284 research outputs found

    The Adwords Problem with Strict Capacity Constraints

    Get PDF
    We study an online assignment problem where the offline servers have capacities, and the objective is to obtain a maximum-weight assignment of requests that arrive online. The weight of edges incident to any server can be at most the server capacity. Our problem is related to the adwords problem, where the assignment to a server is allowed to exceed its capacity. In many applications, however, server capacities are strict and partially-served requests are of no use, motivating the problem we study. While no deterministic algorithm can be competitive in general for this problem, we give an algorithm with competitive ratio that depends on the ratio of maximum weight of any edge to the capacity of the server it is incident to. If this ratio is 1/2, our algorithm is tight. Further, we give a randomized algorithm that is 6-competitive in expectation for the general problem. Most previous work on the problem and its variants assumes that the edge weights are much smaller than server capacities. Our guarantee, in contrast, does not require any assumptions about job weights. We also give improved lower bounds for both deterministic and randomized algorithms. For the special case of parallel servers, we show that a load-balancing algorithm is tight and near-optimal

    Computing with strategic agents

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2005.Includes bibliographical references (p. 179-189).This dissertation studies mechanism design for various combinatorial problems in the presence of strategic agents. A mechanism is an algorithm for allocating a resource among a group of participants, each of which has a privately-known value for any particular allocation. A mechanism is truthful if it is in each participant's best interest to reveal his private information truthfully regardless of the strategies of the other participants. First, we explore a competitive auction framework for truthful mechanism design in the setting of multi-unit auctions, or auctions which sell multiple identical copies of a good. In this framework, the goal is to design a truthful auction whose revenue approximates that of an omniscient auction for any set of bids. We focus on two natural settings - the limited demand setting where bidders desire at most a fixed number of copies and the limited budget setting where bidders can spend at most a fixed amount of money. In the limit demand setting, all prior auctions employed the use of randomization in the computation of the allocation and prices.(cont.) Randomization in truthful mechanism design is undesirable because, in arguing the truthfulness of the mechanism, we employ an underlying assumption that the bidders trust the random coin flips of the auctioneer. Despite conjectures to the contrary, we are able to design a technique to derandomize any multi-unit auction in the limited demand case without losing much of the revenue guarantees. We then consider the limited budget case and provide the first competitive auction for this setting, although our auction is randomized. Next, we consider abandoning truthfulness in order to improve the revenue properties of procurement auctions, or auctions that are used to hire a team of agents to complete a task. We study first-price procurement auctions and their variants and argue that in certain settings the payment is never significantly more than, and sometimes much less than, truthful mechanisms. Then we consider the setting of cost-sharing auctions. In a cost-sharing auction, agents bid to receive some service, such as connectivity to the Internet. A subset of agents is then selected for service and charged prices to approximately recover the cost of servicing them.(cont.) We ask what can be achieved by cost -sharing auctions satisfying a strengthening of truthfulness called group-strategyproofness. Group-strategyproofness requires that even coalitions of agents do not have an incentive to report bids other than their true values in the absence of side-payments. For a particular class of such mechanisms, we develop a novel technique based on the probabilistic method for proving bounds on their revenue and use this technique to derive tight or nearly-tight bounds for several combinatorial optimization games. Our results are quite pessimistic, suggesting that for many problems group-strategyproofness is incompatible with revenue goals. Finally, we study centralized two-sided markets, or markets that form a matching between participants based on preference lists. We consider mechanisms that output matching which are stable with respect to the submitted preferences. A matching is stable if no two participants can jointly benefit by breaking away from the assigned matching to form a pair.(cont.) For such mechanisms, we are able to prove that in a certain probabilistic setting each participant's best strategy is truthfulness with high probability (assuming other participants are truthful as well) even though in such markets in general there are provably no truthful mechanisms.by Nicole Immorlica.Ph.D

    On contests with complementarities

    Get PDF
    In this dissertation, we consider the role of complementarities in contests. In most contests, there is either a single prize available, or multiple prizes whose joint value is simply the sum of the values of the individual prizes. We consider contests involving competitions for multiple objectives whose value depend on the combination of objectives won. These combinations of objectives are the basis for the complementarities we examine. We use contests consisting of multiple subcontests, with the subcontests determining the winner of each objective. The overall contest thus determines which combinations of objectives each player achieves, and thus the overall prize winner. These complementarities are first established in a game between two players who have different complementarities, such that they must win combinations of subcontests to obtain a prize. Optimal decisions are determined for the players across different structures, with what structures benefit a particular player investigated. We then investigate the play of the game experimentally, seeing how actual players may deviate from optimal play. This game is then brought back a level, where the structure of the competition is itself determined by a game. Finally, we consider a different type of complementarity, where the complementarity occurs in the subcontests themselves, rather than for the overall prize

    Machine Learning for Ad Publishers in Real Time Bidding

    Get PDF

    A Survey of Experimental Research on Contests, All-Pay Auctions and Tournaments

    Get PDF
    Many economic, political and social environments can be described as contests in which agents exert costly efforts while competing over the distribution of a scarce resource. These environments have been studied using Tullock contests, all-pay auctions and rank-order tournaments. This survey provides a comprehensive review of experimental research on these three canonical contests. First, we review studies investigating the basic structure of contests, including the number of players and prizes, spillovers and externalities, heterogeneity, risk and incomplete information. Second, we discuss dynamic contests and multi-battle contests. Then we review studies examining sabotage, feedback, bias, collusion, alliances, group contests and gender, as well as field experiments. Finally, we discuss applications of contests and suggest directions for future research

    A Survey of Experimental Research on Contests, All-Pay Auctions and Tournaments

    Get PDF
    Many economic, political and social environments can be described as contests in which agents exert costly efforts while competing over the distribution of a scarce resource. These environments have been studied using Tullock contests, all-pay auctions and rank-order tournaments. This survey provides a comprehensive review of experimental research on these three canonical contests. First, we review studies investigating the basic structure of contests, including the number of players and prizes, spillovers and externalities, heterogeneity, risk and incomplete information. Second, we discuss dynamic contests and multi-battle contests. Then we review studies examining sabotage, feedback, bias, collusion, alliances, group contests and gender, as well as field experiments. Finally, we discuss applications of contests and suggest directions for future research

    A Survey of Experimental Research on Contests, All-Pay Auctions and Tournaments

    Get PDF
    Many economic, political and social environments can be described as contests in which agents exert costly efforts while competing over the distribution of a scarce resource. These environments have been studied using Tullock contests, all-pay auctions and rankorder tournaments. This survey provides a review of experimental research on these three canonical contests. First, we review studies investigating the basic structure of contests, including the contest success function, number of players and prizes, spillovers and externalities, heterogeneity, and incomplete information. Second, we discuss dynamic contests and multi-battle contests. Then we review research on sabotage, feedback, bias, collusion, alliances, and contests between groups, as well as real-effort and field experiments. Finally, we discuss applications of contests to the study of legal systems, political competition, war, conflict avoidance, sales, and charities, and suggest directions for future research. (author's abstract

    Revenue management in online markets:pricing and online advertising

    Get PDF
    corecore