8 research outputs found

    MCMC Learning

    Full text link
    The theory of learning under the uniform distribution is rich and deep, with connections to cryptography, computational complexity, and the analysis of boolean functions to name a few areas. This theory however is very limited due to the fact that the uniform distribution and the corresponding Fourier basis are rarely encountered as a statistical model. A family of distributions that vastly generalizes the uniform distribution on the Boolean cube is that of distributions represented by Markov Random Fields (MRF). Markov Random Fields are one of the main tools for modeling high dimensional data in many areas of statistics and machine learning. In this paper we initiate the investigation of extending central ideas, methods and algorithms from the theory of learning under the uniform distribution to the setup of learning concepts given examples from MRF distributions. In particular, our results establish a novel connection between properties of MCMC sampling of MRFs and learning under the MRF distribution.Comment: 28 pages, 1 figur

    Top-Down Induction of Decision Trees: Rigorous Guarantees and Inherent Limitations

    Get PDF
    Consider the following heuristic for building a decision tree for a function f:{0,1}n{±1}f : \{0,1\}^n \to \{\pm 1\}. Place the most influential variable xix_i of ff at the root, and recurse on the subfunctions fxi=0f_{x_i=0} and fxi=1f_{x_i=1} on the left and right subtrees respectively; terminate once the tree is an ε\varepsilon-approximation of ff. We analyze the quality of this heuristic, obtaining near-matching upper and lower bounds: \circ Upper bound: For every ff with decision tree size ss and every ε(0,12)\varepsilon \in (0,\frac1{2}), this heuristic builds a decision tree of size at most sO(log(s/ε)log(1/ε))s^{O(\log(s/\varepsilon)\log(1/\varepsilon))}. \circ Lower bound: For every ε(0,12)\varepsilon \in (0,\frac1{2}) and s2O~(n)s \le 2^{\tilde{O}(\sqrt{n})}, there is an ff with decision tree size ss such that this heuristic builds a decision tree of size sΩ~(logs)s^{\tilde{\Omega}(\log s)}. We also obtain upper and lower bounds for monotone functions: sO(logs/ε)s^{O(\sqrt{\log s}/\varepsilon)} and sΩ~(logs4)s^{\tilde{\Omega}(\sqrt[4]{\log s } )} respectively. The lower bound disproves conjectures of Fiat and Pechyony (2004) and Lee (2009). Our upper bounds yield new algorithms for properly learning decision trees under the uniform distribution. We show that these algorithms---which are motivated by widely employed and empirically successful top-down decision tree learning heuristics such as ID3, C4.5, and CART---achieve provable guarantees that compare favorably with those of the current fastest algorithm (Ehrenfeucht and Haussler, 1989). Our lower bounds shed new light on the limitations of these heuristics. Finally, we revisit the classic work of Ehrenfeucht and Haussler. We extend it to give the first uniform-distribution proper learning algorithm that achieves polynomial sample and memory complexity, while matching its state-of-the-art quasipolynomial runtime

    Advances in Functional Encryption

    Get PDF
    Functional encryption is a novel paradigm for public-key encryption that enables both fine-grained access control and selective computation on encrypted data, as is necessary to protect big, complex data in the cloud. In this thesis, I provide a brief introduction to functional encryption, and an overview of my contributions to the area

    Optimal Cryptographic Hardness of Learning Monotone Functions

    No full text
    Abstract. A wide range of positive and negative results have been established for learning different classes of Boolean functions from uniformly distributed random examples. However, polynomial-time algorithms have thus far been obtained almost exclusively for various classes of monotone functions, while the computational hardness results obtained to date have all been for various classes of general (nonmonotone) functions. Motivated by this disparity between known positive results (for monotone functions) and negative results (for nonmonotone functions), we establish strong computational limitations on the efficient learnability of various classes of monotone functions. We give several such hardness results which are provably almost optimal since they nearly match known positive results. Some of our results show cryptographic hardness of learning polynomial-size monotone circuits to accuracy only slightly greater than 1/2 + 1 / √ n; this accuracy bound is close to optimal by known positive results (Blum et al., FOCS ’98). Other results show that under a plausible cryptographic hardness assumption, a class of constant-depth, sub-polynomialsize circuits computing monotone functions is hard to learn; this result is close to optimal in terms of the circuit size parameter by known positive results as well (Servedio, Information and Computation ’04). Our main tool is a complexitytheoretic approach to hardness amplification via noise sensitivity of monotone functions that was pioneered by O’Donnell (JCSS ’04).
    corecore