be electrified is Habaswein, which is a settlement in Kenya’s northeastern region without connection to the national power grid, and where Kenya Power installed a stand-alone hybrid mini-grid. Based on field observations, power generation data analysis, evaluation of the potential energy resources and simulations, this research intends to evaluate the performance of the Habaswein mini-grid and optimize the existing hybrid generation system to enhance its reliability and reduce the operation costs. The result will be a suggestion of how Kenyan rural areas could be sustainably electrified by using renewable energy based off-grid power stations. It will contribute to bridge the current research gap in this area, and it will be a vital tool to researchers, implementers and the policy makers in energy sector

    The economics of renewable energy expansion in rural Sub-Saharan Africa

    Get PDF
    Accelerating development in Sub-Saharan Africa will require massive expansion of access to electricity -- currently reaching only about one-third of households. This paper explores how essential economic development might be reconciled with the need to keep carbon emissions in check. The authors develop a geographically explicit framework and use spatial modeling and cost estimates from recent engineering studies to determine where stand-alone renewable energy generation is a cost effective alternative to centralized grid supply. The results suggest that decentralized renewable energy will likely play an important role in expanding rural energy access. But it will be the lowest cost option for a minority of households in Africa, even when likely cost reductions over the next 20 years are considered. Decentralized renewables are competitive mostly in remote and rural areas, while grid connected supply dominates denser areas where the majority of households reside. These findings underscore the need to de-carbonize the fuel mix for centralized power generation as it expands in Africa.Energy Production and Transportation,Climate Change Mitigation and Green House Gases,Transport Economics Policy&Planning,Power&Energy Conversion,Carbon Policy and Trading

    Bringing power and progress to Africa in a financially and environmentally sustainable manner

    Full text link
    EXECUTIVE SUMMARY: The future of electricity supply and delivery on the continent of Africa represents one of the thorniest challenges facing professionals in the global energy, economics, finance, environmental, and philanthropic communities. Roughly 600 million people in Africa lack any access to electricity. If this deficiency is not solved, extreme poverty for many Africans is virtually assured for the foreseeable future, as it is widely recognized that economic advancement cannot be achieved in the 21st Century without good electricity supply. Yet, if Africa were to electrify in the same manner pursued in developed economies around the world during the 20th Century, the planet’s global carbon budget would be vastly exceeded, greatly exacerbating the worldwide damages from climate change. Moreover, due to low purchasing power in most African economies and fiscal insolvency of most African utilities, it is unclear exactly how the necessary infrastructure investments can be deployed to bring ample quantities of power – especially zero-carbon power – to all Africans, both those who currently are unconnected to any grid as well as those who are now served by expensive, high-emitting, limited and unreliable electricity supply. With the current population of 1.3 billion people expected to double by 2050, the above-noted challenges associated with the African electricity sector may well get substantially worse than they already are – unless new approaches to infrastructure planning, development, finance and operation can be mobilized and propagated across the continent. This paper presents a summary of the present state and possible futures for the African electricity sector. A synthesis of an ever-growing body of research on electricity in Africa, this paper aims to provide the reader a thorough and balanced context as well as general conclusions and recommendations to better inform and guide decision-making and action. [TRUNCATED]This paper was developed as part of a broader initiative undertaken by the Institute for Sustainable Energy (ISE) at Boston University to explore the future of the global electricity industry. This ISE initiative – a collaboration with the Global Energy Interconnection and Development Cooperation Organization (GEIDCO) of China and the Center for Global Energy Policy within the School of International and Public Affairs at Columbia University – was generously enabled by a grant from Bloomberg Philanthropies. The authors gratefully acknowledge the support and contributions of the above funders and partners in this research

    An economic evaluation of the potential for distributed energy in Australia

    Get PDF
    Australia’s Commonwealth Scientific and Industrial Research Organisation (CSIRO) recently completed a major study investigating the value of distributed energy (DE; collectively demand management, energy efficiency and distributed generation) technologies for reducing greenhouse gas emissions from Australia’s energy sector (CSIRO, 2009). This comprehensive report covered potential economic, environmental, technical, social, policy and regulatory impacts that could result from the wide scale adoption of these technologies. In this paper we highlight the economic findings from the study. Partial Equilibrium modeling of the stationary and transport sectors found that Australia could achieve a present value welfare gain of around $130 billion when operating under a 450 ppm carbon reduction trajectory through to 2050. Modeling also suggests that reduced volatility in the spot market could decrease average prices by up to 12% in 2030 and 65% in 2050 by using local resources to better cater for an evolving supply-demand imbalance. Further modeling suggests that even a small amount of distributed generation located within a distribution network has the potential to significantly alter electricity prices by changing the merit order of dispatch in an electricity spot market. Changes to the dispatch relative to a base case can have both positive and negative effects on network losses.Distributed energy; Economic modeling; Carbon price; Electricity markets

    Towards new renewable energy policies in urban areas : the re-definition of optimum inclination of photovoltaic panels

    Get PDF
    The optimum inclination and orientation of fixed Photovoltaic (PV) panels has long been defined in terms of maximizing the annual electricity yield per capacity installed according to the hemisphere and latitude where the PV system is located. Such optimum setup would thus also maximize the output per system cost, but it would not maximize the output per unit of available area, and it would not necessarily optimize the contribution of photovoltaic electricity vis-à-vis overall electricity demand patterns. This study seeks to draw the attention of policy-makers to the fact that incentivizing lower-than-optimum PV panel tilt angles can be an inexpensive strategy to substantially increase the renewable electricity yield in a given area. It also discusses how such strategy can be incorporated into an overall supply/demand grid management and renewable energy integration plan.peer-reviewe
    corecore