190 research outputs found

    Practical Considerations and Applications for Autonomous Robot Swarms

    Get PDF
    In recent years, the study of autonomous entities such as unmanned vehicles has begun to revolutionize both military and civilian devices. One important research focus of autonomous entities has been coordination problems for autonomous robot swarms. Traditionally, robot models are used for algorithms that account for the minimum specifications needed to operate the swarm. However, these theoretical models also gloss over important practical details. Some of these details, such as time, have been considered before (as epochs of execution). In this dissertation, we examine these details in the context of several problems and introduce new performance measures to capture practical details. Specifically, we introduce three new metrics: (1) the distance complexity (reflecting power usage and wear-and-tear of robots), (2) the spatial complexity (reflecting the space needed for the algorithm to work), and (3) local computational complexity (reflecting the computational requirements for each robot in the swarm). We apply these metrics in the study of some well-known and important problems, such as Complete Visibility and Arbitrary Pattern Formation. We also introduce and study a new problem, Doorway Egress, that captures the essence of a swarm’s navigation through restricted spaces. First, we examine the distance and spatial complexity used across a class of Complete Visibility algorithms. Second, we provide algorithms for Complete Visibility on an integer plane, including some that are asymptotically optimal in terms of time, distance complexity, and spatial complexity. Third, we introduce the problem of Doorway Egress and provide algorithms for a variety of robot swarm models with various optimalities. Finally, we provide an optimal algorithm for Arbitrary Pattern Formation on the grid

    Pattern Formation for Fat Robots with Memory

    Full text link
    Given a set of n1n\geq 1 autonomous, anonymous, indistinguishable, silent, and possibly disoriented mobile unit disk (i.e., fat) robots operating following Look-Compute-Move cycles in the Euclidean plane, we consider the Pattern Formation problem: from arbitrary starting positions, the robots must reposition themselves to form a given target pattern. This problem arises under obstructed visibility, where a robot cannot see another robot if there is a third robot on the straight line segment between the two robots. We assume that a robot's movement cannot be interrupted by an adversary and that robots have a small O(1)O(1)-sized memory that they can use to store information, but that cannot be communicated to the other robots. To solve this problem, we present an algorithm that works in three steps. First it establishes mutual visibility, then it elects one robot to be the leader, and finally it forms the required pattern. The whole algorithm runs in O(n)+O(qlogn)O(n) + O(q \log n) rounds, where q>0q>0 is related to leader election, which takes O(qlogn)O(q \log n) rounds with probability at least 1nq1-n^{-q}. The algorithms are collision-free and do not require the knowledge of the number of robots.Comment: arXiv admin note: text overlap with arXiv:2306.1444

    A Unifying Approach to Efficient (Near)-Gathering of Disoriented Robots with Limited Visibility

    Get PDF

    Collisionless Pattern Discovery in Robot Swarms Using Deep Reinforcement Learning

    Full text link
    We present a deep reinforcement learning-based framework for automatically discovering patterns available in any given initial configuration of fat robot swarms. In particular, we model the problem of collision-less gathering and mutual visibility in fat robot swarms and discover patterns for solving them using our framework. We show that by shaping reward signals based on certain constraints like mutual visibility and safe proximity, the robots can discover collision-less trajectories leading to well-formed gathering and visibility patterns

    Analysis and implementation of distributed algorithms for multi-robot systems

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2008.Includes bibliographical references (p. 159-166).Distributed algorithms for multi-robot systems rely on network communications to share information. However, the motion of the robots changes the network topology, which affects the information presented to the algorithm. For an algorithm to produce accurate output, robots need to communicate rapidly enough to keep the network topology correlated to their physical configuration. Infrequent communications will cause most multirobot distributed algorithms to produce less accurate results, and cause some algorithms to stop working altogether. The central theme of this work is that algorithm accuracy, communications bandwidth, and physical robot speed are related. This thesis has three main contributions: First, I develop a prototypical multi-robot application and computational model, propose a set of complexity metrics to evaluate distributed algorithm performance on multi-robot systems, and introduce the idea of the robot speed ratio, a dimensionless measure of robot speed relative to message speed in networks that rely on multi-hop communication. The robot speed ratio captures key relationships between communications bandwidth, mobility, and algorithm accuracy, and can be used at design time to trade off between them. I use this speed ratio to evaluate the performance of existing distributed algorithms for multi-hop communication and navigation. Second, I present a definition of boundaries in multi-robot systems, and develop new distributed algorithms to detect and characterize them. Finally, I define the problem of dynamic task assignment, and present four distributed algorithms that solve this problem, each representing a different trade-off between accuracy, running time, and communication resources. All the algorithms presented in this work are provably correct under ideal conditions and produce verifiable real-world performance.(cont.) They are self-stabilizing and robust to communications failures, population changes, and other errors. All the algorithms were tested on a swarm of 112 robots.by James Dwight McLurkin, IV.Ph.D

    Underwater Vehicles

    Get PDF
    For the latest twenty to thirty years, a significant number of AUVs has been created for the solving of wide spectrum of scientific and applied tasks of ocean development and research. For the short time period the AUVs have shown the efficiency at performance of complex search and inspection works and opened a number of new important applications. Initially the information about AUVs had mainly review-advertising character but now more attention is paid to practical achievements, problems and systems technologies. AUVs are losing their prototype status and have become a fully operational, reliable and effective tool and modern multi-purpose AUVs represent the new class of underwater robotic objects with inherent tasks and practical applications, particular features of technology, systems structure and functional properties

    Error Analysis in Multi-Agent Control Systems

    Get PDF
    Any cooperative control scheme relies on some measurements which are often assumed to be exact to simplify the analysis. However, it is known that in practice all measured quantities are subject to error, which can deteriorate the overall performance of the network significantly. This work proposes a new measurement error analysis in the control of multi-agent systems. In particular, the connectivity preservation of multi-agent systems with state-dependent error in distance measurements is considered. It is assumed that upper bounds on the measurement error and its rate of change are available. A general class of distributed control strategies is then proposed for the distance-dependent connectivity preservation of the agents in the network. It is shown that if two neighboring agents are initially located in the connectivity range, they are guaranteed to remain connected at all times. Furthermore, the formation control problem for a team of single-integrator agents subject to distance measurement error is investigated using navigation functions. Collision, obstacle and boundary avoidance are important features of the proposed strategy. Conditions on the magnitude of the measurement error and its rate of change are derived under which a new error-dependent formation can be achieved anywhere in the space. The effectiveness of the proposed control strategies in consensus and containment problems is demonstrated by simulation
    corecore