169 research outputs found

    On the Throughput-Delay Trade-off in Georouting Networks

    Get PDF
    We study the scaling properties of a georouting scheme in a wireless multi-hop network of nn mobile nodes. Our aim is to increase the network capacity quasi linearly with nn while keeping the average delay bounded. In our model, mobile nodes move according to an i.i.d. random walk with velocity vv and transmit packets to randomly chosen destinations. The average packet delivery delay of our scheme is of order 1/v1/v and it achieves the network capacity of order nlognloglogn\frac{n}{\log n\log\log n}. This shows a practical throughput-delay trade-off, in particular when compared with the seminal result of Gupta and Kumar which shows network capacity of order n/logn\sqrt{n/\log n} and negligible delay and the groundbreaking result of Grossglausser and Tse which achieves network capacity of order nn but with an average delay of order n/v\sqrt{n}/v. We confirm the generality of our analytical results using simulations under various interference models.Comment: This work has been submitted to IEEE INFOCOM 201

    Analysis of pervasive mobile ad hoc routing protocols

    Get PDF
    Pervasive computing (also referred to as ubiquitous computing or ambient intelligence) aims to create environments where computers are invisibly and seamlessly integrated and connected into our everyday environment. Pervasive computing and intelligent multimedia technologies are becoming increasingly important, although many potential applications have not yet been fully realized. These key technologies are creating a multimedia revolution that will have significant impact across a wide spectrum of consumer, business, healthcare, and governmental domains. This useful volume provides up-to-date and state-of-the-art coverage of the diverse topics related to pervasive computing and intelligent multimedia technologies. The use of different computational intelligence-based approaches to various problems in pervasive computing are examined, including video streaming, intelligent behavior modeling and control for mobile manipulators, tele-gaming, indexing video summaries for quick video browsing, web service processes, virtual environments, ambient intelligence, and prevention and detection of attacks to ubiquitous databases. Topics and features: -Includes a comprehensive overview, providing a thorough literature review and an outline of the important research challenges -Discusses pervasive computing approaches in the context of intelligent multimedia -Examines virtual reality technology, mobile virtual environments, and the potential use of intelligent multimedia and ubiquitous computing in the hotels of the future -Describes various approaches in ambient intelligence for home health care for the elderly and those suffering from Alzheimer’s disease, for volcano monitoring, and for preventing attacks to ubiquitous databases Investigates issues in web services and situation awareness in pervasive computing environments -Explores wireless network applications, such as mobile agents and e-commerce

    Routing Protocols in Vehicular Ad hoc Networks: Survey and Research Challenges

    Full text link
    A Vehicular Ad hoc Network (VANET) is a type of wireless ad hoc network that facilitates ubiquitous connectivity between vehicles in the absence of fixed infrastructure. Mul ti-hop routing and beaconing approaches are two important research challenges in high mobility vehicular networks. Routing protocols are divided into two categories of topology-based and position-based routing protocols. In this article, we perform a comparative study among the existing routing solutions, which explores the main advantages and drawbacks behind their design. After implementing the representatives of geographical and topology routing protocols, we analyze the simulation results and discuss the strengths and weaknesses of these routing protocols with regard to their suitability to vehicular networks. Lastly, we discuss the open issues and research directions related to VANET routing protocols.Ghafoor, KZ.; Mohammed, M.; Lloret, J.; Abu Bakar, K.; Zainuddin, ZM. (2013). Routing Protocols in Vehicular Ad hoc Networks: Survey and Research Challenges. Network Protocols and Algorithms. 5(4):39-83. doi:10.5296/npa.v5i4.4134S39835

    SCALABLE MULTI-HOP DATA DISSEMINATION IN VEHICULAR AD HOC NETWORKS

    Get PDF
    Vehicular Ad hoc Networks (VANETs) aim at improving road safety and travel comfort, by providing self-organizing environments to disseminate traffic data, without requiring fixed infrastructure or centralized administration. Since traffic data is of public interest and usually benefit a group of users rather than a specific individual, it is more appropriate to rely on broadcasting for data dissemination in VANETs. However, broadcasting under dense networks suffers from high percentage of data redundancy that wastes the limited radio channel bandwidth. Moreover, packet collisions may lead to the broadcast storm problem when large number of vehicles in the same vicinity rebroadcast nearly simultaneously. The broadcast storm problem is still challenging in the context of VANET, due to the rapid changes in the network topology, which are difficult to predict and manage. Existing solutions either do not scale well under high density scenarios, or require extra communication overhead to estimate traffic density, so as to manage data dissemination accordingly. In this dissertation, we specifically aim at providing an efficient solution for the broadcast storm problem in VANETs, in order to support different types of applications. A novel approach is developed to provide scalable broadcast without extra communication overhead, by relying on traffic regime estimation using speed data. We theoretically validate the utilization of speed instead of the density to estimate traffic flow. The results of simulating our approach under different density scenarios show its efficiency in providing scalable multi-hop data dissemination for VANETs

    Previous hop routing: exploiting opportunism in VANETs

    Get PDF
    Routing in highly dynamic wireless networks such as Vehicular Ad-hoc Networks (VANETs) is a challenging task due to frequent topology changes. Sustaining a transmission path between peers in such network environment is difficult. In this thesis, Previous Hop Routing (PHR) is poposed; an opportunistic forwarding protocol exploiting previous hop information and distance to destination to make the forwarding decision on a packet-by-packet basis. It is intended for use in highly dynamic network where the life time of a hop-by-hop path between source and destination nodes is short. Exploiting the broadcast nature of wireless communication avoids the need to copy packets, and enables redundant paths to be formed. To save network resources, especially under high network loads, PHR employs probabilistic forwarding. The forwarding probability is calculated based on the perceived network load as measured by the arrival rate at the network interface. We evaluate PHR in an urban VANET environment using NS2 (for network traffic) and SUMO (for vehicular movement) simulators, with scenarios configured to re ect real-world conditions. The simulation scenarios are configured to use two velocity profiles i.e. Low and high velocity. The results show that the PHR networks able to achieve best performance as measured by Packet Delivery Ratio (PDR) and Drop Burst Length (DBL) compared to conventional routing protocols in high velocity scenarios

    Connectivity-Aware Routing in Vehicular Ad Hoc Networks

    Get PDF
    Vehicular ad hoc networks (VANETs) is a promising emerging technology that enables a wide range of appealing applications in road safety, traffic management, and passengers and driver comfort. The deployment of VANETs to enable vehicular Internet-based services and mobile data offloading is also envisioned to be a promising solution for the great demand of mobile Internet access. However, developing reliable and efficient routing protocols is one of the key challenges in VANETs due to the high vehicle mobility and frequent network topology changes. In this thesis, we highlight the routing challenges in VANETs with a focus on position-based routing (PBR), as a well-recognized routing paradigm in the vehicular environment. As the current PBR protocols do not support VANET users with connectivity information, our goal is to design an efficient routing protocol for VANETs that dynamically finds long life paths, with reduced delivery delay, and supports vehicles with instant information about connectivity to the infrastructure. The focus of this thesis will be on predicting vehicular mobility to estimate inter-vehicle link duration in order to support routing protocols with proactive connectivity information for a better routing performance. Via three stages to meet our goal, we propose three novel routing protocols to estimate both broad and comprehensive connectivities in VANETs: iCAR, iCAR-II, and D-CAR. iCAR supports VANET users with instant broad connectivity information to surrounding road intersections, iCAR-II uses cellular network channels for comprehensive connectivity awareness to Roadside Units (RSUs), and finally D-CAR supports users with instant comprehensive connectivity information without the assistance of other networks. Detailed analysis and simulation based evaluations of our proposed protocols demonstrate the validity of using VANETs for Internet-based services and mobile data offloading in addition to the significant improvement of VANETs performance in terms of packet delivery ratio and end-to-end delay

    Routing Optimization in Vehicular Networks: A New Approach Based on Multiobjective Metrics and Minimum Spanning Tree

    Get PDF
    Recently, distributed mobile wireless computing is becoming a very important communications paradigm, due to its flexibility to adapt to different mobile applications. As many other distributed networks, routing operations assume a crucial importance in system optimization, especially when considering dense urban areas, where interference effects cannot be neglected. In this paper a new routing protocol for VANETs and a new scheme of multichannel management are proposed. In particular, an interference-aware routing scheme, for multiradio vehicular networks, wherein each node is equipped with a multichannel radio interface is investigated. NS-2 has been used to validate the proposed Multiobjective routing protocol (MO-RP) protocol in terms of packet delivery ratio, throughput, end-to-end delay, and overhead
    corecore