
The Adwords Problem with Strict Capacity
Constraints
Umang Bhaskar1, Ajil Jalal2, and Rahul Vaze3

1 School of Technology and Computer Science, Tata Institute of Fundamental
Research, Mumbai, India
vaze@tcs.tifr.res.in

2 Department of Electrical and Computer Engineering, The University of Texas,
Austin, USA
ajiljalal@utexas.edu

3 School of Technology and Computer Science, Tata Institute of Fundamental
Research, Mumbai, India
vaze@tcs.tifr.res.in

Abstract
We study an online assignment problem where the offline servers have capacities, and the objective
is to obtain a maximum-weight assignment of requests that arrive online. The weight of edges
incident to any server can be at most the server capacity. Our problem is related to the adwords
problem, where the assignment to a server is allowed to exceed its capacity. In many applications,
however, server capacities are strict and partially-served requests are of no use, motivating the
problem we study.

While no deterministic algorithm can be competitive in general for this problem, we give an
algorithm with competitive ratio that depends on the ratio of maximum weight of any edge to
the capacity of the server it is incident to. If this ratio is 1/2, our algorithm is tight. Further, we
give a randomized algorithm that is 6-competitive in expectation for the general problem. Most
previous work on the problem and its variants assumes that the edge weights are much smaller
than server capacities. Our guarantee, in contrast, does not require any assumptions about job
weights. We also give improved lower bounds for both deterministic and randomized algorithms.
For the special case of parallel servers, we show that a load-balancing algorithm is tight and
near-optimal.

1998 ACM Subject Classification F.1.2 Online Computation

Keywords and phrases Online Algorithms, Adwords, Budgeted Matching, Greedy Algorithms

Digital Object Identifier 10.4230/LIPIcs.FSTTCS.2016.30

1 Introduction

Motivated by the problem of assigning advertising slots to advertisers, the adwords problem
is a well known and intensely studied online assignment problem. A set of advertisers or
bidders has a fixed budget for buying ad slots. A search engine user enters a search query,
based on which an advertisement is to be displayed corresponding to an ad slot. Each
advertiser places a bid for the slot, and based on these bids, the slot is assigned to a winning
bidder and the bid amount is collected as revenue. The objective is to maximize the revenue
for the search engine, given the bids of the advertisers and their budgets. Since the search
queries – and hence the bids – are not known in advance, this is an online problem, and the
winning advertiser at each step must be chosen without knowing future arrivals.

© Umang Bhaskar, Ajil Jalal, and Rahul Vaze;
licensed under Creative Commons License CC-BY

36th IARCS Annual Conference on Foundations of Software Technology and Theoretical Computer Science
(FSTTCS 2016).
Editors: Akash Lal, S. Akshay, Saket Saurabh, and Sandeep Sen; Article No. 30; pp. 30:1–30:14

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Dagstuhl Research Online Publication Server

https://core.ac.uk/display/74507256?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.4230/LIPIcs.FSTTCS.2016.30
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


30:2 The Adwords Problem with Strict Capacity Constraints

More generally, we can replace the advertisers with budgets by servers with capacities,
advertising slots by jobs that require processing, and bids by weighted edges. The objective is
then to assign jobs to servers to maximize total server utilization, subject to server capacities.
In the adwords application, and in the papers that study the adwords problem, the capacities
are assumed to be ‘violable’ constraints. That is, a bidder’s winning bids can exceed its
budget. In this case, the revenue from a bidder is the minimum of its budget, and the sum
of the winning bids placed by it. This is clearly reasonable, since no bidder is charged more
than its budget.

However in many online assignment problems, the capacity may in fact be a ‘strict’
constraint. As an example, consider the case when advertisers are servers with capacities
that dictate how long the server can be operated, slots are jobs that need to be processed,
and bids are processing times. A partially-complete job should not contribute towards work
completed, and hence server capacities are strict constraints. As another example, server
capacities correspond to download limits on a (web- or image-) hosting site, and requests for
items hosted on these sites arrive online. A partially-downloaded item is typically of no use,
and hence again should not contribute towards quota used from the site.

The violable capacity constraints are particularly useful when the edge weights are small
in comparison to the server capacities, since in this case even if the last job assigned to a
server exceeds the server capacity, it can be removed with small loss to the objective. In
fact most work on the adwords problem focuses on the problem with this restriction (see,
e.g., [3, 4, 13]. For deterministic algorithms with violable capacity constraints, if large edge
weights are allowed, there is a simple example that shows that the competitive ratio is at
least 2, and this is achieved by a greedy algorithm [12].

We study an online maximum weight assignment problem that generalizes these problems,
with strict capacity constraints. Our goal is to maximize total utilization of capacitated
servers that are available offline. In each time step, a set of jobs arrives, that have to be
assigned instantaneously and irrevocably to the servers to maximize capacity utilization,
subject to strict capacity constraints on the servers. Further, the set of edges at each time
step must constitute a matching, hence each server at each time step can be assigned at
most one job. This thus corresponds more closely to the problem of adwords with multiple
slots [3]. We consider both small and large edge weights, and obtain both upper and lower
bounds for the problem.

1.1 Contributions
We make the following contributions in this paper.

We propose a simple greedy algorithm that is shown to be 3-competitive, whenever the
weight of any job is at most half of the corresponding server capacity. In fact, we prove
a more general result that if the weight of any job on a server is at most α times the
corresponding server capacity, the greedy algorithm is

(
1 + 1

1−α

)
-competitive. We show

via an example that our analysis of the algorithm is tight. Further, we tighten a lower
bound given for online b-matching [8] and show for large edge weights, our algorithm is
nearly tight as well.
When each server has identical capacity 1 and is parallel, that is, a job has the same
weight on every server, we give a deterministic 1 + ε-competitive algorithm, where ε is the
maximum job weight. Thus if ε→ 0, this algorithm is nearly optimal. We also show that
no deterministic algorithm obtains a better competitive ratio, even for a single server.
For the unrestricted edge weights case, we propose a randomized version of the greedy
algorithm and show that it is 6-competitive. For our algorithm, we define a job as heavy



U. Bhaskar, A. Jalal, and R. Vaze 30:3

for a server if its weight is more than half of the server capacity, and light otherwise. Our
randomization is rather novel, where a server accepts or rejects heavy jobs depending on
a coin flip. Typically, the randomization is on the edge side, where an edge is accepted
or not depending on the coin flips (e.g., [11]). We also show a lower bound of 2 for any
randomized algorithm.
Lastly, we consider the case when jobs have finite span in addition to their weight, and
release the resources consumed at the end of their span. The server capacity is thereafter
available for other requests. If all jobs have the same span, then we show that our
algorithm is 12-competitive. If they have unequal spans, and the maximum and minimum
spans are given to the algorithm, we obtain an O(log smax

smin
)-competitive algorithm, where

smax and smin are the maximum and minimum spans respectively.

1.2 Related Work
In the adwords problem, a set of bidders with individual budgets is given offline. At each
time step, a new request arrives with weighted edges to the bidders. The objective is to
assign each request to a bidder, to maximize the total weight of edges selected. If the weight
of edges incident to a bidder exceeds its capacity, this capacity is included in the sum, rather
than the incident edges. The adwords problem was introduced by Mehta et al. [13], for
which the authors give a deterministic algorithm with competitive ratio e/(e− 1) when the
ratio of each bid to the bidder’s budget is small (and budgets are assumed to be a violable
constraint). The problem was further studied in a number of other papers (e.g., [3, 4]) that
give different algorithms and analyses, but with the same competitive ratio of e/(e− 1). In
the adwords problem with multiple slots, multiple requests arrive at each time step, and the
assignment at each time step must be a matching. This extension is studied by Buchbinder,
Jain and Naor [3], and they give an online algorithm based on primal-dual techniques where
the competitive ratio is shown to be (1− 1/c)(1−Rmax), for c = (1 +Rmax)1/Rmax and Rmax
is the ratio of the maximum bid to the minimum budget of any advertiser. As Rmax → 0,
the competitive ratio tends to e

e−1 , and this is optimal. A special case of the multiple slot
setting was earlier studied by Mehta et al. [13] as well.

A variant of the problem where edges have values as well as weights, and the capacities of
servers restrict the weight of edges incident, is called the Generalized Assignment Problem.
Note that in the adwords problem, the weights and values coincide. This problem is studied
by Feldman et al. [5]. With the earlier assumption of small edge weights, and assuming free
disposal, i.e., earlier assigned items can be discarded later, they give an e/(e− 1)-competitive
algorithm. When the job arrivals are stochastic, rather than adversarial, the e/(e− 1) ratio
can be improved upon [7]. Without the small bid-to-budget ratio assumption, greedy is
known to be 2-competitive, and this is tight [12] for deterministic algorithms.

Our problem is also closely related to the problem of online matching, where each server
has capacity 1 and each edge has weight either 1 or 0. Here a randomized e/(e−1)-competitive
algorithm, called RANKING, was given by Karp, Vazirani, and Vazirani [10], and this was
shown to be tight for randomized algorithms. The analysis of this algorithm was simplified
and extended in later papers [1, 4]. Further, even if multiple online vertices arrive together,
the lower bound of e/(e− 1) essentially holds, unless a constant fraction of the vertices arrive
together [9]. For the problem of online b-matching, a deterministic algorithm was given
with a competitive ratio of (1+1/b)b

(1+1/b)b−1 , which is 2 when b = 1/2, and tends to e/(e− 1) as b
increases.

The offline version of our problem is a special case of a separable assignment problem
(SAP) [6]. An SAP is defined by a set of n bins and a set of m items to pack in the bins,

FSTTCS 2016



30:4 The Adwords Problem with Strict Capacity Constraints

with value vij for assigning item j to bin i. In addition, there are separable constraints for
each bin, describing which subset of items can fit in that bin. The objective is to maximize
the total value of items packed in the bins, subject to the bin constraints. The online version
of SAP has been studied in [2] with expected competitive ratio 1

1− 1√
k

, where similar to prior
work two restrictions are made; that the weights and sizes of each item are stochastic and
each items’ size is less than a fraction 1

k of the bin capacity.

2 Problem Definition

We are given a set I of n servers, where server i has capacity Ci. We consider an online
scenario, in which at each time step t ∈ {1, . . . , T}, a set of jobs J(t) and a set of edges E(t)
from servers I to jobs J(t) is revealed1. Edges are weighted, and w(e) for e = (i, j) is the
weight of job j on server i. In particular, if job j is assigned to server i, it consumes w(e)
resources of server i out of the possible Ci. In general, a job may have different weights
on different servers, thus for distinct servers i and i′, w(i, j) 6= w(i′, j). The entire set of
jobs is J = ∪t≤TJ(t), and E = ∪t≤TE(t). For a set of edges F , define W (F ) :=

∑
e∈F w(e).

Define G(t) as the bipartite graph (I ∪ J(t), E(t)). A set of edges F is feasible if (i) F (t) is a
matching for all t ≤ T , i.e., each server and each job is connected to at most one job and one
server respectively at each t, and (ii) for each server i, the weight of edges in F incident to i
is at most Ci (this is the strict capacity constraint). We will also call a feasible set of edges
an allocation. Our objective is to maximize the weight of the allocation obtained.

An optimal allocation has maximum weight among all allocations. The competitive ratio
for an algorithm is defined as the maximum over all instances of the ratio of the weight of
the optimal allocation, to that obtained by the algorithm. For a randomized algorithm, the
competitive ratio is obtained by taking the denominator of the previous ratio as the expected
weight of the allocation obtained by the algorithm. Note that the competitive ratio is always
at least 1.

In Section 5, we consider the case where jobs have finite span. Here each edge e = (i, j)
has a tuple (w, s) associated with it, where w is the weight and s is the time steps for which
job j is active, if assigned to machine i. If job j arrives at time t and is assigned to server i,
it consumes w resources from server i in time steps τ ∈ [t, t+ s− 1]. We then say that j is
active on server i in this period. Thus a set of edges F is feasible if, for each t, (i) F (t) is a
matching, and (ii) the total weight of jobs active on each server i at time t is at most its
capacity. Our objective is now to obtain an allocation to maximize the total weight of active
jobs, summed over servers as well as time steps.

Due to space constraints, all missing proofs appear in the full version.

3 Deterministic Algorithms

We begin by giving a simple example that shows that no deterministic algorithm can be
competitive for our problem.

I Example 1. In Fig. 1, there is a single server with capacity 1. At t = 1, a job of weight
ε � 1 arrives. If the algorithm does not accept the job, the input ends; in this case, the
optimal value is ε while the the algorithm obtains value zero. If the algorithm accepts the

1 Note that while our algorithms are designed for the setting where multiple jobs arrive at a single
time-step, all our lower bounds hold for the case where a single job arrives at each time step.



U. Bhaskar, A. Jalal, and R. Vaze 30:5

ε
t=1 t=2

1

Figure 1 Illustration for Example 1.

Algorithm 1: GREEDY(G,S)
Input :Weighted bipartite graph G, set of active servers S
Output :Matching M
begin

M ← ∅
for e = (i, j) ∈ G in descending order of weight do

if (M ∪ e is a matching) AND (i ∈ S) then M ←M ∪ e ;
return M

job, the second job with weight 1 arrives. Since the capacity is 1, the algorithm cannot
accept this job. In this case, the optimal value is 1 while the algorithm obtains ε, and hence
any deterministic algorithm has competitive ratio at least 1/ε.

If we restrict the maximum weight of a job to be 1
2 , then every server can accept at least

two jobs, and a deterministic algorithm can give a non-trivial competitive ratio even on
adversarial sequences. Under this restriction, we propose an ONLINEGREEDY algorithm that
is shown to be 3-competitive next.

In the discussion of the following algorithms, we use M(t) to denote the set of edges
selected by the algorithm in time step t, A(t) := ∪τ≤tM(τ), and Mi(t) and Ai(t) to denote
the set of edges in M(t) and A(t) incident to server i.

3.1 Deterministic Algorithm for Restricted Edge Weights
We begin with the notion of active servers.

I Definition 2. Active server: The server i is active at time step t + 1 if the sum of the
weights of edges assigned to it so far is at most half its capacity, i.e., W (Ai(t)) ≤ 1

2Ci. We
will use S to denote the set of active servers.

The deterministic algorithm GREEDY takes as inputs a weighted bipartite graph G, as
well as a set S of active servers. GREEDY greedily picks maximum weight edges from the
bipartite graph G that are incident to active servers to form a matching M .

3.1.1 OnlineGreedy
We now present a deterministic algorithm ONLINEGREEDY that is 3-competitive for the
restricted weights case, where the weight of each edge incident to a server is at most half the
server capacity, i.e., w(i, j) ≤ 1

2Ci for each server i and job j.
ONLINEGREEDY maintains a set of active servers S, along with sets Ai(t) for each server

i, where Ai(t) is the set of edges selected that are incident to server i until time t. At each
time step t, ONLINEGREEDY calls GREEDY and passes to it as input the weighted bipartite
graph G(t) along with the current set of active servers S. For each edge (i, j) ∈ M(t),
where M(t) is the matching returned by GREEDY, edge (i, j) is added to the allocation Ai(t).
ONLINEGREEDY then checks if W (Ai(t)) > 1

2Ci, in which case server i is no longer active
and is removed from the set of active servers S for next time slot. If a server i is active at

FSTTCS 2016



30:6 The Adwords Problem with Strict Capacity Constraints

Algorithm 2: ONLINEGREEDY

Input : Server capacities C1, C2, ..., Cn
Weighted bipartite graphs G(t) for t ≤ T , such that w(i, j) ≤ 1

2Ci ∀i, j
Output :Feasible allocation A(T ) = ∪t≤TM(t)
begin

S ← I

Ai(0)← ∅ ∀ i ∈ I
for t← 1 to T do

M(t)←GREEDY(G(t), S), A(t)← A(t− 1) ∪M(t)
for (i, j) ∈M(t) do

if W (Ai(t)) > Ci

2 then S ← S \ {i} ;

time t, i.e., W (Ai(t − 1)) ≤ 1
2Ci, and an edge e is added to Ai(t − 1), then W (Ai(t − 1))

increases by at most 1
2Ci, and hence W (Ai(t)) ≤ Ci. Hence, assigning a job to an active

server always results in a feasible allocation. Also, since GREEDY performs a matching at
each time step, the degree constraints (one job/server is assigned to at most one server/job,
respectively) are always satisfied. The algorithm continues either until S = ∅ or t = T .
I Remark. We note that the restriction on edge weights is only used in proving the feasibility
of the allocation obtained, and not in the proof of 3-competitiveness below. In particular, if
the edge weights are unrestricted, the allocation obtained may violate the capacity constraints,
but will be 3-competitive.

I Theorem 3. ONLINEGREEDY is 3-competitive.

Proof. For each time step t, let M(t) denote the matching produced by ONLINEGREEDY,
and let M∗(t) denote the corresponding matching given by the optimal offline algorithm. Let
A∗(t) = ∪τ≤tM∗(τ), and A∗i (t) is the set of edges to server i in the optimal allocation until
time t. Also, A∗i = A∗i (T ), Ai = Ai(T ), and A = ∪i∈IAi, A∗ = ∪i∈IA∗i .

We say that an edge e = (i, j) ∈M∗(t) \M(t), has been blocked by a heavier weight edge
f ∈M(t) if w(f) ≥ w(e) and f shares a server vertex (i) or job vertex (j) with e. As f has
more weight than e, GREEDY would select it first in M(t), and hence e cannot be selected
without violating matching constraints. For each edge (i, j) ∈M∗(t) \M(t), there are three
possible reasons why the edge was not selected by ONLINEGREEDY:
1. An edge f = (i, j′) ∈M(t), j′ 6= j blocks (i, j), i.e. server i was matched to some job j′

by GREEDY, such that w(i, j′) ≥ w(i, j).
2. An edge f = (i′, j) ∈M(t), i′ 6= i blocks (i, j), i.e. job j was matched to some server i′

by GREEDY, such that w(i′, j) ≥ w(i, j).
3. The server i was inactive at time step t, i.e., i /∈ S.

Let E1(t), E2(t) and E3(t) denote the set of edges in M∗(t) \M(t) that satisfy the first,
second and third condition respectively. Clearly, E1(t)∪E2(t)∪E3(t) = M∗(t) \M(t). Note:
No edge can satisfy the first and third condition simultaneously, as a server which is inactive
at time t cannot be matched to any job at time t. Therefore, E1(t) ∩E3(t) = ∅. However, in
general, E1(t) ∩ E2(t) 6= ∅ and E2(t) ∩ E3(t) 6= ∅, as edges can satisfy conditions 1 and 2 or
2 and 3.

Let S be the set of active servers at time T + 1. For all servers i, i /∈ S, since W (A∗i ) ≤ Ci
and W (Ai) > 1

2Ci, the allocation Ai is a 1
2 approximation to A∗i , i.e.,∑

i:i/∈S

∑
e∈A∗

i

w(e) < 2
∑
i:i/∈S

∑
e∈Ai

w(e) . (1)



U. Bhaskar, A. Jalal, and R. Vaze 30:7

Let E1 = ∪Tt=1E1(t), E2 = ∪Tt=1E2(t), E3 = ∪Ti=1E3(t). Define ES1 = {e = (i, j) ∈ E1 |
i ∈ S}, ES2 = {e = (i, j) ∈ E2 | i ∈ S}. Clearly, ES1 ∪ ES2 = ∪i:i∈S (A∗i \Ai), as no edge
e = (i, j), i ∈ S can satisfy the third condition.

The edges e ∈ ES1 ∪ ES2 were not selected in the greedy allocation as they were blocked
by edges of heavier weight from A \A∗. The edges in the set A \A∗ are of two types:
1. f = (i, j) ∈ Ai \ A∗i , i ∈ S. As all edges e = (i′, j′) ∈ ES1 ∪ ES2 are such that i′ ∈ S, e

was blocked either because e and f share a server vertex (i = i′) or they share a job
vertex (j = j′). Thus, for every edge f = (i, j) ∈ Ai \A∗i , i ∈ S, there may exist at most
two edges e1 = (i, j′), e2 = (i′, j) that are blocked by f , so that e1, e2 ∈ ES1 ∪ ES2 and
w(f) ≥ w(e1), w(f) ≥ w(e2).

2. g = (i, j) ∈ Ai \ A∗i , i /∈ S. As all edges e = (i′, j′) ∈ ES1 ∪ ES2 are such that i′ ∈ S, e
was blocked only because g and e share the same job vertex (j = j′) and g was greedily
picked first. Thus, for every edge g = (i, j) ∈ A \A∗, i /∈ S, there may exist at most one
edge e1 = (i′, j) ∈ ES1 ∪ ES2 that is blocked by g and is such that w(g) ≥ w(e1).

As f = (i, j) ∈ Ai \ A∗i , i ∈ S can block at most two edges in ES1 ∪ ES2 and g = (i, j) ∈
Ai \A∗i , i /∈ S can block at most one edge in ES1 ∪ ES2 ,∑

i:i∈S

∑
e∈A∗

i
\Ai

w(e) =
∑

e∈ES
1 ∪ES

2

w(e) ≤ 2
∑
i:i∈S

∑
f∈Ai\A∗i

w(f) +
∑
i:i/∈S

∑
g∈Ai\A∗i

w(g) . (2)

Adding (1), (2),∑
i:i/∈S

∑
e∈A∗

i

w(e) +
∑
i:i∈S

∑
e∈A∗

i
\Ai

w(e) ≤ 2
∑
i:i/∈S

∑
e∈Ai

w(e) + 2
∑
i:i∈S

∑
f∈Ai\A∗i

w(f) +

∑
i:i/∈S

∑
g∈Ai\A∗i

w(g).

Adding
∑
i:i∈S

∑
e∈Ai∩A∗i

w(e) to LHS and RHS,∑
i:i/∈S

∑
e∈A∗

i

w(e) +
∑
i:i∈S

∑
e∈A∗

i

w(e) ≤
∑
i:i∈S

∑
e∈Ai∩A∗i

w(e) + 2
∑
i:i∈S

∑
f∈Ai\A∗i

w(f)+

3
∑
i:i/∈S

∑
g∈Ai

w(g).

Simplifying, we get
∑
i∈I
∑
e∈A∗

i
w(e) ≤ 3

∑
i∈I
∑
e∈Ai

w(e), as required. J

I Remark. In the more general case, where edge weights are restricted to be at most α (≤ 1)
times the corresponding server capacities, i.e., if w(i, j) ≤ αCi ∀ i, j, the following modification
of ONLINEGREEDY makes it

(
1 + 1

1−α

)
-competitive. Instead of removing a server i from the

set of active servers S when W (Ai(t)) > 1
2Ci, if we remove it when W (Ai(t)) > (1− α)Ci,

then (1) can be changed to
∑
i:i/∈S

∑
e∈A∗

i
w(e) <

(
1

1− α

)∑
i:i/∈S

∑
e∈Ai

w(e). The rest of

the proof follows directly to give a
(

1 + 1
1−α

)
-competitive algorithm. Clearly, as α→ 1, the

competitive ratio tends to 0, and ONLINEGREEDY will fail, as expected from Example 1. To
handle the case of unrestricted job weights, in the next subsection, we present a randomized
algorithm RANDOMONLINEGREEDY which is 6−competitive.

I Example 4. This example is used to show the tightness of analysis for Theorem 3. There
are 2 servers with capacity 1. We assume for simplicity that 1/α is integral, but the example
can be modified to remove this constraint. The sequence of jobs is illustrated in Fig. 2. There

FSTTCS 2016



30:8 The Adwords Problem with Strict Capacity Constraints

α-ε

α α

α-ε

ε α α

t=1 t=(1/α) -1 t=1/α t=(1/α) +1 t=2/α 

Figure 2 Illustration for Example 4.

are (1/α) − 1 jobs that have weight α to the first server, and weight α − ε to the second
server. ONLINEGREEDY assigns all of these to the first server, as well as the next job, and
thus the first server now has remaining capacity α− ε. The online algorithm then cannot
assign any of the remaining jobs, and obtains weight 1− α+ ε. The optimal offline assigns
the first (1/α)− 1 jobs to the second machine, ignores the job of weight of ε, and assigns the
remaining 1/α jobs to the first machine, obtaining a total weight of 1 + (α− ε)

( 1
α − 1

)
. As

ε tends to zero, this gives a lower bound of 1 + 1
1−α .

3.2 A lower bound for deterministic algorithms
The lower bound example by Kalyanasundaram and Pruhs [8] for online b-matching holds
for our problem as well, and shows that if the maximum ratio of edge-weight to server
capacity is α, then no deterministic algorithm can obtains competitive ratio better than
(1 + 1/b)b/(1 + 1/b)b − 1, where b := d1/αe. As α goes to zero, this ratio tends to e/e− 1.

We can use the strict capacity constraint and strengthen this lower bound slightly, to
obtain a lower bound of (1+1/b)b−1

(1+1/b)b−1−1 . For α = 1/2 and 1/3, this evaluates to 3 and 2.28
respectively, while our algorithm is 3- and 2.5-competitive respectively in these cases. Thus
for α = 1/2, the competitive ratio we obtain is tight. Since the construction and proof are
similar to the earlier example in [8], we give a sketch of the proof here.

I Theorem 5. No deterministic algorithm obtains competitive ratio better than (1+1/b)b−1

(1+1/b)b−1−1
for the online max-weight assignment problem with strict capacity constraints.

Proof Sketch. Our example closely follows the lower bound for b-matching [8], deviating
only at the very beginning. Informally, the earlier example starts with (b+ 1)b servers of
capacity 1, and jobs of weight 1/b to a subset of machines. The example sends jobs in b+ 1
groups, and ensures that jobs in group i can only be assigned by the online algorithm to
servers in Si, where S1 is the set of all (b+1)b servers. Group Ri, i ≤ b, consists of bi(1+b)b−i
jobs, and group Rb+1 consists of bb+1 jobs. Further, it ensures that the last group Rb+1 of
jobs cannot be assigned to any server by the algorithm, while the offline optimal assigns all
jobs. This gives the earlier lower bound of (1 + 1/b)b/(1 + 1/b)b − 1. We modify the example
by ensuring that the last two groups cannot be assigned by any online algorithm, giving us
the improved lower bound.

If b = 1, then the lower bound from Example 1 can be used for the theorem. Otherwise,
b ≥ 2. To ensure that jobs from the penultimate group b cannot be assigned by the online
algorithm, we will start off with (b+ 1)b+1 servers, and send (b+ 1)b+1 jobs of weight ε, each
of which can only be assigned to a distinct machine. After these jobs are sent, if at most
(b+ 1)b jobs are assigned to their unique machine, then we stop. In this case, the optimal
offline algorithm assigns all the jobs, and the online algorithm has competitive ratio (b+ 1),
which is at least the bound in the theorem for b ≥ 2. If at least (b+ 1)b machines have a
job assigned to them, we select (b + 1)b of these machines, let these machines be S1, and
run the earlier lower bound example. In the example, the jobs in group Rb only have edges



U. Bhaskar, A. Jalal, and R. Vaze 30:9

Algorithm 3: PARALLELLOADBALANCE

Input :Capacities C of servers
Jobs J(t) at each time step t ∈ {1, . . . , T}, with weight w(j) for j ∈ J(t).

Output :Feasible server allocations Ai, i ∈ {1, 2, ..., n}
begin

Ai ← ∅ ∀i ∈ {1, . . . , n} initially.
for t← 1 to T do

for j ∈ J(t), in decreasing order of weight do
Let i be the machine with highest remaining capacity C −W (Ai) that is
not assigned a job in current time step.

if W (Ai ∪ {j}) ≤ C then Ai ← Ai ∪ {j} ;
else return;

to servers in Sb, and have weight 1/b to these servers. However, with our initial step, when
the jobs in group Rb arrive, each server in Sb has remaining capacity at most (1/b)− ε, and
hence cannot serve any more jobs. Hence, jobs in both groups Rb and Rb+1 cannot now be
scheduled by any online algorithm, while the optimal offline algorithm ignores the initial
jobs of weight ε, and successfully assigns all the remaining jobs. Thus, the optimal offline
algorithm obtains total weight (b+ 1)b, while any online algorithm obtains total weight at
most (b+ 1)b − bb−1 − bb. J

3.3 Parallel Servers
Servers are parallel if Ci = Ci′ and w(i, j) = w(i′, j) for all jobs j and all servers i, i′. That
is, the servers are identical, and each job consumes the same quantity of resources on each
server. Thus instead of edge weights we now refer to the weight of each job. If servers are
parallel, each with capacity C, and each job has weight at most ε, then we show a simple
deterministic load-balancing algorithm that is 1

1− ε/C -competitive.

I Lemma 6. After any time step t, the remaining capacity of any pair of machines i, i′
differs by at most ε with the PARALLELLOADBALANCE algorithm.

Proof. The proof is by induction. Suppose the lemma is true at the end of time step t− 1,
and Ai(t− 1), Ai′(t− 1) are the set of jobs assigned by the algorithm to machines i, i′ until
time step t− 1. Assume without loss of generality that W (Ai(t− 1)) ≤W (Ai′(t− 1)). Then
by the inductive hypothesis, W (Ai(t− 1)) ≥W (Ai′(t− 1))− ε. Further if j, j′ are the jobs
assigned to i, i′ respectively in time step t, then by the algorithm ε ≥ w(j) ≥ w(j′). It
follows that |W (Ai(t))−W (Ai′(t))| ≤ ε. J

I Theorem 7. Algorithm PARALLELLOADBALANCE is 1
(1− ε/C) -competitive. Further, no

deterministic algorithm can perform better.

Proof. If the else condition in PARALLELLOADBALANCE is never encountered, then at every
time step the n jobs of largest weight are assigned, and hence the assignment obtained
is optimal. Suppose that for some time step t, job j, and server i, the else condition
is encountered. Then W (Ai(t − 1)) + w(j) > C, and in fact every server has remaining
capacity at most ε. This is obviously true of server i, since w(j) ≤ ε. To see this for
the other servers, consider any server i′ with W (Ai′(t − 1)) < W (Ai(t − 1)). Then in

FSTTCS 2016



30:10 The Adwords Problem with Strict Capacity Constraints

Algorithm 4: RANDOMONLINEGREEDY

Input : Server capacities C1, C2, ..., Cn
Weighted bipartite graph G(t) for t ≤ T , such that w(i, j) ≤ Ci ∀ i, j

Output :Random feasible allocation A = ∪i∈IAi
begin

S ← I

S1, S2, Ai(0), Bi(0)← ∅ ∀ i ∈ I
for k ← 1 to n do

vk ∼ Bernoulli( 1
2 )

if vk = 1 then S1 ← S1 ∪ {k} // accept only heavy jobs ;
else S2 ← S2 ∪ {k} // accept only light jobs ;

for t← 1 to T do
M(t)←GREEDY(G(t), S)
for e = (i, j) ∈M(t) do

Bi(t)← Bi(t− 1) ∪ {e}
if W (Bi(t)) > Ci

2 then S ← S \ {i}
;
if
(
i ∈ S1 AND w(i, j) > Ci

2
)

OR
(
i ∈ S2 AND w(i, j) ≤ Ci

2
)

then
Ai(t)← Ai(t− 1) ∪ {e}

time step t, server i′ is assigned a job j′ with weight at least w(j). Further, by Lemma 6,
W (Ai′(t− 1)) ≥W (Ai(t− 1))− ε, and hence

W (Ai′(t)) = W (Ai′(t−1))+w(j′) ≥W (Ai′(t−1))+w(j) ≥W (Ai(t−1))+w(j)−ε > C−ε .

Thus in this case, on any machine the remaining capacity is at most ε. The proof of the
upper bound immediately follows.

For the lower bound, consider a single server with capacity 1. The adversary behaves as
follows. At any time, if the total weight of requests sent is at least 1, the adversary stops.
The adversary first sends requests of size at most ε to the online algorithm, until the server
has exactly ε remaining capacity. The adversary now sends requests of size δ << ε until the
online algorithm assigns exactly one. The remaining capacity on the server is then ε− δ. It
then sends a single request of size ε. The optimal offline algorithm ignores the request of size
δ and obtains weight 1, while the online algorithm has weight at most 1− ε+ δ, giving the
lower bound for small δ. J

4 A Randomized Algorithm for Unrestricted Edge Weights

Now we present a randomized algorithm, called RANDOMONLINEGREEDY, that is
6-competitive for the general case of unrestricted edge weights.

Note that while w(i, j) can be unbounded, any edge such that w(i, j) > Ci will be ignored
as it can never be allocated to server i.

I Definition 8. An edge e = (i, j) that satisfies Ci

2 < w(i, j) ≤ Ci is called a heavy edge and
the corresponding job is called a heavy job for that server. In other words, the weight of a
heavy edge (i, j) connected to a server i is at least half the server’s initial capacity. An edge
that is not heavy is called light, and the corresponding job is called light for that server.

At the start of the algorithm RANDOMONLINEGREEDY, an unbiased coin is flipped for
each server i. If heads, then server i is added to set S1, else it is added to set S2. If server



U. Bhaskar, A. Jalal, and R. Vaze 30:11

i ∈ S1, it can only accept jobs corresponding to heavy edges, while if i ∈ S2, it can only
accept jobs corresponding to light edges.

Similar to ONLINEGREEDY, RANDOMONLINEGREEDY maintains a set of active servers S,
along with sets A(t) and B(t). At each time step t, the weighted bipartite graph Gt and set
of active servers S are passed as input to GREEDY, which returns a matching M(t). The set
B(t) := ∪τ≤tM(τ) and Bi(t) represents the set of edges in B(t) connected to server i. The
set Ai(t) is conditioned on the coin toss for server i. If i ∈ S1, Ai(t) only contains the heavy
edges in Bi(t). Otherwise, if i ∈ S2, Ai(t) only contains the light edges in Bi(t).

At time t, if RANDOMONLINEGREEDY adds an edge e = (i, j) to B, the algorithm checks
the weight W (Bi(t)) to see if it should be active for the next time step. If W (Bi(t)) > 1

2Ci,
then server i is removed from S. The reason for maintaining two sets B and A is that it is
possible for Bi(T ) to be infeasible for some server i. However, Ai(T ) is a feasible allocation
∀ i, and E [W (Ai(T ))] = 1

2W (Bi(T )). The algorithm continues until either S = ∅ or t = T .

I Lemma 9. The allocation Ai(T ) is feasible for each machine i ∈ I.

I Example 10. This example illustrates how Bi(T ) may be an infeasible allocation, while
Ai(T ) is feasible. Consider a single server with capacity C. At each time step, one job is
presented, and T = 2. At t = 1, a job of weight C

2 − ε is presented, while at time t = 2, a job
of weight C is presented. RANDOMONLINEGREEDY will put both jobs into B(2). If the coin
showed heads, A(2) will contain the second edge. If the coin showed tails, A(2) will contain
the first edge at time t = 1, i.e., A(2) = { 1

2C − ε} or A(2) = {C}, and both allocations occur
with probability 1

2 . However, W (B(2)) =
( 3

2C − ε
)
, which is an infeasible allocation.

I Lemma 11. W (A∗(T ))
W (B(T )) ≤ 3.

Proof. As the arguments for (1), (2) hold for the sets Bi(t)∀ i, the proof for Lemma 11
follows similar to the proof for Theorem 3. J

I Lemma 12. W (B(T ))
E [W (A(T ))] = 2.

Proof. The set Bi(t) can be partitioned into two mutually exclusive subsets Xi(t) and Yi(t),
such that Xi(t) only contains heavy edges, while Yi(t) only contains light edges. Note that
|Xi(t)| ≤ 1. Let vi = 1(= 0) if server i accepts only heavy (light) jobs. As Ai(t) is a
feasible allocation ∀ t and Ai(t) = Xi(t), t ≤ T if vi = 1, and Ai(t) = Yi(t), t ≤ T if vi = 0,
Xi(t), Yi(t), t ≤ T are both feasible allocations. ThereforeBi(t) = Xi(t)∪Yi(t), Xi(t)∩Yi(t) =
∅ ∀ t, and W (Bi(t)) = W (Xi(t)) +W (Yi(t)). Hence

E [W (Ai(T ))] = P [vi = 1]W (Ai(T ) | vi = 1) + P [vi = 0]W (Ai(T ) | vi = 0),

= 1
2 (W (Xi(T )) +W (Yi(T ))) .

Therefore, E [W (Ai(T ))] = 1
2W (Bi(T )). Summing over all servers i,

∑n
i=1 E [W (Ai(T ))] =

1
2
∑n
i=1 W (Bi(T )), and E [W (A(T ))]

W (B(T )) = 1
2 . J

I Theorem 13. RANDOMONLINEGREEDY is 6−competitive.

Proof. Let W (A∗(T )) = W (∪ni=1A
∗
i (T )) be the value of the allocation made by the optimal

offline algorithm, and W (B(T )) = W (∪ni=1Bi(T )) be the value of the infeasible allocation
B(T ). Moreover, let E [W (A)] = E [W (∪ni=1Ai(T ))] be the expected value of the feasible
allocation A(T ) made by RANDOMONLINEGREEDY(denoted as A), then from Lemma 11 and

FSTTCS 2016



30:12 The Adwords Problem with Strict Capacity Constraints

Lemma 12, the competitive ratio of RANDOMONLINEGREEDY = max
(

W (A∗(T ))
E [W (A(T ))]

)
≤

6. J

I Example 14. Example 1 can be extended to show that a lower bound of 2 on the competitive
ratio of any randomized algorithm. Consider the randomized adversary that sends only the
job in the first step (with weight ε) with probability 1 − ε, and both jobs (with weights ε
and 1) with probability ε. Then any deterministic algorithm for this distribution gets value
at most ε while the optimal expected value is 2ε − ε2. The lower bound on randomized
algorithms follows by an application of Yao’s lemma [14].

5 Finite Span Jobs

We now generalise our model by assuming that the jobs do not consume server resources
for infinite time, i.e, along with the job weight, the adversary also announces the span over
which the job remains in the server. If a job is presented at time t′ and has span s, then
it consumes resources for t such that t′ ≤ t < t′ + s. Once an allocated job expires, the
capacity corresponding to the weight of that job is made available to the server for future
job requests.

I Example 15. For each job let (w, s) be the tuple representing the weight and span,
respectively. Let there be a single server with capacity C. Let the input sequences be
S1 = {(ε, T ), (0, 1), . . . , (0, 1)︸ ︷︷ ︸

T−1

}, and S2 = {(ε, T ),
(
C
2 , T − 1

)
,
(
C
2 /0, 1

)
, . . . ,

(
C
2 /0, 1

)︸ ︷︷ ︸
T−1

}, where

C
2 /0 means either the weight is C

2 or 0 depending on earlier matchings. If at time t = 1,
the job is not matched to the server, the competitive ratio on S1 is ∞. Otherwise, the
adversary presents the sequence S2, where if job at time t = 2 is not matched then the
weights of jobs for all further time instants are 0, and the competitive ratio is 0.5C/ε. If the
server does accept the job at t = 2, then all future jobs have weight C

2 and span 1. The
server cannot accept any jobs for t ≥ 3 due to lack of capacity, and the competitive ratio is
0.5C(T−2)

0.5C+ε ≈ T − 2. This shows that as T →∞, the competitive ratio can be made arbitrarily
bad for all deterministic algorithms, even when edge weights are restricted to be at most
half the server capacity.

5.1 Uniform Span
We first look at the case where all jobs have the same span s. For this case, we propose
algorithms UNIFORMGREEDY and RANDOMUNIFORMGREEDY, which are similar to our pre-
vious algorithms ONLINEGREEDY (if each job weight is at most half the server capacity)
and RANDOMONLINEGREEDY(for general weights), with the following modification. If the
algorithm assigns job i to server j at time t, the resources used are released at time t+ s.
The analysis is similar to ONLINEGREEDY and RANDOMONLINEGREEDY. However, a more
intricate argument is required since we can no longer argue about the jobs allocated at each
time step. Instead, our analysis considers a window of size s, and obtains bounds on the
weight of all jobs that are active within this window.

I Theorem 16. UNIFORMGREEDY is 6-competitive where all job requests to a server are at
most half the capacity of the corresponding server.

I Theorem 17. RANDOMUNIFORMGREEDY is 12-competitive.

The proof follows similar to Theorem 13, with Theorem 16 replacing Theorem 3.



U. Bhaskar, A. Jalal, and R. Vaze 30:13

5.2 Non Uniform Span

RANDOMNONUNIFORMGREEDY is a O
(

log
(
smax

smin

))
−competitive algorithm for the case

when jobs may not have the same span. The algorithm works by dividing the jobs into
log
(
smax

smin

)
logarithmically spaced levels based on their span and accepting jobs that belong

to only one level. This level is chosen uniformly at random before execution of the algorithm.

I Theorem 18. RANDOMNONUNIFORMGREEDY is O
(

log
(
smax

smin

))
–competitive.

Acknowledgments. We are grateful to Anupam Gupta for helpful discussions on the
problem, as well as to the anonymous referees of a previous version of this paper for their
constructive comments.

References
1 Gagan Aggarwal, Gagan Goel, Chinmay Karande, and Aranyak Mehta. Online vertex-

weighted bipartite matching and single-bid budgeted allocations. In Proceedings of the
Twenty-Second Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2011, San
Francisco, California, USA, January 23-25, 2011, pages 1253–1264, 2011.

2 Saeed Alaei, MohammadTaghi Hajiaghayi, and Vahid Liaghat. The online stochastic gen-
eralized assignment problem. In Approximation, Randomization, and Combinatorial Op-
timization. Algorithms and Techniques, pages 11–25. Springer, 2013.

3 Niv Buchbinder, Kamal Jain, and Joseph Seffi Naor. Online primal-dual algorithms for
maximizing ad-auctions revenue. In Algorithms–ESA 2007, pages 253–264. Springer, 2007.

4 Nikhil R. Devanur, Kamal Jain, and Robert D. Kleinberg. Randomized primal-dual analysis
of RANKING for online bipartite matching. In Proceedings of the Twenty-Fourth Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA 2013, New Orleans, Louisiana,
USA, January 6-8, 2013, pages 101–107, 2013.

5 Jon Feldman, Nitish Korula, Vahab S. Mirrokni, S. Muthukrishnan, and Martin Pál. Online
ad assignment with free disposal. In Internet and Network Economics, 5th International
Workshop, WINE 2009, Rome, Italy, December 14-18, 2009. Proceedings, pages 374–385,
2009.

6 Lisa Fleischer, Michel X Goemans, Vahab S Mirrokni, and Maxim Sviridenko. Tight ap-
proximation algorithms for maximum general assignment problems. In Proceedings of the
seventeenth annual ACM-SIAM symposium on Discrete algorithm, pages 611–620. Society
for Industrial and Applied Mathematics, 2006.

7 Bernhard Haeupler, Vahab S. Mirrokni, and Morteza Zadimoghaddam. Online stochastic
weighted matching: Improved approximation algorithms. In Internet and Network Eco-
nomics – 7th International Workshop, WINE 2011, Singapore, December 11-14, 2011. Pro-
ceedings, pages 170–181, 2011.

8 Bala Kalyanasundaram and Kirk Pruhs. An optimal deterministic algorithm for online
b-matching. Theor. Comput. Sci., 233(1-2):319–325, 2000. doi:10.1016/S0304-3975(99)
00140-1.

9 Ming-Yang Kao and Stephen R. Tate. Online matching with blocked input. Inf. Process.
Lett., 38(3):113–116, 1991.

10 Richard M. Karp, Umesh V. Vazirani, and Vijay V. Vazirani. An optimal algorithm for
on-line bipartite matching. In Proceedings of the 22nd Annual ACM Symposium on Theory
of Computing, May 13-17, 1990, Baltimore, Maryland, USA, pages 352–358, 1990.

11 Nitish Korula and Martin Pál. Algorithms for secretary problems on graphs and hyper-
graphs. In Automata, Languages and Programming, pages 508–520. Springer, 2009.

FSTTCS 2016

http://dx.doi.org/10.1016/S0304-3975(99)00140-1
http://dx.doi.org/10.1016/S0304-3975(99)00140-1


30:14 The Adwords Problem with Strict Capacity Constraints

12 Benny Lehmann, Daniel J. Lehmann, and Noam Nisan. Combinatorial auctions with de-
creasing marginal utilities. Games and Economic Behavior, 55(2):270–296, 2006.

13 Aranyak Mehta, Amin Saberi, Umesh Vazirani, and Vijay Vazirani. Adwords and general-
ized online matching. Journal of the ACM (JACM), 54(5):22, 2007.

14 Andrew Chi-Chin Yao. Probabilistic computations: Toward a unified measure of complexity.
In Foundations of Computer Science, 1977., 18th Annual Symposium on, pages 222–227.
IEEE, 1977.


	Introduction
	Contributions
	Related Work

	Problem Definition
	Deterministic Algorithms
	Deterministic Algorithm for Restricted Edge Weights
	OnlineGreedy

	A lower bound for deterministic algorithms
	Parallel Servers

	A Randomized Algorithm for Unrestricted Edge Weights
	Finite Span Jobs
	Uniform Span
	Non Uniform Span


