37 research outputs found

    Planning Large Single Frequency Networks for DVB-T2

    Get PDF
    [EN] The final coverage and associated performance of an SFN is a joint result of the properties of all transmitters in the SFN. Due to the large number of parameters involved in the process, finding the right configuration is quite complex. The purpose of the paper is to find optimal SFN network configurations for DVB-T2. Offering more options of system parameters than its predecessor DVB-T, DVB-T2 allows large SFN networks. However, self-interference in SFNs gives rise to restrictions on the maximum inter-transmitter distance and the network size. In order to make optimum use of the spectrum, the same frequency can be reused over different geographical areas - beyond the reuse distance to avoid co-channel interference. In this paper, a methodology based on theoretical network models is proposed. A number of network architectures and network reference models are considered here for different reception modes in order to study the effects of key planning factors on the maximum SFN size and minimum reuse distance. The results show that maximum bitrate, network size and reuse distance are closely related. In addition, it has been found that the guard interval is not the only limiting parameter and that its impact strongly depends on the rest of DVB-T2 mode parameters as well as on the network characteristics (Equivalent Radiated Power, effective height, inter-transmitter distance). Assuming that the C/N requirements are in the vicinity of 20 dB and bitrates over 30 Mbps, it has been found that the network can be as large as 360 x 360 km (delivering 39.2 Mbps) or even 720 x 720 km (delivering 37.5 Mbps). The reuse distance will also have a complex dependency on the DVB-T2 mode and especially the network parameters, ranging from below 100 to 300 km.This work has been financially supported by the Beihang University, IRT, the University of the Basque Country UPV/EHU (UFI 11/30 and program for the specialization of the postdoctoral researcher staff) and by the Spanish Ministry of Economy and Competitiveness under the project HEDYT-GBB (TEC2012-33302)

    Semianalytical Approach to the PDF of SINR in HPHT and LPLT Single-Frequency Networks

    Full text link
    (c) 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/ republishing this[EN] Single-frequency networks (SFN) are widely adopted in terrestrial broadcast networks based on high-power high-tower (HPHT) deployments. The mobile broadcasting standard Evolved Multimedia Broadcast Multicast Service (eMBMS) has been enhanced in Release 14 to enable SFN operation with larger CP duration which may allow for the deployment of large area SFNs and even the combined operation between HPHT and low-power low-tower (LPLT) cellular stations. The knowledge of the signal-to-interference-plus-noise ratio (SINR) distribution over an SFN area may facilitate the selection of transmission parameters according to the network topology. This paper presents a semianalytical method for the calculation of the SINR distribution in SFNs with low computational complexity compared to Monte Carlo simulations. The method, which builds on previous work developed for cellular communications, is applied to HPHT+LPLT SFNs and evaluated against different transmission and network parameters.This work was supported in part by the Ministerio de Educacion y Ciencia, Spain, under Grant TEC2014-56483-R, in part by European FEDER funds.Gimenez Gandia, JJ.; Sung, KW.; Gomez-Barquero, D. (2018). Semianalytical Approach to the PDF of SINR in HPHT and LPLT Single-Frequency Networks. IEEE Transactions on Vehicular Technology. 67(5):4173-4181. https://doi.org/10.1109/TVT.2018.2791347S4173418167

    Planning the Migration of Digital Terrestrial Broadcasting in Croatia to DVB-T2 Standard

    Get PDF
    On 31 December 2010 analogue television in Croatia was completely switched off and was replaced by DVB-T television standard. Because of that, it became possible to provide more TV programs with higher quality and it freed up the frequency band for first digital dividend, which is now used for LTE mobile broadband services. Nowadays, newer and more advanced standard DVBT2, which is extension of DVB-T, is being implemented in many countries. In Croatia DVB-T2 is used for terrestrial pay TV platform. DVB-T2 offers significantly higher network capacity in the same frequency band which enables more television programs, easier migration to HD services and possibility to free up additional frequencies for second digital dividend. Second dividend frequencies are fitted for covering broad rural areas with wireless broadband services that can reduce the digital gap. Such benefits will have a positive impact on economic sustainability of traditional broadcasting media in a competitive digital economy. In this paper we give an overview and analysis of digitalisation process in Croatia in terms of technology and regulation, costs and benefits for the state budget and media campaign with lessons learned, in order to enumerate motivation factors for further migration to the DVB-T2 standard. With the help of simulation, a practical example of useful bit rate increase between the DVB-T and DVB-T2 systems is given. Predicted reduction of TV broadcasting costs, migration costs, need for government subsidy to buy new DVB-T2 receivers and other cost factors of the transition to DVB-T2 are discussed. This analysis is a basis for identifying key prerequisites, benefits, obstacles and stakeholders in migration to DVB-T2 and gives further areas that have to be researched in order to prepare the optimal plan for migration to DVB-T2 from technical, economic, market and social perspectives

    Single-Frequency Network Terrestrial Broadcasting with 5GNR Numerology

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen

    From MFN to SFN: Performance Prediction Through Machine Learning

    Get PDF
    In the last decade, the transition of digital terrestrial television (DTT) systems from multi-frequency networks (MFNs) to single-frequency networks (SFNs) has become a reality. SFN offers multiple advantages concerning MFN, such as more efficient management of the radioelectric spectrum, homogenizing the network parameters, and a potential SFN gain. However, the transition process can be cumbersome for operators due to the multiple measurement campaigns and required finetuning of the final SFN system to ensure the desired quality of service. To avoid time-consuming field measurements and reduce the costs associated with the SFN implementation, this paper aims to predict the performance of an SFN system from the legacy MFN and position data through machine learning (ML) algorithms. It is proposed a ML concatenated structure based on classification and regression to predict SFN electric-field strength, modulation error ratio, and gain. The model's training and test process are performed with a dataset from an SFN/MFN trial in Ghent, Belgium. Multiple algorithms have been tuned and compared to extract the data patterns and select the most accurate algorithms. The best performance to predict the SFN electric-field strength is obtained with a coefficient of determination (R2) of 0.93, modulation error ratio of 0.98, and SFN gain of 0.89 starting from MFN parameters and position data. The proposed method allows classifying the data points according to positive or negative SFN gain with an accuracy of 0.97

    Improved Spectrum Usage with Multi-RF Channel Aggregation Technologies for the Next-Generation Terrestrial Broadcasting

    Full text link
    [EN] Next-generation terrestrial broadcasting targets at enhancing spectral efficiency to overcome the challenges derived from the spectrum shortage as a result of the progressive allocation of frequencies - the so-called Digital Dividend - to satisfy the growing demands for wireless broadband capacity. Advances in both transmission standards and video coding are paramount to enable the progressive roll-out of high video quality services such as HDTV (High Definition Televison) or Ultra HDTV. The transition to the second generation European terrestrial standard DVB-T2 and the introduction of MPEG-4/AVC video coding already enables the transmission of 4-5 HDTV services per RF (Radio Frequency) channel. However, the impossibility to allocate higher bit-rate within the remaining spectrum could jeopardize the evolution of the DTT platforms in favour of other high-capacity systems such as the satellite or cable distribution platforms. Next steps are focused on the deployment of the recently released High Efficiency Video Coding (HEVC) standard, which provides more than 50% coding gain with respect to AVC, with the next-generation terrestrial standards. This could ensure the competitiveness of the DTT. This dissertation addresses the use of multi-RF channel aggregation technologies to increase the spectral efficiency of future DTT networks. The core of the Thesis are two technologies: Time Frequency Slicing (TFS) and Channel Bonding (CB). TFS and CB consist in the transmission of the data of a TV service across multiple RF channels instead of using a single channel. CB spreads data of a service over multiple classical RF channels (RF-Mux). TFS spreads the data by time-slicing (slot-by-slot) across multiple RF channels which are sequentially recovered at the receiver by frequency hopping. Transmissions using these features can benefit from capacity and coverage gains. The first one comes from a more efficient statistical multiplexing (StatMux) for Variable Bit Rate (VBR) services due to a StatMux pool over a higher number of services. Furthermore, CB allows increasing service data rate with the number of bonded RF channels and also advantages when combined with SVC (Scalable Video Coding). The coverage gain comes from the increased RF performance due to the reception of the data of a service from different RF channels rather that a single one that could be, eventually, degraded. Robustness against interferences is also improved since the received signal does not depend on a unique potentially interfered RF channel. TFS was firstly introduced as an informative annex in DVB-T2 (not normative) and adopted in DVB-NGH (Next Generation Handheld). TFS and CB are proposed for inclusion in ATSC 3.0. However, they have never been implemented. The investigations carried out in this dissertation employ an information-theoretical approach to obtain their upper bounds, physical layer simulations to evaluate the performance in real systems and the analysis of field measurements that approach realistic conditions of the network deployments. The analysis report coverage gains about 4-5 dB with 4 RF channels and high capacity gains already with 2 RF channels. This dissertation also focuses on implementation aspects. Channel bonding receivers require one tuner per bonded RF channel. The implementation of TFS with a single tuner demands the fulfilment of several timing requirements. However, the use of just two tuners would still allow for a good performance with a cost-effective implementation by the reuse of existing chipsets or the sharing of existing architectures with dual tuner operation such as MIMO (Multiple Input Multiple Output).[ES] La televisión digital terrestre (TDT) de última generación está orientada a una necesaria mejora de la eficiencia espectral con el fin de abordar los desafíos derivados de la escasez de espectro como resultado de la progresiva asignación de frecuencias - el llamado Dividendo Digital - para satisfacer la creciente demanda de capacidad para la banda ancha inalámbrica. Los avances tanto en los estándares de transmisión como de codificación de vídeo son de suma importancia para la progresiva puesta en marcha de servicios de alta calidad como la televisión de Ultra AD (Alta Definición). La transición al estándar europeo de segunda generación DVB-T2 y la introducción de la codificación de vídeo MPEG-4 / AVC ya permite la transmisión de 4-5 servicios de televisión de AD por canal RF (Radiofrecuencia). Sin embargo, la imposibilidad de asignar una mayor tasa de bit sobre el espectro restante podría poner en peligro la evolución de las plataformas de TDT en favor de otros sistemas de alta capacidad tales como el satélite o las distribuidoras de cable. El siguiente paso se centra en el despliegue del reciente estándar HEVC (High Efficiency Video Coding), que ofrece un 50% de ganancia de codificación con respecto a AVC, junto con los estándares terrestres de próxima generación, lo que podría garantizar la competitividad de la TDT en un futuro cercano. Esta tesis aborda el uso de tecnologías de agregación de canales RF que permitan incrementar la eficiencia espectral de las futuras redes. La tesis se centra en torno a dos tecnologías: Time Frequency Slicing (TFS) y Channel Bonding (CB). TFS y CB consisten en la transmisión de los datos de un servicio de televisión a través de múltiples canales RF en lugar de utilizar un solo canal. CB difunde los datos de un servicio a través de varios canales RF convencionales formando un RF-Mux. TFS difunde los datos a través de ranuras temporales en diferentes canales RF. Los datos son recuperados de forma secuencial en el receptor mediante saltos en frecuencia. La implementación de estas técnicas permite obtener ganancias en capacidad y cobertura. La primera de ellas proviene de una multiplexación estadística (StatMux) de servicios de tasa variable (VBR) más eficiente. Además, CB permite aumentar la tasa de pico de un servicio de forma proporcional al número de canales así como ventajas al combinarla con codificación de vídeo escalable. La ganancia en cobertura proviene de un mejor rendimiento RF debido a la recepción de los datos de un servicio desde diferentes canales en lugar uno sólo que podría estar degradado. Del mismo modo, es posible obtener una mayor robustez frente a interferencias ya que la recepción o no de un servicio no depende de si el canal que lo alberga está o no interferido. TFS fue introducido en primer lugar como un anexo informativo en DVB-T2 (no normativo) y posteriormente fue adoptado en DVB-NGH (Next Generation Handheld). TFS y CB han sido propuestos para su inclusión en ATSC 3.0. Aún así, nunca han sido implementados. Las investigaciones llevadas a cabo en esta Tesis emplean diversos enfoques basados en teoría de la información para obtener los límites de ganancia, en simulaciones de capa física para evaluar el rendimiento en sistemas reales y en el análisis de medidas de campo. Estos estudios reportan ganancias en cobertura en torno a 4-5 dB con 4 canales e importantes ganancias en capacidad aún con sólo 2 canales RF. Esta tesis también se centra en los aspectos de implementación. Los receptores para CB requieren un sintonizador por canal RF agregado. La implementación de TFS con un solo sintonizador exige el cumplimiento de varios requisito temporales. Sin embargo, el uso de dos sintonizadores permitiría un buen rendimiento con una implementación más rentable con la reutilización de los actuales chips o su introducción junto con las arquitecturas existentes que operan con un doble sintonizador tales como[CA] La televisió digital terrestre (TDT) d'última generació està orientada a una necessària millora de l'eficiència espectral a fi d'abordar els desafiaments derivats de l'escassetat d'espectre com a resultat de la progressiva assignació de freqüències - l'anomenat Dividend Digital - per a satisfer la creixent demanda de capacitat per a la banda ampla sense fil. Els avanços tant en els estàndards de transmissió com de codificació de vídeo són de la màxima importància per a la progressiva posada en marxa de serveis d'alta qualitat com la televisió d'Ultra AD (Alta Definició). La transició a l'estàndard europeu de segona generació DVB-T2 i la introducció de la codificació de vídeo MPEG-4/AVC ja permet la transmissió de 4-5 serveis de televisió d'AD per canal RF (Radiofreqüència). No obstant això, la impossibilitat d'assignar una major taxa de bit sobre l'espectre restant podria posar en perill l'evolució de les plataformes de TDT en favor d'altres sistemes d'alta capacitat com ara el satèl·lit o les distribuïdores de cable. El següent pas se centra en el desplegament del recent estàndard HEVC (High Efficiency Vídeo Coding), que oferix un 50% de guany de codificació respecte a AVC, junt amb els estàndards terrestres de pròxima generació, la qual cosa podria garantir la competitivitat de la TDT en un futur pròxim. Aquesta tesi aborda l'ús de tecnologies d'agregació de canals RF que permeten incrementar l'eficiència espectral de les futures xarxes. La tesi se centra entorn de dues tecnologies: Time Frequency Slicing (TFS) i Channel Bonding (CB). TFS i CB consistixen en la transmissió de les dades d'un servei de televisió a través de múltiples canals RF en compte d'utilitzar un sol canal. CB difon les dades d'un servei a través d'uns quants canals RF convencionals formant un RF-Mux. TFS difon les dades a través de ranures temporals en diferents canals RF. Les dades són recuperades de forma seqüencial en el receptor per mitjà de salts en freqüència. La implementació d'aquestes tècniques permet obtindre guanys en capacitat i cobertura. La primera d'elles prové d'una multiplexació estadística (StatMux) de serveis de taxa variable (VBR) més eficient. A més, CB permet augmentar la taxa de pic d'un servei de forma proporcional al nombre de canals així com avantatges al combinar-la amb codificació de vídeo escalable. El guany en cobertura prové d'un millor rendiment RF a causa de la recepció de les dades d'un servei des de diferents canals en lloc de només un que podria estar degradat. De la mateixa manera, és possible obtindre una major robustesa enfront d'interferències ja que la recepció o no d'un servei no depén de si el canal que l'allotja està o no interferit. TFS va ser introduït en primer lloc com un annex informatiu en DVB-T2 (no normatiu) i posteriorment va ser adoptat en DVB-NGH (Next Generation Handheld). TFS i CB han sigut proposades per a la seva inclusió en ATSC 3.0. Encara així, mai han sigut implementades. Les investigacions dutes a terme en esta Tesi empren diverses vessants basades en teoria de la informació per a obtindre els límits de guany, en simulacions de capa física per a avaluar el rendiment en sistemes reals i en l'anàlisi de mesures de camp. Aquestos estudis reporten guanys en cobertura entorn als 4-5 dB amb 4 canals i importants guanys en capacitat encara amb només 2 canals RF. Esta tesi també se centra en els aspectes d'implementació. Els receptors per a CB requerixen un sintonitzador per canal RF agregat. La implementació de TFS amb un sol sintonitzador exigix el compliment de diversos requisit temporals. No obstant això, l'ús de dos sintonitzadors permetria un bon rendiment amb una implementació més rendible amb la reutilització dels actuals xips o la seua introducció junt amb les arquitectures existents que operen amb un doble sintonitzador com ara MIMO (Multiple Input Multiple Output).Giménez Gandia, JJ. (2015). Improved Spectrum Usage with Multi-RF Channel Aggregation Technologies for the Next-Generation Terrestrial Broadcasting [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/52520TESI

    MIMO for DVB-NGH, the next generation mobile TV broadcasting

    Full text link
    DVB-NGH (Digital Video Broadcasting - Next Generation Handheld) is the next generation technology for mobile TV broadcasting, which has been developed by the DVB project with the most advanced transmission technologies. DVB-NGH is the first broadcasting standard to incorporate multiple-input multiple-output (MIMO) as the key technology to overcome the Shannon limit of single antenna communications. MIMO techniques can be used to improve the robustness of the transmitted signal by exploiting the spatial diversity of the MIMO channel, but also to achieve increased data rates through spatial multiplexing. This article describes the benefits of MIMO that motivated its incorporation in DVB-NGH, reviews the MIMO schemes adopted, and discusses some aspects related to the deployment of MIMO networks in DVB-NGH. The article also provides a feature comparison with the multi-antenna techniques for 3GGP's LTE/LTE-Advanced for cellular networks. Finally, physical layer simulation results calibrated within the DVB-NGH standardization process are provided to illustrate the gain of MIMO for the next generation of mobile TV broadcasting.Vargas Paredero, DE.; Gozálvez Serrano, D.; Gómez Barquero, D.; Cardona Marcet, N. (2013). MIMO for DVB-NGH, the next generation mobile TV broadcasting. IEEE Communications Magazine. 51(7):130-137. doi:10.1109/MCOM.2013.6553689S13013751

    Passive radar on moving platforms exploiting DVB-T transmitters of opportunity

    Get PDF
    The work, effort, and research put into passive radar for stationary receivers have shown significant developments and progress in recent years. The next challenge is mounting a passive radar on moving platforms for the purpose of target detection and ground imaging, e.g. for covert border control. A passive radar on a moving platform has many advantages and offers many benefits, however there is also a considerable drawback that has limited its application so far. Due to the movement the clutter returns are spread in Doppler and may overlap moving targets, which are then difficult to detect. While this problem is common for an active radar as well, with a passive radar a further problem arises: It is impossible to control the exploited time-varying waveform emitted from a telecommunication transmitter. A conventional processing approach is ineffective as the time-varying waveform leads to residuals all over the processed data. Therefore a dedicated clutter cancellation method, e.g. the displaced phase centre antenna (DPCA) approach, does not have the ability to completely remove the clutter, so that target detection is considerably limited. The aim must be therefore to overcome this limitation by exploiting a processing technique, which is able to remove these residuals in order to cope with the clutter returns thus making target detection feasible. The findings of this research and thesis show that a reciprocal filtering based stage is able to provide a time-invariant impulse response similar to the transmissions of an active radar. Due to this benefit it is possible to achieve an overall complete clutter removal together with a dedicated DPCA stage, so that moving target detection is considerably improved, making it possible in the first place. Based on mathematical analysis and on simulations it is proven, that by exploiting this processing in principle an infinite clutter cancellation can be achieved. This result shows that the reciprocal filter is an essential processing stage. Applications on real data acquired from two different measurement campaigns prove these results. By the proposed approach, the limiting factor (i.e. the time-varying waveform) for target detection is negotiated, and in principle any clutter cancellation technique known from active radar can be applied. Therefore this analysis and the results provide a substantial contribution to the passive radar research community and enables it to address the next questions
    corecore