6,798 research outputs found

    Inter-sensor propagation delay estimation using sources of opportunity

    Full text link
    Propagation delays are intensively used for Structural Health Monitoring or Sensor Network Localization. In this paper, we study the performances of acoustic propagation delay estimation between two sensors, using sources of opportunity only. Such sources are defined as being uncontrolled by the user (activation time, location, spectral content in time and space), thus preventing the direct estimation with classical active approaches, such as TDOA, RSSI and AOA. Observation models are extended from the literature to account for the spectral characteristics of the sources in this passive context and we show how time-filtered sources of opportunity impact the retrieval of the propagation delay between two sensors. A geometrical analogy is then proposed that leads to a lower bound on the variance of the propagation delay estimation that accounts for both the temporal and the spatial properties of the sources field

    Image-based deep learning for classification of noise transients in gravitational wave detectors

    Full text link
    The detection of gravitational waves has inaugurated the era of gravitational astronomy and opened new avenues for the multimessenger study of cosmic sources. Thanks to their sensitivity, the Advanced LIGO and Advanced Virgo interferometers will probe a much larger volume of space and expand the capability of discovering new gravitational wave emitters. The characterization of these detectors is a primary task in order to recognize the main sources of noise and optimize the sensitivity of interferometers. Glitches are transient noise events that can impact the data quality of the interferometers and their classification is an important task for detector characterization. Deep learning techniques are a promising tool for the recognition and classification of glitches. We present a classification pipeline that exploits convolutional neural networks to classify glitches starting from their time-frequency evolution represented as images. We evaluated the classification accuracy on simulated glitches, showing that the proposed algorithm can automatically classify glitches on very fast timescales and with high accuracy, thus providing a promising tool for online detector characterization.Comment: 25 pages, 8 figures, accepted for publication in Classical and Quantum Gravit

    A Stochastic Modeling Approach to Region-and Edge-Based Image Segmentation

    Get PDF
    The purpose of image segmentation is to isolate objects in a scene from the background. This is a very important step in any computer vision system since various tasks, such as shape analysis and object recognition, require accurate image segmentation. Image segmentation can also produce tremendous data reduction. Edge-based and region-based segmentation have been examined and two new algorithms based on recent results in random field theory have been developed. The edge-based segmentation algorithm uses the pixel gray level intensity information to allocate object boundaries in two stages: edge enhancement, followed by edge linking. Edge enhancement is accomplished by maximum energy filters used in one-dimensional bandlimited signal analysis. The issue of optimum filter spatial support is analyzed for ideal edge models. Edge linking is performed by quantitative sequential search using the Stack algorithm. Two probabilistic search metrics are introduced and their optimality is proven and demonstrated on test as well as real scenes. Compared to other methods, this algorithm is shown to produce more accurate allocation of object boundaries. Region-based segmentation was modeled as a MAP estimation problem in which the actual (unknown) objects were estimated from the observed (known) image by a recursive classification algorithms. The observed image was modeled by an Autoregressive (AR) model whose parameters were estimated locally, and a Gibbs-Markov random field (GMRF) model was used to model the unknown scene. A computational study was conducted on images having various types of texture images. The issues of parameter estimation, neighborhood selection, and model orders were examined. It is concluded that the MAP approach for region segmentation generally works well on images having a large content of microtextures which can be properly modeled by both AR and GMRF models. On these texture images, second order AR and GMRF models were shown to be adequate

    Energy Harvesting Wireless Communications: A Review of Recent Advances

    Get PDF
    This article summarizes recent contributions in the broad area of energy harvesting wireless communications. In particular, we provide the current state of the art for wireless networks composed of energy harvesting nodes, starting from the information-theoretic performance limits to transmission scheduling policies and resource allocation, medium access and networking issues. The emerging related area of energy transfer for self-sustaining energy harvesting wireless networks is considered in detail covering both energy cooperation aspects and simultaneous energy and information transfer. Various potential models with energy harvesting nodes at different network scales are reviewed as well as models for energy consumption at the nodes.Comment: To appear in the IEEE Journal of Selected Areas in Communications (Special Issue: Wireless Communications Powered by Energy Harvesting and Wireless Energy Transfer
    corecore