361 research outputs found

    5G optimized caching and downlink resource sharing for smart cities

    Get PDF

    Recent Advances in Cellular D2D Communications

    Get PDF
    Device-to-device (D2D) communications have attracted a great deal of attention from researchers in recent years. It is a promising technique for offloading local traffic from cellular base stations by allowing local devices, in physical proximity, to communicate directly with each other. Furthermore, through relaying, D2D is also a promising approach to enhancing service coverage at cell edges or in black spots. However, there are many challenges to realizing the full benefits of D2D. For one, minimizing the interference between legacy cellular and D2D users operating in underlay mode is still an active research issue. With the 5th generation (5G) communication systems expected to be the main data carrier for the Internet-of-Things (IoT) paradigm, the potential role of D2D and its scalability to support massive IoT devices and their machine-centric (as opposed to human-centric) communications need to be investigated. New challenges have also arisen from new enabling technologies for D2D communications, such as non-orthogonal multiple access (NOMA) and blockchain technologies, which call for new solutions to be proposed. This edited book presents a collection of ten chapters, including one review and nine original research works on addressing many of the aforementioned challenges and beyond

    A Survey on Applications of Cache-Aided NOMA

    Get PDF
    Contrary to orthogonal multiple-access (OMA), non-orthogonal multiple-access (NOMA) schemes can serve a pool of users without exploiting the scarce frequency or time domain resources. This is useful in meeting the future network requirements (5G and beyond systems), such as, low latency, massive connectivity, users' fairness, and high spectral efficiency. On the other hand, content caching restricts duplicate data transmission by storing popular contents in advance at the network edge which reduces data traffic. In this survey, we focus on cache-aided NOMA-based wireless networks which can reap the benefits of both cache and NOMA; switching to NOMA from OMA enables cache-aided networks to push additional files to content servers in parallel and improve the cache hit probability. Beginning with fundamentals of the cache-aided NOMA technology, we summarize the performance goals of cache-aided NOMA systems, present the associated design challenges, and categorize the recent related literature based on their application verticals. Concomitant standardization activities and open research challenges are highlighted as well

    Group-Based Data Offloading Techniques Assisted by D2D Communication in 5G Mobile Network

    Get PDF
    Machine type communication devices proposed as one of the substantial data collections in the 5G of wireless networks. However, the existing mobile communication network is not designed to handle massive access from the MTC devices instead of human type communication. In this context, we propose the device-to-device communication assisted a mobile terminal (smartphone) on data computing, focusing on data generated from a correlated source of machine type communication devices. We consider the scenario that the MTC devices after collecting the data will transmit to a smartphone for computing. With the limitation of computing resources at the smartphone, some data are offloaded to the nearby mobile edge-computing server. By adopting the sensing capability on MTC devices, we use a power exponential function to compute a correlation coefficient existing between the devices. Then we propose two grouping techniques K-Means and hierarchical clustering to combine only the MTC devices, which are spatially correlated. Based on this framework, we compare the energy consumption when all data processed locally at a smartphone or remotely at mobile edge computing server with optimal solution obtained by exhaustive search method. The results illustrated that; the proposed grouping technique reduce the energy consumption at a smartphone while satisfying a required completion time.&nbsp
    • …
    corecore