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NOTATIONS

S Set of sites in a graph (indexing set for the nodes on a graph).
S =  {se S: 0 < s ^  N - 1} for a general graph.
S =  {(*,30: 0 ^ * £ M - 1, 0 < y <, N - 1} for an M x N lattice. 
S = {(*,y): 0 < xr  y £  N - 1} for an N x N  square lattice.

(*,30 Pixel’s row and column position in a discrete image.

I) Neighbor system, Tl = {ns, s 6 S}.

Tis Neighbor set for site (pixel location) s, Tjs c  S..

C Set of Cliques.
C e  S is formed from sites s e Tis

Q Sample (configuration) space.

S State space. S = {£: £ e [0, q - 1]}
4  a possible gray level value and q is the number of gray levels, 
e.g. q = 64, 128, 256 for typical images.

Gs A random variable associated with the gray level distribution
at site (pixel) s.

L o -algebra (Borel field). ■

' P . Probability measure.

G Random field representing the observed image process,
G =: {Gs, Se  S). . viy.;.v

Ga Random field representing the unobserved high level



region (labeling) process.

G1 Random field representing the observed low level (pixel) process.

CO A sample image (configuration).
v C O =  {gs, s e  s}.

U(-) Energy function.

Yc (-) Clique potentials.

g Observed image or image realization (i.e., g = co).

g A lexicographic (row-concatenation) representation for the image.
:■' ■. '' "■ ■ ■■■

• - ■ ' v ’ : ' •' ■! ■ ■

g  ̂ A realization (sample) of the unobserved scene (labeling) process,

g* A realization (sample) of the observed region process (pixel process),

f A function (deterministic) describing the original (unobserved) image,

h Edge enhancement filter.

hG Gaussian kernel.

F(-) The Fourier transform of f(-).

G (0  The Fourier transform of;g () .

H(-) The Fourier transform of h(-).

The Gradient of the Gaussian operator.

V 2G The Laplacian of the Gaussian operator.



The purpose of image segmentation is to isolate objects in a scene from

the background. This is a very important step in any computer vision system 

since various tasks, such as shape analysis and object recognition, require accu

rate image segmentation. Image segmentation can also produce tremendous 

data reduction. Edge-based and region-based segmentation have been exam

ined and two new algorithms based on recent results in random field theory 

have been developed.

The edge-based segmentation algorithm uses the pixel gray level intensity 

information to allocate object boundaries in two stages: edge enhancement, fol

lowed by edge linking. Edge enhancement is accomplished by maximum ener

gy filters used in one-dimensional bandlimited signal analysis. The issue of op

timum filter spatial support is analyzed for ideal edge models. Edge linking is 

performed by quantitative sequential search using the Stack algorithm. Two 

probabilistic search metrics are introduced and their optimality is proven and 

demonstrated on test as well as real scenes. Compared to other methods, this 

algorithm is shown to produce more accurate allocation of object boundaries.

Region-based segmentation was modeled as a MAP estimation problem in 

which the actual (unknown) objects were estimated from the observed 

(known) image by a recursive classification algorithms. The observed image 

was modeled by an Autoregressive (AR) model whose parameters were es

timated locally, and a Gibbs-Markov random field (GMRF) model was used to



xiv

model the unknown scene. A computational study was conducted on images 

having various types of texture images. The issues of parameter estimation, 

neighborhood selection, and model orders were examined. It is concluded that 

the MAP approach for region segmentation generally works well on images 

having a large content of microtextures which can be properly modeled by 

both AR and GMRF models. On these texture images, second order AR and 

GMRF models were shown to be adequate.



CHAPTER I 
INTRODUCTION

1.1. Background

This research examines existing model-based image segmentation
techniques and develops new techniques based on recent advances in random 
field theory. The focus of this study is the two-dimensional images that result 
from digitization of two-dimensional projections o f three-dimensional scenes. 
Image segmentation is used to isolate objects in the discrete image from the 
background. The isolated objects should describe accurately the physical 
three-dimensional objects in the scene. Since the output of the segmentation 
process is used by other components of the computer vision system for 
interpretation and recognition, the accuracy of image segmentation affects 
overall computer vision system performance [BaB82].

The extensive literature on image segmentation reflects the continuing 
need for more accurate image segmentation techniques. In Rosenfeld’s 
widely acknowledged annual survey (e.g. [Ros89]), a separate section is 
always assigned to papers dealing with edge detection and/or image
segmentation. For the last twenty years, nearly fifteen percent of the annual 
literature on image processing presented in this survey has consistently 
centered on problems of edge detection and/or image segmentation. In this 
chapter, a few (among the many) image segmentation techniques are 
discussed briefly, and Section 1.4 presents the problem statement.

Haralick and Shapiro [HaS85] classified image segmentation techniques
as: Measurement space guided spatial clustering, single linkage region 
growing schemes, hybrid linkage region growing schemes, centroid linkage 
region growing schemes, spatial clustering schemes, and split and merge 
schemes. In another classification Nevatia, 1986 [Nev86] divides image 
segmentation techniques into two major approaches: Edge based and region
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based. In edge-based methods, the local discontinuities are enhanced first and 
then linked to form complete boundaries. In region-based methods, regions 
of similar homogeneous properties are found. These regions are then used to 
provide object boundaries. We will adopt the classification of [Nev86] in this 
thesis.

1.2. Edge-based Image Segmentation

Edge detection is an image segmentation technique based on the 
detection of discontinuities in the pixel gray levels. An edge can be defined as 
a difference in the image characteristics within a local region. A line can be 
defined as a pair of edges of finite width with common characteristics in thie 
region between them. A region may be considered as a finite area bounded 
by a closed region [GoW87]. Edges are important because most of the 
information in a picture lies on the boundaries between regions. Biological 
visual systems appear to make use of edge detection, but not of thresholding 
[RoK82]. The edge map (resulting from the edge detection system) 
constitutes the input to a number of important schemes, e.g. shape analysis 
[AnD88] and motion estimation [ChD88] as well as many other problems in 
computer vision. Edges can be classified into several types (e.g. step edges, 
linear edges, roof edges, texture edges, etc.). No single technique can detect 
all types of edges accurately, as is reflected in the wealth of edge detection 
literature.

Edge detection can be categorized into parallel and sequential methods 
[Dav75]. In parallel methods, edge points are found based on the gray level 
of those points and some sets of its neighbors. It is not necessary in these 
techniques to decide first if other sets of points lie on an edge. In sequential 
methods, the result at any point is dependent upon the result of the edge 
operator at previously examined points.

1.2.1. Parallel Edge Detection

A parallel strategy for edge detection consists of two stages: Edge 
element enhancement followed by edge element linking. We will, briefly, 
examine a number of techniques which have been widely used for edge 
enhancement. Figure 1.1 shows a block-diagram for a parallel edge detection
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Figure L I. A block diagram of parallel edge detection system.



1.2,1.1. Classical Giadient Operators

Classical gradient (and template matching) operators seek to isolate 
pixels that satisfy some heuristic observations about the edge. The basic 
assumption is that edges in an image can be enhanced by the gradient 
operation which can be approximated digitally by a variety of methods (e.g.
[Rob65], [DuH73], [Kir71], and [Pre70]). A template (mask or window) is
an array designed to detect some invariant regional properties [GoW87]. The 
template matching approach assumes ideal intensity step edges. A series of 
templates that produces a maximum response at the center of the edge is 
then formulated (e.g. Hueckel [Hue71], Fri and Chen [FrC77]). These 
operators are a set of masks representing discrete approximations to ideal 
edges of various orientations. For a certain set of templates (e.g. the Sobel 
template), eight masks are convolved with the image (in parallel). The 
maximum of the magnitudes of all responses is taken to be the edge pixel 
strength in the enhanced edge map. The edge orientation, at pixel location, 
is taken to be the compass orientation corresponding to that maximum.

Abdou and Pratt [AbP79] examined the performance of these classic 
edge detection operators. It is generally known that the performance of 
gradient operators, as well as template matching operators, are highly affected 
by noise. There is no systematic method for selecting the size of the operator 
or the template. The enhanced edges are discontinuous and irregular and 
spatial localization of edges cannot be accurately achieved.

Other operators have been introduced in the literature, e.g. the Nevatia 
and Babu operator [NeB80] and the moment-based operator of Reeves, Akey 
and Mitchell [ReA 83]. Nalwa and Binford [NaB86] fit a series of one
dimensional surfaces to data on small windows of the image and choose the 
least square error surface description. The concern is to detect short edge 
elements (edgels), not individual edge pixels. Nalwa and Binford [NaB86] 
claim that their operator is superior to other operators in terms of edge 
localization and resolution. The surface fitting approach is the heart of many 
other techniques (e.g. the facet model [Har81], the Hueckel operator 
[Hue71], and the Prewitt operator [Pre70]). A number of studies examined



the behavior of edge operators on test images at different signal-tb-noise 
ratios as well as on actual images (e.g. Abdou and Pratt [AbP79], Haralick 
[Har84], Grimson and Hildreth [GrH85], Haralick [Har85], and Lyvers and 
Mitchell [LyM88]).

AU of these methods can only enhance (emphasize) the edge 
information; the edge contours then are obtained from the erihanced edges 
by a variety Of techniques (e.g. [Pra78] and [RoK82]). Thresholding is the 
most commonly used technique in almost all gradient-type edge operators 
reported (e.g. [AbP79], [Can83]). Relevant issues with threshold methods 
are selection of the threshold, and the discontinuities (incomplete edges) in 
the resulting edge map; A threshold can be selected from the Receiver 
Operating Gharacteristic (ROC) o f the edge operator. The ROG for a certain 
operator is a plot of the detection probability versus the probability of false 
alarm using the threshold as a parameter [AbP79]. The value of the threshold 
providing optimum detection probabiUty is used. As Eiehel and Delp 
[EiD85b] commented, the problem of incomplete edges (after thresholding) 
is a result of the classical trade-off between the probability of detection and 
(he probability of false alarm. Thus, if a high threshold value is chosen, 
bfoken contours WiU result. If, on the other hand, a lower value Of the 
threshold is selected, then many false directions and multiple responses on 
Sfeong edges occur. -

1.2.1.2. Optimal Filtering Method

Edges that are associated with sharp transitions have high spatial 
frequencies. Thus an edge can be enhanced or detected by high-pass filtering. 
The filter is usually selected to satisfy some optimaUty criteria, Schanmugam 
et al. [ShD79] derived an optimal filter to enhance step edges. The filter can 
be implemented in the frequency domain and is based on the properties of 
the prolate spheroidal wave functions and their usage to represent band- 
limited signals. A similar filter was proposed by M odestino and Fries 
[MoF77]. Marr and Hildreth [MaH80] introduced an edge detection operator 
which uses the Laplacian of the Gaussian kernel (V 2G), th is  Operator 
provides an optimization to the spatial and the frequency IocaHzation of the 
edges. The V 2G operator is also orientation independent (isotropic). The
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p V;-V.

performance of this operator has been critically evaluated by Berzins [Bef 84] 
and Glark [Gla89].

Canny [Can83] introduced an optimum filter that provides two desired 
characteristics V'hen used to enhance step edges: Good detection (i.e., high 
probability of detection and low probability of assigning wrong edge points as 
edges), and good edge localization (i.e., detected edge points should be as 
close to the center of the true edge as possible). A very efficient 
approximation to the Canny filter (for step edges) is the derivative of the 
Gaussian kernel, The Gaussian kernel was shown to provide almost eighty 
percent of the optimal filter response to step edges, and an immunity to 
multiple responses of about ninety percent of the optittial filter [Can86]. 
Intensity edges are allocated at the points of maximum gradient magnitude. 
The major problem with this filter, which is similar to the V 2G, lies in the 
selection of thefilter spatial support.

The rationale behind the design of the majority of edge enhancement 
operators is that the edge information lies on local maxima of the image 
intensity function. Differentiation is, of course, one of the well known 
Optimization techniques used to obtain the location of local maxima. The 
problem with numerical data is that the function is defined only at specific 
locations in the domain of Support. Since differentiation does not depend on 
the data continuouslyy edge enhancement (based on differentiation) is an ill- 
posed problem in the sense of Hadamard [BeP88]. As a consequence, 
numerical differentiation may not provide a unique solution (edge definition), 
and it may produce an amplification of high frequency noise. To reduce the 
noise effect and to fill in wherever data are missing or not reliable, 
regularization techniques (filters) are used (e.g. [KaS88], [BeP88]). Hence, 
the purpose of the regularization filters in edge enhancement is to convert the 
ill-posed numerical differentiation problem into a well-posed problem.

The optimum filters we mentioned previously actually can be separated 
into two operators: A smoothing operator (filter) followed by a differentiation 
operator. The smoothing filter serves as a regularization biter. The Gaussian 
filter is only one possible choice from the class o f regularization filters. The 
regularization issue will be examined in Chapter 4.



1.2.2. Sequential Edge Detection

A number of sequential edge detection techniques have been developed 
including heuristic search and dynamic programming (e.g. [Mar72],
[Mar76]), and statistical techniques ([NaJ77], [NaM78], [Goo79], [CoE80], 
[E1S81], [E1C82J, [BaE81], [EiD 84], [EiD85a], [E iD 85b],and  [EiD88]). 
Sequential techniques can be applied to the original image, (e.g. [Mar72], 
[Mar76], [E1S81]) or to enhanced image (e.g. [AsM78], [Coo79], [ElD84]). 
Techniques applied on processed images often provide much better results. 
This is to be expected, since preprocessing is performed to emphasize the 
desired features and removes much of the noise in the original picture.

Martelli [Mar72] presented edge detection as a problem of finding an 
optimal path in a weighted graph. In his model, the properties of the edge 
were embedded in the structure of the graph. Each path in the graph 
corresponded to a possible edge in the picture and its cost was low if it 
corresponded to an edge. Graph searching techniques developed in artificial 
intelligence (e.g, the A* algorithm) were used for the search, His technique, 
however, did not provide a quantitative measure for performance under noise 
effect. The metric used to guide the search was ad hoc. Martelli [Mar76] 
showed that sequential graph search provides substantial improvement in 
computing time as compared to dynamic programming, and that execution 
time depends upon the signal-to-noise ratio (SNR).

Ashkar and Modestino [AsM78] developed a sequential search technique 
to link edges enhanced by an optimal filter. The metric they developed to 
guide the search was formed of three components: A measure of local 
information obtained from the edge detector applied in preprocessing, a 
measure |>f curvature of typical contours to be extracted that are expected to 
be relatively smooth, and a measure proportional to the degree of similarity 
between the extracted outline; and a nominal or prototype outline. The 
technique is problem related and cannot be compared with other techniques,

Basseville et al, [BaE81] introduced a sequential edge detection algorithm 
based on changes in gray levels in vertical lines of the image. Local edge 
detection (line-by-line) is obtained by a recursive filter which follows the slow 
variations of the mean gray level in the homogeneous areas. The filter also 
serves as a sequential detector of the jumps in the mean.



8

Cooper and co-workers (e.g. [Coo79], [C0E8O], and [E1C82]) described 
a suboptimal boundary findingalgorithm based on a maximum likelihood 
formulation introduced by Cooper [Coo79]. The original formulation [06679] 
was intended to detect blobs in enhanced images (the magnitude and phase 
of a gradient Operator were needed). Only results o f the algorithm on 
elementary and test images were reported.

Recently, Eichei and Delp (e.g. [EiD84j, [EiD85a], [EiD85b], and 
[EiD88]) developed a new algorithm known as sequential edge linking (SEL). 
The SEL algorithm sequentially links edge features emphasized by an edge 
enhancement technique. The algorithm has been shown to work well on a 
number of test as well as real world scenes. The effect of SNR relative to the 
algorithm’s performance has been analyzed. Briefly, the input to the SEL 
algorithm is an edge magnitude and angle map, and the linking process starts 
from a root node chosen to be of highest edge magnitude. Subsequent nodes 
are selected by the Stack algorithm based upon the value of the path metric. 
A second-order Markov model was used for the path process and the model 
parameters were estimated a priori using an ensemble of test as well as real 
scenes. Only the magnitude map enters into the metric evaluation. The angle 
map determines the initial search direction of the root node and provides the 
sign of the search at subsequent nodes. The search is terminated if the path 
loops on itself, if the best path intersects a previously detected path, if the 
best path reaches the boundary of the image, or if there is a stack overflow 
[EiD85b].

Sequential edge linking depends upon several elements including the 
model used, the search algorithm, the edge hypothesis definition, etc. The 
main problems with sequential edge detection techniques are first, that 
heuristic search techniques (e.g. [Mar72], [Mar76]) are ad hoc and problem 
dependent. Second, model-based techniques (evg, [BaE81], [EiD85a]) 
provide good results provided that a suitable model was selected. In general, 
there is no easy way to determine which model should be chosen for a given 
problem. Third, these models depend upon the results from the 
preprocessing step(s) and error can propagate throughout if this step was 
performed incorrectly. Fourth, in general sequential techniques are 
computationally more expensive than parallel techniques. Fifth, essentially



all model-based techniques require some thresholding oil which to base the 
existence of edge elements. Hence the problems associated with threshold 
selection play a major role in the accuracy of the techniques. Major 
advantages of model-based sequential techniques, on the other hand, include 
that they enable quantitative evaluation of the algorithm performance under 
diffetent SNRv and that a wide range of images can be analyzed.

1.3. Region-based Image Segmentation

In region-based segmentation, we find regions in the image that share 
some properties (such as color or intensity) [Nev86]. Among region-based 
methods are thresholding, region growing, split and merge, Clustering, and 
texture segmentation. Image segmentation by thresholding is the simplest 
technique and involves the basic assumption that the objects and the 
background in the digital image have distinct gray level distributions. If this 
assumption holds, the gray level histogram contains two distinct peaks and a 
threshold can be easily obtained. Segmentation is performed by assigning 
regions having gray levels below the threshold to the background, and 
assigning those regions having gray levels above the threshold to the objects, 
or vice versa. However, due to inaccuracies in the image acquisition system 
(shadows, irregular lighting, dust on the camera lens, etc.) the above 
assumption is not often valid. A number of methods for threshold selection 
to handle these inaccuracies have been proposed; yet this technique is only 
suitable for simple images and when the imaging system is controllable. A 
num ber of surveys for threshold selection methods exist in the literature (e g. 
[Wes78], and [FaD86]).

In the region growing method, we start with small regions having 
uniform (or nearly uniform) properties. Neighboring regions are then 
merged, based upon their relative properties. The process is continued until 
no new regions are found. Prior information about the scene might be used 
in deciding the merging criterion. Zucker [Zuc76a] surveys region growing 
methods. The major problem with this method is that it is not always easy to 
decide upon a merging criterion. In addition, the method usually provides a 
ffagihented segmentation.
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In split and merge methods, both region splitting and merging are 
possible. A criterion is set for merging and for splitting, and each region is 
examined relative to these criterion. Prior information can also be used in 
these methods. Examination of various split and merge methods may be 
found in the survey paper of Haralick and Shapiro [HaS85].

In clustering, the pixels are clustered in a feature space based on their 
properties; the clusters are not required to be spatially contiguous [Nev86]. 
These methods are effective when the number of clusters is known a priori 
[CoA79]. , * 'I ■■ *;<>

Finally, there exists a large number of texture based Segthentatipn 
methods. This has been an active area of research and has drawn considerable 
attention (e.g. [Har86], [KaE89], [DeE87], [GeG 86], [GeG 87], [B0L88], and 
[LaD89]). Of particular interest to us are the statistical based techniques. 
These methods will be examined in Chapter 3.

Problem Statement

Several problems rem ainunresolved  in image segmentation, Among
;these;afe^/-;:;̂ ;-'-:;/:;
1. Determihing the selection criteria for the optimal edge enhancement filter 
Spatial support,
2. Different techniques can be used tp emphasize various types of edges in 
images of real scenes (e.g. step edges, linearedges,roofh edges, etc.) that can 
be emphasized by different techniques. A better edge map (in terms of the 
num ber of edges and edge localization) should result if features 
corresponding to various edges were used in the segmentation algorithm. 
Ways to combine these features in the segmentation algorithm need to be 
developed.
3. The SEL algorithm provides a quantitative method for the linking of 
enhanced edge elements. The algorithm is based on an ARMA model for 
the path process and the discrete step isotropic model (D-SIM model) for the 
image observations. The adequacy of these models for general paths and 
image data has not yet been justified. The need exists, therefore, for a path 
metric based on general path and image models. The need also exists for an 
optimal set of rules that describes the prior knowledge about the scene which



should be included in the path metric.
4. Recent region-based segmentation techniques based on random field 
models have shown promising results in textured and noisy image 
segmentation, for example. A number of problems are inherent in these 
techniques, however. The problem of optimal model selection and parameter 
estimation is very wide open. Also, the computational burden required to 
execute such techniques must be reduced in order for them to be of any 
practical use.
5. Quantitative methods for the combination of edge-based segmentation 
techniques and region-based techniques in the segmentation algorithm need 
to be developed.

Th ese problem s constitu te the basis of this the sis research. W e will be 
concerned mainly with the first four problems, and they will be examined in 
light of recent progress in random field theory.

1.5. Thesis Outline

In Chapter 2, mathematical preliminaries of stochastic image models are 
introduced. This chapter provides the necessary background for the chapters
that follow. In Chapter 3, a new algorithm for texture segmentation based on 
composite random field formulation is introduced. In Chapter 4, optimum 
edge enhancement filters are studied, the issue of filter spatial support is 
addressed, and a measure for the filter spatial support is developed. Chapter 
5, exam in es edge linking b y sequ ential se arch. Sequ ential search algorith ms 
are treated and a new path metric is introduced. Various implementation 
strategies are also considered. Finally, Chapter 6 provides conclusions and 
suggestions for future research.

The main contributions of this thesis to image segmentation are the 
following:
1. Development of a recursive algorithm for region segmentation based upon 
composite random field models. The algorithm is very easy to implement 
and is adequate for any image size and for any number of gray levels.
2. Presenting a unified theory for edge enhancement filters and examining the 
issue of the spatial support of the edge enhancement filters using ideal edge 
models.



3 Extending the SEL algorithm to other random field models and developing
techniques for parameter estimation from the actual data.
4. Introducing a new optimum path metric which is very convenient for edge 
linking by sequential search.
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CHAPTER 2
RANDOM FIELD IMAGE M ODELS: 
M A TH EM A f ICAL PRELIM IN ARIES

2.1. Introduction

The use of random field image models in image segmentation (e.g. 
[GeG84], [Bes86], [GeG86], [Gra87], [DeE87], [KaE88], [LaD89], and 
[B6L89]) has been the subject of much recent interest. The problem of 
image segmentation is, usually, cast as a maximum a posteriori (MAP) 
estimation problem. The computational burden can now be handled using 
either stochastic optimization techniques, such as simulated annealing (SA), 
(e.g. [KiG83], [Cer85], and [GeG84]), or by a deterministic technique due to 
Besag [Bes86] known as iterated conditional modes (ICM ).

In this chapter we examine various random field image models applicable 
to the region segmentation problem. The applicability of random field 
models to image synthesis can be attributed to the following: First, they are 
flexible in accommodating various probability distributions, neighbor sets, 
etc. In other words, a general description is possible for random field models 
independent of the particular probability distribution of the field variates and, 
independent of the neighbor system chosen. Secondly, it is possible to 
evaluate, quantitatively, the fitting of various random field models to the 
same image. Finally, a mathematical foundation forms the basis for these 
types of models (e.g. Whittle [Whi54], Bartlett [Bar75], Besag [Bes74], 
Woods [Woo72], Griffeath [Gri76], Deguchi and Morishita [DeM78], 
Kashyap [Kas80], [Kas81], Geman and Geman [GeG84]), which makes the 
analysis very tractable.

We wall be concerned mainly with random field models defined on a 
finite support rectangular lattice. This family of models has also been used 
extensively in various digital image processing applications: in image coding 
(e.g. [DeK79], [Jai81]), texture images (e.g. [Har79], [KaC83], [CrJ83],
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[KaK86]), image restoration (e.g. [W008I], [ChK82], [GeG84]), and
boundary detection (e.g. [Gem87], [KaE88]).

Let the index set S =  {s e S: 0 $ s £ Q— I } be a set of Q - sites, and 
T| -  {tjs, s e S } be a neighbor system on S. The pair (S, rj) is a graph. The 
set S can be the set of pixel sites in a discrete image. In this case, S is a
lattice representing the support of the image, that is,

S = { (* ,y ):0£  x  < M - l ,  0 £ y < N - 1} " 

for an M x N image.

Definition 2.1: A neighbor system p on the set of sites S is a collection 

Tj = {tis: s e  S} of finite subsets of S such that:
(i) s € Ps, and
(ii) s e T]r if and only if r e TJs, r, s e S.
The sites r e Tjs are called the neighbors of s e S. □

Definition 2.2: A clique C over the graph (S j T] ) is a subset of S which
either consists of a single site or multiple sites, where every site is a neighbor 
of every other site in set T|. □

Figure 2.1 is an illustration of possible elements of the neighbor set p 
and their cliques C on an M x N  lattice S. More specific examples will be 
given when we consider Markov and simultaiieous random fields pti a lattice.

Let the observed image process be G which is, in general, a family of 
random variables indexed by the sites in the set S, that is,

^  = (Gsf S e  S }, :

where Gs is a random variable associated with the gray level distribution at 
site S e S. The state space on which G is defined is the set of all possible 
values that the random variable Gs might take. We will denote the state space 
by S and, for an integer state space of size q, 3  is expressed as follows:

2 =  10. q - l l ) .

For a discrete-valued image, q represents the number of possible gray levels 
(e.g. 256). The configuration space (the set of all possible realizations, or the 
set of all possible discrete images) will be denoted by £2. Q will also be 
referred to as the sample space. The size of the configuration space Q. is 3 s.
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Figure 2.1. An illustration of the neighbor set and ciiaues over a triangular lattice.



Obviously, Xi is very large for even the modest size image; e.g. on a square 
lattice of size 64 x 64 and 16 gray levels, the set Xi contains 1664 x 64 possible 
configurations (image realizations). Formally, we will write E and Q as 
follows:

S = {%: % is countable }, X can be 0,

and

Xi = {©= (G q, G j, . . ., Gq_ i) : Gi e S , i e [0, Q - 1]}.

The configuration G = (G0 = g0, Gj = glv • v *, Gq_ i = gq_ \ } will be written
as (G = co}.

Let Z  be the smallest o -algebra with respect to which all the random 
variables Gs, s € S are measurable. We are now ready to define what is meant 
by a random field.

Definition 2.3: A random field G = (Gs: s e S} is given by
(Xi, Z, P, (Gs)) , where P is a probability measure on (X i,Z ) such that:

P (G S = gs; s e S) > 0

for all finite (non-empty) S1 c  S and arbitrary gs e 3 . □

Definition 2.4: A random field G is said to be finite if the set of sites S 
is finite. □  -y;

In a certain configuration (realization) co € Xi, the random field G is a 
deterministic function g(*) of the sites (s e S}. This function might 
represent the gray level pixel values of an image. The deterministic function 
g(S) will be represented in either of two forms: As a matrix,

g = g(S)

g(0,0)
g d ,0 )

g(0,l)
g ( U )

g(0,N— I) 
g (l,N — I)

g(M—1,0) g(M—1,1) ... g(M— I ,N - 1) 

or as a unit vector (lexicographic form),

( 2 . 1)



g=[g(0 ,0)...g(0 ,N -l) g(l,0) • • • g(I ,N - 1) • • • g (M -l,0 ) ;  • • g (M -I5N^ 1 ) ] \  (2.2)

where t denotes matrix (vector) transposition.

Among the random field models which have found most use in image 
processing are the class of Markov-Gibbs random field models and the class 
of simultaneous random field models. In this chapter we examine in detail 
various issues pertaining to these two classes of random field models. In 
particular, we examine the issues of model selection, neighbor set selection, 
and model coefficients (parameter) estimation.

2.2. Markov Random Fields (MRF)

Consider a graph (S, rj) of Q sites, and a random field G = {Gs, s e S J 
defined on S. We provide a definition for the neighbors of a site s e S in 
terms of conditional probability.

Definition 2.5: A site r(*  s) is said to be a neighbor o f site s (s,r e S) 
if and only if the conditional probability 
P(GSIG0, G1, . . ., Gs_j, Gs+1, . . ., Gĉ 1) is dependent upon the variable Gr 
[Bes74]. □

This definition implies that any system of Q sites, each with specified 
neighbors, clearly generates a class of valid random fields. Any member of 
this class is called a Markov random field [Bes74] which is formally defined 
as follows:

Definition 2,6: The random field G is a Markov random field (MRF) 
with respect to a neighbor system rj if

P (G  = <o) >  O for all to e Q , and (2.3)

P(G S = gslGr = gr, r * )̂ = P(GS = gglGr= gr, r e T]), (2.4)

for all s e  S and {Gs, s e S} e Q . □

The neighbor system Tl is restricted to be symmetric for a MRF.

The most general description of G is in terms of the joint probability: 

P (G ) = P (G 0, G1, . . ., Gq_ . Another description of G is in terms of the 
conditional probability (2.4). It should be pointed out that (2.3) defines a
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Markov random field if T] includes all the sites in S.

Definition 2.7: The local characteristics for a random field G is defined 
in terms of the following conditional density:

p(o>)p ( GsIGr, r * s)
X p(°>)

g. e *

s e  S, to £ Cl. □ (2.5)

A very important fact with any finite random field is that the local 
characteristics completely define the field (see [Gri76] pp. 430-431). The 
local characteristics is, however, very difficult to obtain. An equivalent yet 
much simpler representation is possible using the so-called potentials. This 
representation comes from the equivalence of the finite Markov and the finite 
Gibbs distributions ( [Spi71], [Gri76]) or via the Hammersely-Clifford 
Theorem [Bes74]. We will present the G ibbs random field later, but first we 
present a form of the Hammersely-Clifford Theorem.

Theorem 2.1 [Bes74]: Let G = O =  O denote the all-zero observation. 
Assume that P(O) > 0. Let U(G) = In {P(G)/P(0)}. Assume that the state 
space S is finite. Then, the most general form U(G) may take in order to 
give a valid probability structure to the process G is

U(G)= X SiVi(gi) + XX gigjvi,j(gi»gj) +
OS i S Q- I  . OS i < j <  Q- I  /:

XX (gigjgk)Vi,j.k(gpgj’gk) + • • • +
OS i <  j <  k < Q-I

( gQglg2 • • • gQ -l) Vq,1,2. . . Q-l(gQ*gl> • • M gQ-l)> (2.6)

where for any O < i < j < . . . < s < Q - 1, the function Vy . . .  s may be 
non-null if and only if the sites i,j, • • *, s e S form a clique. □

Equation (2.6) can be rewritten in the following form:

■■■ U(CO) = X  Vc(G)), (2.7)

where C is the set of cliques for T| and V c (CO) is a function on Cl which 
depends only on those values Gs e CO for which s e C. The family 

(Vc, c e C ) corresponds to the potential functions in the terminology of the 
Gibbs random field ([Spi71], [Gri76]). The function U(eo) in (2.7) is known



as the energy function [GeG 84].

2.2.1. M RF on a General Graph: Auto-models

Consider a graph (S , rj) having a set of Q-sites. A class Of MIlF models 
called auto-models is defined as follows:

Definition 2&: T heM arkov random  field G is said tp fpllow an autp- 
mbdel if the energy function in (2.7) is such that:

U(G) = Z  feV^gi) + Z E  Pijgigĵ  (2.8)
OS i S  Q- I  OS i < j S  Q-I

where the parameters PiJ = 0 unless i and j are not neighbors [Bes74]. □
The above definition implies that the probability structure of the system is 
dependent upon contributions from the cliques of no more than two sites. 
We now provide two examples from the family of auto-models.

Example 2.1. Auto-binary MRF

Here the state space is binary, that is, E -  (x; X e [0, T ]} and the 
energy function has the following form:

U (G )=  Z  « igi+ Z E  Pijgigj- (2-9)
OS i s  Q- I  OS i < j S  Q-I

where Oti and JUjj are parameters [Bes74]. The Conditional probability density 
function of the random variable Gi, given the values of the variables at the 
neighbor sites, is given by

exp(gi(ai +

PGiIGjCgi^j5 j e v )
E  Pijgj))

OS i < j <  Q- I

I + exp(cci + Z  Pijgi)
0 S i < j < Q- I

( 2 . 10)

Example 2.2. Auto-normal MRF

In this class of Markov random fields, the random variables (Gi, i e S } 
are jointly Gaussian. Let Gi, i e S be Gaussian with mean P i and variance o  . 
The conditional and joint density functions for the field G are easily defined 
as follows: Over the neighborhood T|, given the values of the random 
variables Gj, j e t], the random variable G i is also Gaussian with variance c 2,
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but with a mean value H given by

H = E(G iIGj, j e Tl) = Hi + 2  Pij(gi-«j)- (2.11)
OS i <  j <  Q- I

Hence, the random variable Gi has a Gaussian distribution with mean Hi and 
variance a ,  and when conditioned on the random variables in its 
neighborhoods, it has a Gaussian distribution with mean H aS defined in
(2.11) and a variance O2.

From the knowledge of the probability density of the random variable 
Gi, i e  S (the marginal probability density), that is

PciCgi. i M )  = c v W eXp(Si~Hi)2/2g2’ (2.12)

we can easily write the joint probability density for the random field G (by 
the chain rule) in the following form:

P c (g =  go. gl  • * * g Q - l ) - I b I1a2 
(2j ic 2)-q/2

e x p ( - ^ [ g -  l ] lB [ g -  g ]) , (2.13)

where

I =  [HoHi Hq- J 1 (2.14)

is an Q x I vector and B is an Q x Q symmetric matrix with elements by 
given by:

b U =
if i = j 
if i W J (2.15)

Similarly, we can define other auto-models, e.g. auto-binomial, auto- 
Poisson, etc. (see Besag [Bes74]). This class of models will be proved useful 
later on as we examine sequential search techniques for edge linking.

2.2.2. MRF onaL attice

We now restrict the graph (S, T|) to be such that the sites (x,y) e S and 
the neighbor system T| are defined on a lattice. Without loss of generality, we 
will consider the lattice S to be square. That is,



21

S = {s = (x,y): O < x, y < N - l} .

We will study the conditional probability form in (2.4) for the random field 
G = {Gxy, (x,y) e S). The specific form of the neighbor T| specifies the 
order of the Markov random field. The convention adopted for the set rj is 
shown in Figure 2.2 and Figure 2.3 shows the neighbor arrangements of the 
set Ti for up to the seventh-order MRF. The forms of Tl, C, and U ( G) for 
the first- and second-order Markov random fields are given below.

Example 2.3. First-order MRF

Tl = { (x -l,y ), (x+ l,y), (x ,y -1), (x .y fl)} . (2.16)

C = {[(x,y)], [(x,y), (x,y+ 1)], [(x,y), (x + 1,y)]}. (2.17)

U (G ) =? ̂ Zgx,3^,y(&co>) + +

Z  Sx,y8x+1 ,yV 2,x,y(8x,y’8x,y+1)» (2-18)

where Vx y, V l x y, V2xy are arbitrary sets of functions Subject to the 

summ ability of U ( G ) .

The ranges of the summations in (2.18) are such that each clique 
involving at least one site internal to the system contributes a single term to 

the representation [Bes74]. Let the set (g, t, t ',u ,  u ' |  denote the partial 

realization {Gx.y, Gx_i,y,Gx+i,y> Gxy+i }, that is, let
Gx,y = g, Gx_ 1>y= t,Gx+1>y= t', GXty_! = u', and Gxtyfl = u'. The
conditional probability density structure at site (x,y) is given by

exp (w xy(g;t,t/,u ,u /))
p (g lt, t', u, u ')

where

Z  exp (wxy(z;t,t',u,uO)
(x,y) e S ■

v p  "7; ■' -7-.v ;v7

(2.19)

Wx,= g (v^(g) + tV1>x_it>(g,t) + + IlV2ixĵ i(g,u) + u'V2,Xi,(g,u'))(2,20)

and the summation extends over all possible values z at (x,y) € S.

The functions V(*), V1O ,  V2O  are selected to give (2.19) i an 
appropriate distributional form for a particular situation. For example, in a 
homogeneous random field, the functions V(-) are independent of (x,y), and
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Figure 2.2. Convention for T|.
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Figure 2.3. Hierarchy of random field models (up to seventh-order). 
(N um bers indicate the order of the model with respect to the pixel •  )



in an isotropic random field, ViO  = V2O - We will study two cases of binary 
and Gaussian observations in more detail in the next subsection.

Example 2.4. Second-order MRF

The neighbor system and the cliques are as follows:

T|= {(x- l,y), (x+ l,y), (x ,y - l) , (x,3H-l), ( x - l ,y - l ) ,

( x - l ,y - l ) ,  ( x + l ,y - l ) ,  , ( x - l ,y - l ) ,  (x + l,y + l)} . (2.2La)

C =  {[(x,y)], [(x,y), (x .y+ l)], [(x,y), (x+ l,y)L  

[(x,y), (x+ I 0H-1)], [(x,3», (x + l ,y - l ) ] ,

[(x ,y ) ,(x + l,j) ,u ,y + l)] , [(x,y), (x+ l,y), (x + l,y + l)] ,

[(x,y), (x+l,;y), (x+ L y - 1)], [U,y), (xjh- 1), (x + Lj + 1)3,

; ■ ■ v (2.2i.b)

The function U(-) and the conditional probability 
p (gslgr, s = (x,y) € S, r = (-&,/) e T]) can be written easily as in the first- 
order Markov by adding terms corresponding to the additional cliques.

Figure 2.4 is a graphical representation for the neighbor sets and the 
cliques for the first- and second-order Markov random fields. Higher-order 
Markov can be treated similarly. We now shift to more specific Markov 
fandom  field models which we will use in our work.

2.2.2.1. Binary Mailcov Random Field

Here the state space, as in the binary auto-models, is assumed to be 
formed of two possible values O or I, that is, S  = {x: Z e [0,1] }. The 
equation for the energy function in (2.6) is greatly simplified. Rewriting 
(2.18) for the binary state space we get for the first-order MRF

U(G) = a X  gx,y + Pl X  8x.ygx+l,y +  P2 X  gx.ygx.y+1’ (2-22) 
x.y e  S  X.JE S ■ " ; x,y e S

where Ct, P1, (J2 are arbitrary parameters. The conditional probability density 
function in (2.19) becomes



(a) Cliques for first-order MRF.

(b) Cliques for second-order MRF

Figure 2.4. Cliques for the first- and second-order MRF.



p (g lt,t ',u ,u ') =
exp(g (a  + P1Ct-HtQ + p2(u+uQ )

I + e x p (a  + Pj(t+tO + p2(u+uO)
(2.23)

Siinilaf formulas for higher-order binary MRF are easily obtained 
[Bes74].

Z.2.2.2. G aussianM arkovR andom F ield

If the random variables Gxy defined on (x,y) s  S have a Gaussian 
distribution, the field G is called a Gauss-Markov random field. The 
conditional and the joint probability density can be written as in the auto
normal case, that is, if the random variables Gxo, ~ ArCiixy,a 2) , then given 
the value of the random variable G*,/, (k,l) € I), the random variable Gxy is 
Gaussian with mean |x and variance a 2, that is,

(2.24)

The quantity p. for the first- and second-order Gauss-Markov random field is 
defined as follows:

P'1 ® P l(g x - l ,y  ^  Sx+1,p ^  $2(Sx,y- 1 Sx,y+1)> (2.25a)

and

|i 2 a  + Pl(&c-1,? + Sx+ l,y) + P2(&,y-1 + Sx,y+l) +

TiCgx-I,)^I + &+i,)N-i) + y 2^Sx- l,y+1 Sx+ l,y-1)* (2.25b)

where a , P's; and y 's are parameters.

Another representation for the Gauss-Markov random field which 
provides some insight about the interaction of the variables at a given site 
with those of neighboring sites on a lattice can be written as follows 
([Woo72], [KaC83]): Let the Gauss-Markov random field G be defined on a 
square lattice S and a symmetric neighbor system Tl. The Markov property 
(2.4) was defined such that, for two sites s, r e  S,

P (G S = gslGr = gr, r * s) = P (G S = gsIGr = gr, r  € Ti). (2.26)

This definition implies that the conditional mean of the random variable Gs 
must be of the form (2.25a) or (2.25b), that is,
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E(G slGr, s *  r} =  X  erG(s+r), (2.27)
X € T|

where E {• } denotes the expected value. By the orthogonality principle, the 
difference

Es = {GS S  M »(S 4 t) I
J  e  n

(2.28)

is orthogonal to (Gr, for all r * s}, that is,

0 i
v if r = s

. 0  if r #  s
E (E sGr ) = (2.29)

for some constant v.

Now, assume the Gauss-Markov random field G is also zero mean (this 
is not a critical assumption since we can always subtract the mean value from 
a certain observation). The above equation implies that

E{EslGr, r * s } = 0 .  (2.30)

From (2.28) - (2.30), Gs can be written as

Gs = x  er( G(s+r) + G(s_r)) + Es (2.31)
r e T , “

where Bas is the asymmetric neighborhood of site s defined as follows 
[Che85]:

-  r i  Tias. (2.32)r e  T)as
The symmetric neighborhood Tj is related to Tias by the following relation:

Tj = (r: r e Tlas ( - r :  r € Tias) }. (2.33)

It is easy to show that the error term Es is not white; in fact, the 
correlation of the random variable Es is as follows:

E (E sEr ) =
Vv. if s = r
_ e (s-r)v if ( s - r )  e Tl
0 otherwise.

(2.34)

In a finite lattice S a problem arises in defining the neighbors at 
boundary sites. One way to handle this situation is by the so-called torus



assumption ( [Mor73], [KaC83]), Here the lattice S is represented by a torus, 
that is, the lattice is folded such that the right edge touches the left edge and 
the lower edge touches the upper edge. This can be described as follows: 
Partition* the lattice S into two mutually exclu sive an d totally inclu sive sub sets 
Si (Interior) and Sb (boundary). For s e Si,

G s + Z  ®r G (s+ r) =  Es
r e t) :

and for s € Sb,

where, for s 

G

G s +  Z  0 r G l,(s+r)
XETV

= Ec

(k,I) and r = (x,y),

r[s+Uy)l for [s+ (x+y)] e S

(2.35)

(236)

(2.37)i.(s+ (x,y)) for [s+U +y)] 4  S

Thus the summation in (2.37) is modulo N. Therefore, the finite lattice 
form Gauss-Markoy random field equation can be written as follows:

Gs = S  fM W ) + E„ (2.38)
re  Ti

where E = {Es; s e S} is a stationary Gaussian random field with a 
correlation structure a s  in (2.34). In matrix form, (2.38) can be written (for 
a certain reaUzation) using the lexicographic representations (2.2) as follows:

t f ( 0 )g  = e : ■ (2.39)

where g and e are N2 x I column vectors representing the gray level

information at pixel sites and the innovation (non-white), respectively, and 
the matrix H(Q) is N2 x N2 block circulant and symmetric (see [KaC83]).

The representation in (2.39) resembles an input-output system. To 
ensure that the following condition must be

satisfied [KaC83].

where

Ys = ( l  -  20t<|>s) > O for all s e  S,

0 = [0r, r e T l J t, and

(2.40)

(2.41)
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♦ . [c o s ( ^ ( s
t

l ) l r ) ,  r e  Tias] ( 1, 1). (2.42)

The form (2.39) enables an easier simulation of Gauss-Markov random 
field using the Kashyap algorithm [Kas81] instead of using the Monto Carlo 
methods [HaH64], for example. Also, the likelihood function is easier to 
write in terms of the parameters 0. This will be examined extensively when 
we study the issue of parameter estimation.

2.2.3. Gibbs Random Fields

The concept of Gibbs random field (GRF) has its origin from statistical
" ■ ■ -V : . •• ■- V... .. j :V; ' . • ' V V\ . -v ' '■ '■ • \
mechanics, where random fields may be considered as equilibrium 
distributions for a variety of physical systems [Gri76]. We will examine a few 
properties of GRF and study the equivalence between GRF and MRF. This 
equivalence helps in obtaining an expression for the joint probability 
distribution for the MRF.

Consider a random field G defined on the graph {S, T]}.

Definition 2.9: A Gibbs distribution relative to {S, Tl} is a probability 
measure P 'on £1 with the following form:

P'(°>) = Ve-UOVT, (2.43)

where Z and T are constants and U(-) is a function [GeG84]. □

The parameter Z is called the partition function, T is called the 
temperature, and U(-) is called the energy function. The function U(-) has 
the following form:

7 - 2  Vc(CD),
CS  C

(2.44)

where C is the set of cliques for n and Vc(cu) is a function on Q which 
depends only on those values of Gs of to for which s e C. The set 

{vc, c € C )  is called the potential. The partition Z is a normalizing constant 
and is given by the following equation:

; /'-.-V. v /-yV/ (2.45)
V"V \ - « > -



Example 2.5. The Ising Model ([Bes74] and [GeG84])
S = {(*,y): 0 < (x,y) £ N - 1}, Tl = {(*- l,y), (x+ l,y), ( x ,y - 1), (x,y+ 1)}. 
The energy for a configuration o> € Q is

U ( co) (jcJ e SW{x'y}<<gX,y) + (*Je ^ 8x+ hy^ +

(x J e  sV { ( ^ ) . ( ^ l ) / &,;y’ 8xty+
(2.46)

For the binary case; that is, H = {%: % € [0, 1]}, the energy simplifies to

.'G -2  Sx,y ^  P( 2  Sx,ySx+l,y Sx,ySx,)H-1)» (2.47)
<*.?) e s ■ (x,y) e S (x,y) e S

for some constants a  and p. It is obvious that (2.46) and (2.47) bear a great 
deal of similarity to (2.18) and (2.22) , respectively. □

Definition 2.10: Let C  be the set of cliques in S. V is called a neighbor 
potential if Va = 0 whenever A ^  C . □

The Gibbs random field (GRF) is a Markov random field (MRF) if and 
only if the potential V is a neighbor potential [Gri76]. The equivalence 
between the GRF and MRF is established by the following Theorem.

Theorem 2.2 [Gri76]: Let Tl be a neighbor system for S. The finite Gibbs 
random field G is a MRF with respect to Tl if and only if P '( to) = P( G = ca)
is a Gibbs distribution with respect to Tl. □

Notice that the expression of the local characteristics in terms of the 
potentials is the thrust of the Hammersely-Clifford Theorem we listed earlier
in the study of the MRF (Theorem 2.1). The; equivalence of MRF and GRF, 
as established by Theorem 2.2, enables the specification of the MRF by the
potentials, which are much easier to specify than the local characteristics. In 
many cases the local characteristics is impossible to specify [GeG84]. An 
extensive discussion on the forms of the potential function V(-) and the 
energy U (>) can be found in fSpi71], [Bes74], and [Gri76]. In summary, the 
equivalence of the MRF and GRF on finite lattices provides us with an 
intuition about the functional form of the interaction between the random 
variables in a certain neighbor system. We now turn to the problem of
parameter estimation.



2.2.4. Param eter Estimation for Finite Markov Random Fields

The two classical techniquesfor parameter estimation we the methods of 
maximum likelihood and of least squares, respectively. Neither of these 
methods can be applied directly in the present settings, except in the 
Qaussian case. The Gibbs-Markov distribution contains a complicated 
normalizing function which, in general, makes the likelihood function very 
difficult to analyze, or even to compute numerically. Even in the Gaussian 
case, the likelihood function is hard to compute. For these reasons, several 
approximate techniques for parameter estimation have been suggested in the 
literatute for the MRF model fe.gv [Woo72]v [Bes74J, [Bes751v [MoBTS]:, 
[Bes78], [KaC83], and [DeE87]). We will examine only a few techniques in 
this section.

Given a realization G =  O) € £2, we shall assume that the conditional 

density function PG,lGr(gslgr» r e tO is fully specified in terms of a vector y  
consisting of a few unknown parameters, that is,

PGiIGr(Ss1Srs r e 7 I) = Ps(V)- (2-48>

The objective is to obtain a reasonable estimate of \|/ from the realization 
G = CO.

2.2.4. l .  The Coding Method

The coding method [BesM] can be applied for general graphs (S, T | ) ,  

that is, S need not be a rectangular lattice. The first step is to divide up the 
sites s € S into t\yo groups, the one o f "dependents" Sd, the other of 
"conditioners" Sc. In particular, let Sd denote a subset of sites s e S chosen in 
such a way that no two members of Sd are neighbors. Assign the color black 
to each site in Sd and the color white to each site in Sc. If is evident then, by 
the conditional probability formulations, that the set of black-site variates, 
given the Values at the white sites, are mutually independent. Figure 2.5 
shows the coding for the first- and second-order Markov. In this figure, the 
sites m arked I are not neighbors; similarly the sites marked 2, 3, 4 are not 

/neighbors in the sense of Definition 2.5 and the Markov property (2.4) .
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I 2 I 2 I 2 I

2 I 2 I 2 I 2

I 2 I 2 I 2 I

2 I 2 I 2 I 2

I 2 I 2 I 2 I

2 I 2 I 2 I 2 ,

I 2 I 2 I 2 I

(a) Coding for the first-order Markov.

I 3 I 3 I 3 I

2 4 2 4 2 4 2

I 3 I 3 I 3 I

2 4 2 4 2 4 2

I 3 I 3 I 3 I

2 4 2 4 2 4 2

I 3 I 3 I 3 I

(b) Coding for the second-order Markov.

Figure 2.5. Coding for the first- and the second-order Markov random fields.



Liet us define the conditional likelihood function, F, as follows:

-■ v:=-- -V- ■ ■■ (2-49>
s e Sd . . R

The log likelihood (a monotone function of its argument) is

PsW -  y /■ <2.50)
s s  Sj

Now if the functional form of the conditional probability density ps( •) is 
known (e.g. Gaussian , Poisson, Binomial, etc.), maximization of (2.50) can 
be easily carried out.

For certain tj, different codings are possible and the estimates from 
different codings are not necessarily the same. There is no optimal way of 
relating the estimates from the different codings, and simple averaging might 
not be adequate [Bes74]. The coding method is not efficient in the sense that 
only a fraction of the data is used in getting the estimate. It is, however, easy
to unplenaent.

2.2.4.2. The Pseudo-Likelihood Method

To overcome the less efficient use of data in the coding technique, Besag 
[Bes75] proposed another alternative in terms of the so-called Tseudo- 
likelihood." This technique provides an estimate \|/ based upon the 
maximization of

InT  = X  ^Ps(V ) (2.51)
S € S

with respect to \|t.

Of course, (2.51) is not the true log-likelihood function for the sample 
(except in the case of complete independence). In spite of this, the pseudo
likelihood method uses the data more efficiently than the coding method. The 
consistency of the resulting estimate from the pseudo-likelihood method was 
proved by Geman and Graffigne [GeG86] (see also Graffigne [Gra87]). The 
technique is easy to implement for estimation in Gibbs-Markov settings and 
will be used in the following chapters for parameter estimation.



2.2.4,3. Estimation on Gaussian Markov Random Fields

In the Gauss-Markov random field, (2.39) an exact expression for the 
log-likelihood function can be written as follows ([MoB75], [KaC83]):

h ip(4l0vv) = 0.5 X l o g ( l -  26l<l>s)

: (2.5i)

where 0 and <|>s are as defined in (2.41) arid (2.42), respectively. The above 
equation can be solved numerically to obtain the maximum likelihood 
estimates of the parameters 0 and v. This estimate is both efficient and 
consistent. It is not computationally attractive, however.

An approximate form for the MLE which is computationally simple was 
suggested by Woods [Woo72]. Also, the coding and the pseudo-likelihood 
methods of Besag ([Bes74] and [Bes75]) provide other approximations.
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(i) Art Approximate MLE Estim ate

The approximate MLE can be written as follows [KaC83J:

S =  [ I « • ] ■ ■  [ J  <LgJ.
s e Si s € S1..

a n d

» = -JJ5- 2  ( & -
; N s e  S, \  -

(2.52. a)

(2.52.b)

where S1 are the interior sites and Qs is given by

As = [gs®r. r 6 n]1- (2.52.C)

Recall that gs is a scalar quantity equal to the gray level value at site s e S. It 
can be shown that 0 is asymptotically consistent [KaC83].

(Ii) The Goding Technique

The maximization of the conditional likelihood function (2.49) can be 
performed easily for the Gaussian case. For example, in the first-order 

Markov Ti = { (x -l,y ), (jt+ l,y), ( x ,y - 1), (x,yf I ) ), the coding estimate for 0 
can be easily shown to be



S =  [ £  q ^ r 1 [ £  tugs]-
S € Sd S e Sd

where

(2.53)

(2.54).Os = [g(s+r) + g(s-r>; r =  U ,)M -l),(j:+l,y)] .

The dependent subset Sd e  S is formed such that;

Sd = (s  e S and r e Ti £ S),

where Tl is the first-order Markov neighborhood of the site s in (2.16). That 
is, Sd is formed from S >yith every other site skipped.

It is easily seen from (2.51) that in the Gaussian case, pseudo-likelihood 
corresponds to the least squares method.

2.3. Simultaneous Random Field Models

We m il study only Simultaneous models on a lattice in this section. 
Also, we will consider, without loss of generality, a square lattice, that is, 
S = {s = (x,y) : 0 £ x,y <, N - 1}. As before, the random field G is described 
by ( Q ,  L, P, {Gs}). Consider another random field W== {Ws, s e S} in 
which the random variables Ws have a distribution with zero mean and unit 
variance. There is no restriction on the neighbor system Tl, i.e. it need not be 
-symmetric. We will study two representations from the class of simultaneous 
models, namely, the simultaneous autoregressive and the simultaneous 
autoregressive moving average models.

2.3.1. Simultaneous Autoregressive Models (SAR)

The SAR model for finite lattice is described by a difference equation as 
follows [Kas81]:

Gs — X  ®r G(s+r) + Ws, 
re  n

(2.55)

where Ti is an arbitrary neighbor set, (Ws) is a sequence of zero mean 
uncorrelated random variables with unit variance, p is unknown parameter 
representing the actual noise variance, and s = (x,y) e S and r -  (^»0 e  Ti 
specify pbcel locations on the image.



Using (2.2) and the toroidal assumption in (2.32), we can write the finite 
lattice form corresponding to (2.55) as follows:

Gs -  (2.56.a)
r 6 Tl

which can fiep u t (for a certain realization) in the following matrix form:

5(0) g = Vpw. : (2.56.fi)

Again, the matrix 5(0) is block circulant involving at most N distinct blocks 
[Kas81].

Another form for (2.55) which is useful in studying certain properties of 
the SAR model is provided by the following equation:

(2.57)

where

A(z) = I -  X  0r Zr»

and the factor zr is defined such that if r = (x, y ), Zr =  Z 1*  z2y. 

The corresponding spectral density function is given by

_________P_________

(2,58);

Sqg(u, V)
A(Z15Z2) 'A fz1 *,z2 *)

(2.59)

V-1 2nu V-I 2nv
where Z 1 = e N , z2 = e N . Notice that this is one of the few 
instances where the two-dimensional spectral density function can be 
factorized. This is always the case, however, in one-dimensional spectral 
density. If an image can be represented accurately by a model as in (2.55), 
the spectral density in (2-59) becomes superior to other two-dimensional 
spectral estimation techniques (e.g. the maximum entropy method). This is 
because the form in (2.59) is fully determined by the neighbor set T| and the 
parameter set 0r, r e Tl and p, The maximum entropy method, on the other 
hand, requires good estimates for the autocorrelation function, and also 
requires that the order of the autoregressive model fitted to the data be 
known (e.g. [Mal82]).



2.3.2. Simultaneous ARMA Models

An ARMA model is characterized by the two polynomials A(z) and B(z) 
defined in (2.60) and (2.61) [Kas81].

. • . A (Z )  = I - E  QrZr , 0r = G-n (2.60)
r 6 Til ' :: . : ;' : .

B(z) = 1 + E  cM r 5 <l>r = <l>-r5 (2.61)
: ' ■■' .V : r e % ' ” ’ ' ■ '  ■■

1 . ; ;• • ' ■ V ■ ; ::;
where "H1 and Ti2 are symmetric neighbor sets and the parameters 6 and <|> 
satisfy the following equation:

A(z) > 0 and B(z) > 0 for all Iz1I =1 and Iz2I I. (2.62) 

The difference equation form for the ARMA model is given by

H i ; . . X  ®rG(s ® r ) + iyWs.;,.
r e -Hi

(2.63)

VvWc (2.64)

or, equivalently,

A(z)Gs —

where the polynomials A( ) and B(-) are given by (2.60) and (2.61), 
respectively. The input process {Ws} has zero mean and is correlated with 
Gs. Notice the difference between the AR and ARMA representations with 
respect to the innovation W. In the AR representation, W is uncorrelated 
with G. The innovation W in the ARMA representation has the following 
power spectral density function:

Sww(z) = A(z)B(z). (2.65)

The condition (2.62) on A(-) and B(*) is necessary to insure stafionarity of G 
as given by (2.63). The spectral density of G in (2.65) is given by

V B (Z 1j Z2)
S<jg(u»v) ( 2.66)

A ( Z l j Z2)

Thus, given any spectral density which is a ratio of two positive linear 
combinations of sinusoids in u and v, there exists a corresponding ARMA 
model as in (2.62).



2.3.3. Parameter Estimation on Simultaneous Models

Given an image configuration (gray level information for the sites of the 
discrete image), we would like to fit a model to the image. The successful fit 
depends upon the proper selection of the model type and its parameters. 
Suppose we want to fit an SAR model to a given image. How shall we select 
the neighbor system Tj and the parameters 0? The problem of neighbor 
system selection is discussed elsewhere (e.g. [Bes74], [Woo72], [KaC83]). 
We will introduce conventibns for a few possible Ti here and emphasize the 
issue o f parameter estimation. We will also emphasize the SAR model on a 
square finite lattice.

L et’s represent a site s = (x,y) € S by ® and the sites 

{r = (k,l): (k,t) e  rj} by the symbol O.

(a) Causal neighbor set:

Tj = {(*,y): (0,0) € T), x  ^  0 , y S  o).

Graphically, this is shown in Figure 2.6(a).

(b) Semicausal neighbor set:

Tl = {(jt,y): (0,0) e tj, x  < 0, y  arbitrary or vice versa). 

Graphically, this is shown in Figure 2.6(b).

(c) Unilateral neighbor set: T) c  S+ such that:

(i) S1 e S+, $2 e S + => S1 +  S2 e S+,

' (ii) S e  S+ => -  s 4 S+, ' ■

(iii) (0, 0) 4 S+.

Examples of S+ are shown in Figure 2.6(c). Note that S+ is not unique 
[Kas81].

The two classical techniques of maximum likelihood and least squares 
have also been used for parameter estimation of the simultaneous random 
field models (e,g. [Bes74], [Kas81], [KaC83]). The least squares estimates 
are known to be asymptotically consistent for SAR models with unilateral 
neighbor sets. It is, however, inconsistent for bilateral neighbor sets. 
Asymptotically efficient maximum likelihood estimates (MLE) can be
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Figure 2,6. Some neighbor set definitions for the SAR models.



obtained if an appropriate choice for the distribution of the random field G is 
made. An approximate MLE which can be calculated iteratively has been 
proposed by Kashyap and CheUappa [KaC83]. Finally, robust estimation 
techniques have very limited use thus far in spatial interaction models. Only 
special cases which are direct extensions of the one-dimensional case have 
been reported [KaE8&].

2.3.3.I. L eastS quaresE stim ation (L S )

Consider a finite square (N x N) image obeying the toroidal SAR model 
in (2.55). An approximation to the least square estimation for the 
parameters in (2155) is given by the following equations [KaC83]:

9 = '.I E C O ''1 2 * * ].

P

S € S

I

S-
s e  S

E  ( & -  St zs)
N S e s

where z(-) is

[g (s  ® r>’ r |  Tl]'

(2.67)

( 2.68)

(2.69)

Equations (2.68 and 2.69) are for infinite stationary SAR models. They 
provide only an approximation for the finite SAR case. This estimate? is in 
general inconsistent for nonunilateral SAR models [KaC83]. One advantage, 
however, of the LS estimate is that it is much easier to calculate than other 
methods (e.g. the maximum likelihood or robust techniques).

2.3.3.2. Maximum Likelihood Method (MLE)

Consider the SAR toroidal representation given in (2.56b). Assume the 
innovation W(-) is Gaussian. It is easy to show that the likelihood function 
/n p(Gl0, p) has the following form:

in p(gie, p) = in ( Ib(S )D - ft ( 2 * p) -  J -  2  Ca -  <2 ™>
J  -..-Kr';;' :s e

where I I stands for the determinant and zs is as defined in (2,69). Since the 
matrix B(Q) is block circulant, the determinant can be obtained by Fourier 
transform method (e.g. [Hun73], [Kas80], [KaC83]). The determinant



Ifi(G) I, therefore, can be written in the following form:

Ifi(G) I = n o -  e*os),
s e S -

(2.71)

where

Os = [e x p (V - l  - J - (s -  I)* r ) ,  r e Tl] ,1 = (I , I). (2.72)

Hence (2.70) can be simplified to

*■ p(gl« , P>- X ; In ( I -  S1Ot) -  In (2lt p) -  X  ( f c - StZ,)?2.73)
S€ S ■ ;z  z P s e  S

Now the ML estimate can be obtained by maximizing (2.73) with respect to G 
and p.

Since the log-likelihood function is not quadratic in G, an easy expression 
for the estimates is not possible. Numerical techniques, therefore, have been 
used to obtain the estimates (e.g. [KaC83]). Replacing the term
In (I -  GtOs) with the approximation In (I + a) -  a -  a2/2, a simple iterative 
approximation for the MLE which is also asymptotically consistent is given in 
Theorem 2.5 [KaC83].

Theorem 2.5 [KaC83]: The estimates 6 and p, maximizing (2.73) using 
the above approximation for In (I  + a), are obtained as the limits of 0k, pk 
defined by r

Gtf l = ( P - - ^ Y )  1 Cr  -  — T) k =  0, 1 ,2 , 
Pk Pk

(2.74)

where

Pt — « (gs ® kzs) k -  0, I, 2,
N  * e S

V = X  W
SG S

T  =  X  z sSs 
se S

R = Z  cs
S € S

m x m matrix, 

m x I vector,

m x I vector,

(2.75)

(2.76)

(2.77)

(2.78)
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E S sS1
-S'

-iSv-S m x m matrix, (2.79)

Cs = [ c o s ^ - ( ( s  -  D t r ) ,  r e r f i ,  I = (1,1) mx T vector, (2.80) 

Ss = [sin-— -((s -  I )1 r ) ,  r e  Tj]1, 1 =  (1,1) m x I vector, (2.81)
i v ; %  y ,V'.,.;.... ; ■ , : y V ;yy-V;H:\y:' ,

arid z(-) as in (2,69). Q

The initial values, 0O and p0 are the least square estimates in (2.67 -
2.68).

2.4. Summary

In this chapter we studied recent progress in random field theory which 
has been used in computer vision. It has been shown that in order to use a 
random field m odel in the analysis of an image, we need tp chose a specific 
mpdel (e.g. simultaneous or Gibbs-Markov), then we need to specify 
(estimate) the order of that model and its parameters (coefficients). Both of 
these issues were studied for the Gibbs-Markov and the Simultaneous 
random fields. We will use the results of this chapter in our algorithms for 
!triage segmentation and boundary estimation.



CHAPTER 3
REGION.BASED SEGMENTATION

3.1. Introduction

In this chapter we develop a statistical approach to image segmentation 
for images that can be adequately described by the random field models of
Chapter 2. These images include textures of fine structure (microtextures) or 
of regular (periodic) placement structure (e.g. checker board textures). The 
observed image process G is modeled as a composite of two random 
processes, a high level process Ga and a low level process Gy that is, 
G = (G ^ G i) .  Each of the three processes is a random field, and all are
defined on the same lattice S. The high level process (labeling or coloring 
process) G- is used to characterize the spatial clustering of pixels into regions. 
The type of information it reflects pertains to size, shape, orientation, and 
frequency of regions in the scene. It also reflects spatial continuity of regions, 
that is, if a pixel belongs to a certain region type then the neighboring pixels 
belong to the same region type with high probability. The low level process 
(pixel process) G1 simply describes the statistical dependence of pixel gray 
level values in each region.

Let the num ber of regions in the scene be M, the number of possible 
gray levels be q, and consider a square lattice 
S = {s = (x,y): x,y e [0, N— 1]}. We will consider a square N x N lattice 
only for convenience; the treatment to follow is valid for any rectangular 
lattice. The processes Ga and Gf are discrete parameter random fields, and 
their state spaces are defined as follows:

S a = {$a: $Ae [0, qi- l ] } .  (3.1)

S r = [0, q2— 1]}. (3.2)

We will consider the most general case where the two processes are defined 
on the samb state space, that is, we assume qj = q2.



The high level process can be described as follows: For each pixel 
s € S, g^fs) = k denotes the fact that pixel s in the realization gh belongs to 
region type k e [ I ,M]. In other words, the realization g* is a partition of S 
into M regions. Each region type can, of course, occur in more than one pixel 
location Within the lattice S. For example, a Landsat image can consist of 
numerous areas of wheat all characterized by the single region type wheat

The observed image g can now be described as follows: Consider a 
region type k. The gray level value at pixel s e S of the observed image g
equals that of region type k, that is,

.

■ g(s) =VgHs) if gA(s) -  k, for all k e [1,M] and all s e S, (3.3)

where g *(*) denotes the gray levels of the region type k. In other words, for 
each configuration G e Q ,  realizations g* for the scene and 
gz = {g :̂ k e [ 1,M ]} for the regions are specified. The realization g = ( g*, g7) 
is specified as fbllowst At each pixel s, g(s) is the value of the region 
specified by gA(s). Figure 3;1 illustrates the above setup. In this figure we 
assume that the observed image consists of a number of regions^ each can be 
described by the random field models of Chapter 2.

In this chapter we are going to consider textured regions. That is, we 
assume that the scene consists of a number of textured regions. The 
segmentation problem can be stated as follows: Given a realization g qf a 
textured image, determine the high level realization g* that produced g. 
Since g* is not observed, the goal is to determine an estimate Qh based on the 
observation g.

A possible segmentation criterion can be the maximum a posteriori 
estimation (MAP) by which the high level configuration that has the overall 
maximum probability, given the observation g, is obtained. A second possible 
criterion is to maximize the a posterior marginal probability at each pixel, that 
is, obtain a classification of each individual pixel that has maximum 
probability, given the observation g. The MAP setup is fundamental; it is, 
however, cpmputatiorially extensive. Two well known studies of MAP 
segmeritation are Geman and co-workers (e.g. [GeG86], [GeG87] and 
[Gra87]j and Derin and Elliott (e.g. [DeE87] and [LaD89]). In these 
studies, stochastic relaxation by simulated annealing (SA) and dynamic
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. Figure 3.1. An illustration of the high level and low level processes 
xi, The scene is assumed to be formed of a six-different reeions. ' 

e six-labels (colors) are shown on the right (adopted from [Bes86]).
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programming were used to solve the MAP segmentation problem, as well as 
the recently proposed deterministic iterated conditional mode (ICM) 
optimization approach of Besag [Bes86].

The MAP segmentation involves the determination of g* that maximizes 

PCD* =  g^lG = g) with respect to g \  By Bayes’s rule,

P(G‘ = g ‘ IG= g ) =  P(G = glGA = gA)p (G /‘ = §h)

P ( G = g )
(3.4)

Since the denominator o f (3.4) does not affect the optimization, the MAP 
segmentation can be obtained, equivalently, by maximizing the numerator of 
(3.4) dr its natural logarithm, that is, we need to find .g* which maximizes

T (G ,G ^  -  M  P (G  = glG* = £ )  + In V iG h -  g*). (3.5)

The first term of (3.5) is the likelihood due to the texture information and 
the second term is due to th® high level process. The optimization in (3.5) is 
to be done over a space of possible image cbnfigutations. We will discuss 
Optimizatioh methods later, but first we will describe the random fields Gh 
and G*.

3.2, Image Modeling ■

For the MAP approach to be analytically tractable, an exponential form 
for the quantities P (G  = "glG* = g*) and P (G A = g*) is necessary. In the 
studies on image modeling by Kashyap and co-workers, the simultaneous and 
conditional Markov random field models have been shown to be adequate for 
the analysis of various types of textures (e.g. [Kas81], [KaC83], [KaK86], 
and [KaE89]). Various texture configurations can be easily generated using 
the Kashyap algorithm [Kas81], which requires only deterministic calculations 
(the discrete Fourier transforms). This is unlike the stochastic techniques 
such as MOnto Carlo simulations [HaH64] or the Gibbs sampler [GeG84]. On 
the other band, in the studies by Geman and co-workers (e.g. [GeG87] and 
[Gra87]) and Derih and Elliott [DeE87] on MAP segmentation, Gibbs- 
Markov random fields have been shown to be adequate for representing the 
high level process Gh.



In this chapter we will use a simultaneous random field model for the 
observed image (to obtain the quantity P ( G =  glG^ — g*)), and a second- 
order Gibbs-Markov random field for the high level process (to obtain the 

quantity P (G a = g*).) -'These choices will be shown to be convenient for the 
analysis as well as for the implementation Of the MAP algorithm.

3.2.1. The Region (Low Level) Process

Let the observed image g be formed of M different textures. Given the 
actual scene (high level process Gh), the observed image process becomes 
exactly the low level process, that is,

P ( G =  glGA = gA) = p (G , = g/) .  (3.6)

We will use an SAR model (2.55) for the M textures, that is,

G4s = £  04rG4(s©r).+,V Ws, for all s e Sk and k € [1,M], (3.7)
r e rp

where G4s is the random variable at site (pixel location) s in the k th texture, 
{04j |  is the set of parameters for the Jcth texture, Ws is the Gaussian 
innovation with zero mean and unit variance, pk is the unknown parameter 

that represents the actual noise variance, and T}* is the neighbor system of 
the SAR model over region type k.

To simplify the notation, we make the following assumptions:
1. The support Sk of the region (texture) k is a torus, that is, the toroidal 
representation (2.35)-(’2.37) Js  assumed to hold over each region.
2. All regions are adequately modeled by an SAR model defined on the same 
neighbor system tj, that is,

Tl4 = Tj for all k € [I ,M].

3. Given the high level process G^, the probability distribution 
P (G  -  glG4 #  g*) = P (G 1 = gO can be written in the following factorized 
form:' -

M
p ( g ,>= i )  = n  p ( g 4 = g4).

' k -  I
(3.8)



The first assumption will not, in general, hold except for the special case 
o f large rectangular lattices, that is, if the supports Sk, k e [ l , M ]  are 
rectangular with large extents. This assumption simplifies the analysis. The 
second assumption is not critical and can be easily relaxed especially for 
supervised region segmentation, that is, when the parameters of each region 
are known a priori by the segmentation algorithm. The third assumption is 
very critical to our analysis and is quite reasonable except at the boundaries 
betiveen different regions.

Now by the first assumption, we can represent the SAR model (3.3) for 
region k as in (2.56b), that is,

k e  [1,M1, (3.9)

where B lk is a block circulant matrix of size Nk x Nk. Inherent in the above 
representation is the assumption that a region k is defined on a square lattice 
Sk {s = (x,y); x,y e [0,Nk- l ] } .

From (3.8) and the likelihood equations in (2.70)-(2.73), it is straight
forward that the first term in (3.5) can be written as follows:

' ' ;̂ F ( G  = ;,'glCr* = g*) = In PCG1= g1)

1
2

2

2  { 2  ( i  -  ( e ' ‘) 'W )  -  - r - f c  (2>tpk)
I s e Sk 

2 P k 8 6  Sk
(3.10)

where 0^* is the parameter vector for the SAR model on region k, and zj* and
I  • •• ■

<bs* are as defined in (2.69) and (2.72), respectively.lrS

3.2,2, The Scene (High Level) Process

As we indicated before, the process Gh will be modeled by a Gibbs- 
Markov random field. The probability distribution is given by

' .e -U (g * ):^^y
PC*(G‘ = 8*) (3.11)

where Ufg*) is the energy function and Zh is the normalization function. (See



(2.43)-(2.45).) The model in (3.11) has been used in various studies in MAP 
segmentation. Geman et al. [GeG87] used a first-order Ising model (2.46) 
while Derin and Elliott [DeE87] used a second- order Gibbs-Markov model 
with pair clique potentials, that is, only parameters of the horizontal, vertical, 
and the two diagonal cliques were considered. A second order Gibbs-Markov 
model was also used by Besag [Bes86] (see also [SiC88] and [B0L 88]). We 
will use a similar model to that in Derin and Elliott [DeE87], for its 
convenience to recursive calculations. We will make the following 
assumption concerning the high level process:

P ( G * =  g*) *  T I P (G ft = S ^ G ft = g ft, t  e  r ^ ) ,  (3.12)
S 6  S ■■■■'

where t]h is the second-order neighborhood in (2.21a).

The energy function in (3.11) will be expressed as

UCgft) = £  VcCgft), ^  (3.13)
c e  C

where VcCgft) are the clique potentials defined as follows [DeE87J:

V ^gft) = -
p if g^  = g*r and s,r s  c 
P otherwise, .(3.14);

where, again, we consider only pair cliques. The parameter j3 is positive, so 
that two neighboring pixels are more likely to belong to the same class 
(region) than to different classes. Increasing p has the effect o f increasing 
the size of the regions and smoothing their boundaries.

Now, after taking the natural logarithm of the two sides in (3.12) and 
using (3.13), we obtain

ZnP(Gft= ^  = - X V cCgft) - Z n Z ft (X lS)
C € C

3.3. The MAP Algorithm

Using (3.10) and (3.15) we can now write the MAP equation (3.5) as 
follows:

T (G ,G ft) = Zn P(G  = glGft = g*) + Zn P (G ft=  gft)

= S  { I  / « ( i - .-(e4)'*,4) -  ^ f e ( 2,tpt)
k = I s e Sk Z  ' .



■ £ - i  g i * - ( e 4) ^ ' }
2PkseSk

X  VcCĝ ) -  /rt ZA.
c e  C

(3.16)

In order to simplify the formulations, we will make the following 
noncritical assumption: Assume that the parameter pk is independent of k, 
that is, pk -  p for all the SAR models over the regions k. Hence, we can 
write

X  —-—In (2 Jt pk) = K0 In 2izp, 
k= I 2

(3.17)

where K0 is constant, and the parameter p can be the average of all the 

values (pk j of different regions. Now we can write (3.16) in the following 
form: '

F (G  Ga) = X  X fkS “  X Vc(gA) - ( /n  Za + K0 In 2icp ) , (3.18)
k = Is e Sk \  c e  C

■ where ■

^ k = { f c ( l  - ( e 4) 1̂ ) -  ( S 4) V )  }• <3.19)

A  recursive formula for (3.18) can be written as follows: 

r<°>(G,GA) = -  'In X Za + ^ j -  In 2k p) (3.20)

' M 1 ■:
r<">(G,GA) =

k = l s e Sw») c e C n - 1,«

where

^  = {s = gh(iny = k, I <; i <: N). (3.22)

C5rt-l)’n = {c: c is a clique with pixels only

in column n or colum ns/t-1  and n }. (3.23)

It is easy to show that r (N)(G,GA) = F(G,Ga) as in (3.18). Hence, it is 
possible to calculate the MAP segmentation (3.16) recursively.
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A recursive formulation that used Gibbs-Markov random field models 
for both the high level and the low level processes was obtained by Derin and 
Elfiott [DeE87]. The formulation in (3.18)-(3.23) is different from that of 
[DeE87] in a number of respects. First, an SAR model is used for the low 
level process which has been shown to be adequate for the synthesis and the 
analysis of various natural textures. The parameters of the model can be 
estiihated on line without too much uncertainty as in the case of the Gibbs- 
Markqv model. Second, the order of the SAR model is a parameter in the 
formulation which adds to the flexibility of the algorithm for various types of 
textures (one should not expect that various textures in a scene would be 
represented by models of similar orders). Third, the Derin-Elliott algorithm is 
based on a number pf assumptions that will not, in general, hold in practice. 
In particular, there is no evidence that second-order Gibbs-Markoy random 
fields with only pair cliques would represent natural textures. Finally, the 
parameter estimation procedure suggested in [DeE87] can only be adequate 
for images with very small number of gray levels, and is not computationally 
feasible for large number of textures in the scene,

In order to evaluate the MAP segmentation, we need to know (estimate)
all the parameters in (3.18) and (3.19). That is, we need to estimate the 

M

parameters (Oi* } , p, the number of regions M, the clique parameter P in

(3.14), and we need to calculate the local characteristics Zh.

From (3.20) and (3.21), we can argue that the local characteristics is not 
actually affecting the segmentation results and can be ignored. Therefore5 we 
will assume that the initial condition is zero, that is, T (0)(G ,G a) — 0. Hence,
the only requirements for the segmentation algorithm, as defined by (3.20)-

Mr''
(3.23), are the parameters {&lt } , p, and M. In this thesis, we will separate

k= I ;
the parameter estimation problem from the segmentation process. That is, 
the estimation will be obtained in advance (off line), and the segmentation 
algorithm will be provided with these estimates.

The algorithm in (3.20)-(3.23) could be carried out by a dynamic 
programming algorithm, for example. Since the size of the state space is too 
large (Mn2), execution time will be enormous for any practical size image.



We have used, instead, the following procedure: 

Algorithm:

Step 0: Obtain an estimate of the parameters discussed above. In our 
experiments We used first-, second-, and third-order SAR models.

Step I: Assume zero initial conditions and carry out one iteration in (3.21) as 
follows:

(i) From the knowledge of the SAR model order, the vectors Os and 
zs in (3.16) are evaluated over strips of data. For example, in the first- 
and seeod-order SAR models the strips will be formed of 3-rows.

(ii) The quantity F(-) is evaluated on 3 x 3 blocks of data, in each 
strip, for the first- and Secddi-Order order SAR models and on 5 x 5 
blocks of data for the third Order SAR model, and so on. From Figure
2.3, we need a block size of 5 x 5  for up to seventh-order SAR 
models (in this case, the strips in (i) will be five rows.) The pixel in 
the Center of the block is classified as to belong to region type k if the 
value of T(-) is maximum when evaluated by the parameters of region 
k. The procedure is continued to obtain one line of labeling which will 
be used as the initial condition for the following lines.

(iii) Increment the strips by a new row of data and obtain a line of 
labeling as in (ii).

Step 2: Stop when a whole cycle is performed, that is, when the last strip is 
reached.

Figure 3.2 is a flowchart for the steps used in executing the algorithm. 
The algorithm has been used on various synthesistic textures as well as real 
textured scenes. We now examine its performance.
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Figure 3.2. A flow chart of the MAP segmentation algorithm.
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3.4. Texture SimuIation

There have been a variety of approaches to the generation of synthetic- 
texture images [Har86]. We are mainly interested in statistical approachs 
based on Gibbs-Markov random field (GMRF) models and simultaneous 
autoregressive (SAR) models. Both models have been used in generating 
various textural patterns (e.g. [Kas81], [CrJ83], [KaC83], [GeG86], and 
[DeE87])> In this thesis, we have used the Kashyap algorithm for texture 
synthesis [Kas81J. The Appendix outlines the Kashyap algorithm for 
generating configuations from Conditional Markov models (a subclass of 
GMRF models) and SAR random field models.

In the segmentation algorithm we described above, we used SAR models 
for the low level process. We will generate few texture patterns using SAR 
models of different orders. The convention used for the vector 0 for up to

the third-order SAR is given by the following equation (see Figures 2.1 and
2.2): , Y YY Y Y '  Y'Y ■ Y Y Y

6 =
. +■...

Ie1 1 e2 1 O3J (3.24)
Y,., V,

where :\ Y ‘
I •

'' «. Y
e i  = B ( x + 1 ,> ) ,  B ( x . j ^  i ) ,  B (x , ) i+ 1) ] (3.25)

B2 - f 1 , y - 1 ) ’ ■ l , y + 1)* B ( X - I f)I+1 ) .  B (x + 1 , ) , - 1 ) ] (3.26)

B3 = [ B ( x - 2 , ) i ) >  B ( x+ 2 , ) i)* B (x f) i - 2)> B ( ^ y f 2 ) ]  , (3.27)

where t stands for vector transposition. In the above equations, [B1] is the 
set of coefficients for the first-order SAR, [B1 I B2] is the set of coefficients 

for the second-order SAR, and [B1 I B2 I B3] are the third-order SAR 
coefficients.

Figure 3.3 shows sixteen (64 x 64) different texture configurations 
generated by the SAR model. The parameters used for these configurations 
are shown in Table 3.1. We have used up to third-order SAR models. The 
histograms for the configurations in Figure 3.3 are plotted in Figure 3.4. It is 
evident from these figures that the SAR model can in fact be used in 
generating configuartions corresponding to various microtextures.
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Figure 3.3. Sixteen 64 x 64 artificial textures from the SAR model.
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Table 3.1. Model coefficients for Figure 3.3
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3.4,1. F ittingA n SAR Model to N atural Textures

Figure 3.5 shows four (256 x 256) natural textural images (cork, gems, 
peb, and woody). The histograms are plotted in Figure 3.6. We analyzed 
these four textures (64 x 64 portions) using SAR-models up to the third 
order. Each column in Figure 3.7 represents an original image (top) and the 
first-y second-, and third-order (bottom) SAR-model fit. The model 
coefficients for each case are shown in Table 3.2. The top most element in 
Table 3.2 is the parameter p in (2.55), and the other values are those of the 
parameter {0r, r € Tj}.

The criterion used to test the quality of the fit is visual similarity. From 
Figure 3.5, it is seen that a third-order SAR fit resembles reasonably well the 
first image (woody), a second-order SAR fit is reasonable of the second 
image (gems), a third-order SAR fit is reasonable for the third image (peb), 
and a first-order SAR fit is reasonable for the fourth image (cork). The 
parameters of the model were estimated using equations (2.74-2.81).

Although the results of the model fitting to natural textures does not, in 
general,( produce a ciqse replica of the actual image, an accurate segmentation 
results can be obtained. In the segmentation algorithm, the parameter set

{0** } plays a key role in the accuracy of the resulting segmentation. In the
k= I y .;-  s;:

!study by Kashyap and Khotanzad [KaK86] on texture classifications using 

similar models, features based on the parameters {S** } where shown to be
k = l

robust for texture classification. In our experiments on synthetic texture 
segmentation, the generated patterns (Figure 3.3) have very similar 
histograms (Figure 3.4), yet very accurate segmentation was obtained as we 
will show next. We should also point out that a similar conclusion was 
obtained by Geman et al. [GeG87] in their study on texture segmentation 
using Gibbs-Markov models for both the high level and the low level 
processes. In that study, second-order Gibbs-Markov models with pair 
cliques were used, and the MAP estimates were approximated by using 
simulated annealing.



Figure 3.5. Four natural textures. 
(Upper left, Cork; Upper right. G em s;  
Lower left. Peb; Lower right. W oody.)



32 64 96 128 160 192 224 256 0 32 64 96 128 160 192 224 236

v v v ; v  ; V ^  v - \  ^ v v - ?  V - - :v v . .

. V ■ ■ V . .. ■ ./ V v  \  v  ' i  . v V V v '  •
400 , 400.

I 300 . v ~ V V ' ; V ; V  ;■ VV:'; ; V :
300.

200. ■ ■ ■■' .■■■-■: . '  V  ' ■ ■
200.

100. I I4-I i l. I AI i J  I I 100.

v  0 .
0 Si 64 96 IJt 160 192 224 256 0 32 64 96 12t 160 192 224 256

Figure 3.6. The gray level histograms for the textures in Figure 3.5.



Figure 3.7. Fitting SAR m odels to natural textures. 
(First column: Cork; Second column: G em s;  
Third column, Peb; Fourth Column, W oody.)



Table 3.2. Model coefficients for Figure 3.7.

First-order SAR

116.62 487.72 2474.14 555.3286
0.1232, 0.2366 0.1359 0.2479
0.1232 0.2366 0.1359 0.2479
0.3084 6.2022 6^18ii 0.2395

; 0.3084 0.2022 0.1816 0.2395
Second-order SAR

72.223 146.85 678.29 394.3153
-0.0739 0.0468 -0.0202 0.1277
-0.0739 0.0468 ; -0.0202 0.1277
0.2618 -0.0074 0.0327 0.1160
0.2618 -0.0074 0.0327 0.1160
0.1407 0.2619 0.2895 0.0784
0.1407 0.2619 0.2895 0.0784
0.1911 0.2176 0.2350 0.2210
0.1911 0.2176 0.2350 0.2210

Third-order SAR
64.52 150.627 695.29 391.4627

-0.0376 0.0342 -0.0246 0.1354
-0.0376 0.0342 -0.0246 0.1354
0.1664 -0.0163 0.0312 0.1104
0.1664 -0.0163 0.0312 0.1104
0.1095 0.2293 0.2700 0.0824
0.1095 0.2293 0.2700 0.0824
0.1549 0.1802 0.2184 0.2237
0.1549 0.1802 0.2184 0.2237
-0.0473 0.0494 0.0373 -0.0148
-0.0473 0.0494 0.0373 -0.0148
0.1706 0.0488 0.0124 0.0041
0.1706 0.0488 0.0124 0.0041



3.5. Experimental Results

We now examine the results of the segmentation algorithm on synthetic
as well as natural textures. In all of the experiments reported in this chapter, 
we fixed the value of the parameter P in (3.14) to be 1.25.

3 .5 .1 .Segmentation of SyntheticTextures

The segmentation algorithm in Section 3.3 was applied to various 
combinations of the synthetic textures shown in Figure 3.3. L et’s index these 
textures according to their rows and columns location. For example, the top 
left hand texture wifi denoted by T 1I and the bottom right hand texture will 
be denoted by T44.

Figure 3 8a is a 128 x 128 image that was constructed from the following 
textures: T 12 (upper left), Tjj1- (upper right), T23 (lower left), T33 (lower 
right) and the texture in the middle was constructed from T 11. From Table
3.1, the orders of the SAR models used were: second-, first-, second-, firstr, 
and second-order, respectively. Hence, the strips used in the MAF algorithm 
were formed of three rows, and pixel classification was performed on 3 x 3 
blocks. Figure 3.8b is the resulting’ coloring (classification) from the MAPi 
algorithm. The coloring was accurate except at the boundaries between 
different textures. The boundary effect is most severe at boundaries between 
V arioustex tu resand tex tu reT 11.

Figure 3.9a is also a 128 x 128 image that was constructed from the 
following textures: T 13 (upper left), T23 (upper right), T31 (lower left), T34 
(lower right) and the texture in the middle was constructed from T33. From 
Table 3.1, all textures were generated by a second-order SAR model, except
T33 that was generated by first-order model. The strips used in the MAP 
algorithm were formed of three rows, and pixel classification was performed 
on 3 x 3 blocks. Figure 3.9b is the resulting coloring (classification) from the 
MAP algorithm. A s in Figure 3.8, the coloring was accurate except at the 
boundaries between different textures. The boundary effect is most severe at
boundaries between various textures and texture T33.

Finally, the 128 x 128 image in Figure 3.10a was constructed from the 
following textures: T33 (upper left), T32 (upper right), T31 (lower left), T42



(lower right) arid the texture in the middle was constructed from T 14. From
Table 3.1, orders of the SAR model used were: second-, third-, second-, 
third-, and second-order, respectively. The strips used in the MAP algorithm 
were formed of three rows, and pixel classification wats performed on 4 x 4
blocks. Figure 3.9b is the resulting coloring (classification) from the MAP 
algorithm, Again, the coloring was accurate except at the boundaries between 
different textures, and, in particular, at the boundaries of texture T 14.

The above results clearly indicate that the MAP algorithm performs well 
on synthestic textures except at the nonuniform boundaries between various 
textures where the pixel’s neighborhood is not well defined. These results

indicate the importance of the parameters set {0^ } , p, for the segmentation

algorithm. Almost no change in the classification was observed when we 
varied the value of the parameter P in (3.14). Th is might be due to the fact 
that the textures generated do npt have macro-structure within them. That is, 
the textures have a large degree of micro textural content.

It is also important to notice that in spite of the fact that the histograms 
of all the images in Figure 3.3 are similar, yet the segmentation algorithm 
was able to correctly classify the pixels of each region accurately. This is 
indeed the most significant advantage Of region-based segmentation over 
edge -based se gm en tation th at will be ex am ined in Chapters 4 and 5.

Firially, Figure 3.11a shows an image that was formed by adding (pixel
by pixel) a synthestic texture (similar to T23» except the size is 256 x 256) to 
an image that was formed from five rectangular regions with gray levels 
(starting from upper left to lower right) of 50, 100, 150, 200, respectively. 
The gray Ieyei histogram of the texture image is centered around a gray level 
value of 80 (very similar to the histogram in the second row and thrid
column of Figure 3.4), and the addition of the two images resulted in a gray 
level distribution that is v/ell within the 0-255 range with very few pixels th at 
have a gray level outside this range. The purpose of running this experiment 
is test the sensitivity of the MAP algorithm to regions which have a nearly 
constant gray level distribution. Figure 3.11b shows the classification results.
Oh the rectangular regions, less accurate classification was obtained especially 
on the triangles with higher gray levels. Within the texture itself, better
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(b) M A P coloring results.

Figure 3.8. Segmentation of synthetic textures.
T j2(Upper left), T2 j ( upper right), T23 ( lower left)
-.T33ClowerTight), and T u (middle) in Figure 3.3.
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(a) Original textures.

(b) M AP coloring results.

Figure 3.9. Segmentation of synthetic textures.
T 13Cupper left), T23Cupper right), T31 (lower left),
T 34Clower right), and T33Cmiddle) in Figure 3.3.



(a) Original textures.

(b) M A P coloring results.

Figure 3.10. Segmentation Of synthetic textures.
T33Cupper left), T32(upper right), T31 (lower left)

T42Oower right), and T 14(middle) in Figure 3.3.



Figure 3.11. Segmeniation o f  synthetic textures.
Texture T23 on top o f  rectangles with constant gray level.

(Upper left: original rectangles, upper right: original texture, 
lower left: texture superimposed on rectangles, lower right: M A P coloring)



(a) Original textures.

(b) M A P coloring results.

Figure 3.12. Segmentation o f  natural textures. 
(W oody and G em s textures on Figure 3.5.)



Figure 3.13. Segmentation of natural textures.
Cork (upper left), Gems (upper right), Peb (lower left), 

Cork (lower right), Woody (middle) on Figure 3.5.



(fa) M A P  Coloring results.

Figure 3.14. Segm entation o f  natural textures,
Cork ( left) ,  Pefa (right), W oody (middle) on Figure 3.5,



classes in FigUre 3.14 than in Figure 3.13. It is expected that the algorithm 
will perform better with fewer classes than with large number of classes.

Frpiii Figure 3.6, the histograms of the upper left hand and lower left 
hand textures in Figure 3.5 are quite similar. Also the histograms in the 
upper right hand and the lower right hand are similar. Hence our 
experimentation with synthestic and natural textures suggests that the MAP 
algorithm described in this chapter can indeed be used to classify various 
textures. It is to be emphasized, however, that only with images of 
micro textural content that the MAP algorithm performs best. Based on the 
results other researchers have shown (e.g. [GeG87], [DeE87], [BoL89]), the 
results of the MAP algorithm developed here is more accurate and much 
faster than was reported in [DeE87].

3.6. Summary

In this chapter we examined the region segmentation problem and 
introduced a new algorithm for MAP segmentation. A recursive 
implementation for the algorithm was outlined. Results of the algorithm on 
various synthestic and natural textures clearly indicate the effectiveness of the 
approach to texture segmentation. The simulation results in this chapter were 
obtained by the Kashyap algorithm presented in the Appendix.



CHAPTER 4
EDGE-BASED SEGMENTATION:

I. OPTIM AL EDGE ENHANCEMENT

ClV Introduction

As indicated in Chapter I, edge detection is a two-stage process: edge 
enhancement followed by edge linking. The edge enhancement stage 
specifically defines the edge content of the image. The enhanced edges are 
obtained following a specific protocol (e.g. optimality criterion in optimal 
edge enhancement filters). This protocol, in essence, provides a code for 
what is considered to be an edge. The second stage, edge linking, uses the 
edge information provided by the enhancement step to create a one-bit 
representation for the boundaries of objects in the image. The methods used 
to enhance the edges also provide a clue for linking the edges. For example, 
in the V 2G operator the location of zero-crossings is the decoding method 
used to link the edges. Similarly, in the V G operator the points of maximum 
gradient provide the decoding used to link the edges.

As we pointed out in Chapter I, no existing technique can provide 
accurate edge enhancement under all circumstances. Also, no technique 
brings about a satisfactory enhancement for all types of edges. Thus the 
linking stage is not at all trivial. In fact, a good edge linking technique should 
provide correction to the errors introduced by the enhancement step. The 
edge linking stage requires the knowledge of the technique used to enhance 
the edges (i.e. whether it is a Laplacian operator or a gradient operator) as 
well as the types of errors that are introduced by that technique. It is hoped 
that such knowledge can be used quantitatively to obtain the object 
boundaries accurately within a small probability of error.

The edge detection system presented here dictates the use of model- 
based techniques in both stages of the system. Due to the known problems 
with classic edge enhancement techniques (e.g. gradient operators, template



matching, etc ), attention has been directed toward other methods derived 
from optimality constraints.

Let us define the following terms: In a certain configuration Cd e £2, the 
intensity function (gray level distribution) defined on the support region of 
image is essentially a deterministic function. In the continuous spatial 
domain, the intensity function of the input image (the observed image) is 
denoted by f(x,y) and the desired output image is denoted by g(x,y). It is 
assumed that g(x,y) is the response of a continuous linear system (filter) 
whose impulse response is denoted by h(x,y). The corresponding discrete 
representation is denoted by f(m ,n), g(m,n), and h(m ,n), respectively. 
When the filter h (v )  is given by the Gaussian kernel, it is distinguished by 
the script G. In other words, the filter is denoted by hG( v ) .  In the spatial 
frequency domain, the two-dimensional Fourier transforms for the above 
quantities are denoted by F (v ,p ), H (v ,|i), and G (v ,|i) , respectively. Finally, 
quite often results will be proved for the continuous one-dimensional case for 
simplicity and where two-dimensional generalization is a trivial extension. 
Similar notations are followed for either case. We stress that the sample 
functions f(-) and g(*) are deterministic for any image configuration.

Figure 4.1 is a block diagram of the edge enhancement process, it 
illustrates the input-output terminology used in this chapter.

4.2. M aximum Energy Filters for Step Edges

Maximum energy filters applied to enhance step edges were first 
introduced by Dickey and Shanmugam [DiS77]. A detailed analysis was also 
given in Shanmugam et al. [ShD79]. Corrections to the original derivation 
were later provided by Lunscher [Lun83]. We will examine the maximum 
energy filter and demonstrate its relationship to the Mar-Hildreth V 2G 
operator [MaH80] as well as to the Canny V G operator [Can83].

In the one-dimensional case (the two-dimensional case follow easily), 
this filter can be derived as follows: Let the input signal (image) be f(x), the 
output signal be g(x), and the filter impulse response be h(x). Let F(v), 
G (v), and H(v) be the corresponding Fourier transforms. Let the edge 
width, the small region over which a distinct intensity change occurs with 
respect to surrounding parts of the image, be t .  This is also referred to as
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Input image EdgeEnhancementfilter Edge Enhanced image

f(-)
h (-)

g ( 0

Figure 4.1. A block diagram of the edge enhancem ent process.



the edge resolution. We will assume that the edge is ideally centered at the 
origin in the spatial domain and that the important edge information is within 
some finite frequency range, v € [-W , W]. Let the input image be a unit 
step function, that is, f(x) = u(x). The optimization problem is: Choose 
H(v) which maximizes

J g j g ( K ) I ^ X  

L 00 1S(X)!2 dx
(4.1)

with the constraints

I
F<v) = ^ + J s i v h

(4.2a)

G (V )-H (V )F (V ), (4.2b)

H(v) = 0 for Ivl > W, and v = 0. (4.2c)

Equation (4.2a) is the Fourier transform of a step edge, and (4.2b) implies 
that the desired filter is to be linear and space-invariant. Equation (4,2c) 
implies that the desired H(-) is band limited and has a zero dc response (i.e. 
is less sensitive to constant or slowly varying input.) The required solution is 
based on the properties of prolate spheroidal functions [S1P61].

The pertinent properties of the prolate spheroidal wave functions are the 
following. Given any t  > 0 and any W > 0, we can find a countably infinite 
set of real functions X|/q(x), Vi (x), v 2(x)» •"* * and a set of real positive 
numbers

'. ■ . Xq ^ ifX J > X2 ^ : ... .

with the following properties:

OO

J  ooV i(X ) Vj(x)dx = '
O for i * j
I i -  j-

(4.3)

In the interval x/2< x < x/2, the \|/j(x) are orthogonal and complete in L2T/2 
subspace, that is,

J_T/2Yi(x) Vj(x)dx = •

and for a general x (real, or complex),

O f o r i #  j 
Xi i = j (4,4)



^nYn(X)
c t/2 sinW(x -  s) , SJ 
J _ T,0 „N ¥n(s)ds, n 0, I, 2, .. (4.5)-t/2 JC (x -  s)

In the above equation, the quantities XjzrS and the X's are functions of the 
product tW [S1P61]. This dependence can be made explicit if we write

^ i=  ^i(c), and

Xjzi ( X )  = XJZi(C j X ) , i = 0, I, 2........

where 2c = tW . In the above equation, Xjzi(CjX) is a function of x that 
depends on the product of the spatial and frequency resolutions of the step 
edge.

4.2.1. Rotation Invariant Filter

Consider the following constraint on H (v ):

H(V) = H (-v ) . : . ‘ (4.6)

This constraint restricts the desired H( ) to be even (i.e. rotation-invariant in 
the two-dimensional case). From (4.2a), F(v) is an odd function, hence 
G(v) is odd; therefore, the inverse Fourier transform g(x) must be an odd 
function.

Since the odd-numbered prolate spheroidal wave functions are odd, the 
maximum energy solution can be written in the following form:

g(x) = £  a„ xjzn(c,x), (4.7)
n(odd)

where xjzn(c,x) is the nth prolate spheroidal functions of order zero [S1P61]. It 
can be obtained (theoretically) from the integral in (4.5) if A,n(c) is known. 
Substituting (4.7) into (4.1) and using the properties (4.3 - 4.5), y can be 
written as

Y =
Z IaJH

n(odd)

Z IaJ2
n(odd)

Ti

(4.8)

Now, since the values Xn, n = I, 2, 3,... are positive and of decreasing 
values, Y is bounded below by zero and above by X1, that is,



0< Y S
*1 Z  Ia J 2

Ii(Qdd)M

2  K ' 2
n(odd)

(4.9)

Hence, the maximum energy is obtained when a„ = O for n > I; thus, the 
eigenvalue X1 is the maximum y for a specified value of c. Therefore, the 
optimum output will have the following form:

g(x) = ax V1(C5X). (4.10)

Now, H(V) = G (v)/F(v) for step edges is obtained from the Fourier 
transform of Y1(C5X) and (4.2a). It is easy to show that the required filter has 
the following transfer function:

lStepV
k1vVi(c,vx/2W) for Ivl < W 

0 elsewhere

where

(4.11)

(4.12)

In (4.11), observe that the Fourier transform for the function Vi(x) has the 
same form, but x has been replaced by vx/2W.

The function Xjzn(C5X) can be approximated by the following form 
[S1P61]: ''vH -

V Xn(C)
¥ n ( c .x )  = t  \  _5 o n (9 » 2 x /x )  

Un(C)

where
I

[un(c)]2 = J [Son(c,x)]2dx,

(4.13)

(4.14)

and the functions Son(c,x) are orthogonal and is band limited to the interval 
v = (— c,c). An efficient approximation, due to Streifer [Str68], for Son(c,x) 
of the form (4.15):

1/4
Son(C5X) = (^ - )  2_n/2 (n!)~1/2 • exp (- cx2/2) Tn(c1/2x) (4.15)

for Ixl < c- 1/4 and n<< c. Tn(-) is the nth Hermite polynomial defined by 
[Fra81]



dx ; ■

with the recursion formula

Tn(X) fe 2xTn_ 1(x) ^  2(h -  l)T n_2(x).

For example,

T0(x) = I, T 1(X) = 2x, T2(x) = 4x2 -  I, etc.

The approximation to % (•) becomes

T „(x)=  ( - 1 ) ” e*’

Yn(c,x) = -n /2-J Xn(C) r 1/4
(— > 2‘ ”'2 (n!)

. ■ -UnCp)

* exp(- Icx2Ix2) Tn(c1/2 2x/x)

(4.16)

(4.17)

(4.18)

(4.19)

for Ixl < Xe 1/4 
2

For n = I, the function can be obtained by substituting T1(X) = 2x 
into (4.19) which results in

\|/i(c,x) = kx exp(-2cx2/x2), (4.20)

where k is a constant. Now let x = vx/2W in (4.19) and substituting into 
(4.11) gives the asymptotic approximation to the optimal step edge filter in 
the following form

^ k2 v2 ex p (-c4 7 tV )/2 W 2 for Ivl < W
elsewhere (4‘21)

which is strictly valid on Ivl < Wc- 1/4 [ShD79] [Lun83]. The parameter c in 
(4.21) provides a tuning factor for H(-). If c is chosen to be large, edge 
resolution decreases but edge visibility increases (i.e. edges grow thicker) and 
vice versa. For detecting blurred edges, c is chosen so that the edge 
resolution, x, is greater than the width of the blurred edge. The two- 
dimensional form of (4.21) can be easily written as follows:

Hstep(v ,n) =
k (v2 + p 2) exp (- c4jc2(v2 + p 2))/2W 2 for IvI, Ipl < W 
0 / elsewhere *



In their implementation, Shanmugam et al. thresholded the output. The 
results for a step edge were two peaks on either side of a zero-valued valley. 
Because the filter was restricted to be even, the output was odd. Thus 
thresholding is not justified since it ignores the all-important issue of edge 
localization.

The similarity of the filter in (4.21) to the Laplacian of the Gaussian 
filter of Marr and Hildreth [MaH80], the V 2G operator, is evident. In 
[MaH80], edges are allocated at the zero-crossings instead of thresholding the 
output. The exponent of (4.21) clearly is dimensionless, thus the filter is 
invariant to scale transformation (i.e. isotropic).

Figure 4.2 shows the one- and two-dimen sional Laplacian of the 
Gaussian filter.

4.2.2. A Directional F ilter

Now consider the same set of constraints presented in (4.2a - 4.2c). By 
removing constraint (4.6) the filter will not be restricted to be even. The 
bandlimited filter output has the form in (4.7) and 0 < n < <» , that is,

g(*> = £  An Vn(CiX), 
■ n=O

(4.22)

where c is still as in (4.12).

Again the values are positive and of descending order; hence y  in 
(4.1) is bounded above by X0. Thus, the maximum energy solution has the 
form :v

. g(x)  = ao Yo(c,x). (4.23)

Using constraints (4.2a) and (4.2b), the filter H(v) can be obtained as the 
inverse Fourier transform of G (v)/F(v). Using the approximations in (4.18) 
and (4.19), \|/0(c,x) can be written as

Vo(c,x) = Ic1 exp(- 2cx2/ t 2) (4.24)

where Ic1 is a constant. The Fourier transform of (4.24) is

F{\|/0(c ,x )} = Ie1 exp( -  (27tu)2T2/8c). (4.25)
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From (4.2a) and (4.24), after taking the inverse Fourier tran sform, we get 
the filter impulse response in the form

h(x) — k x exp(— x2/2 o 2)

where

a /V 2 W ’
ki2c

(4.26a)

(4.26b)

(4.26c)

The filter in (4.26) is similar to the V Cf operator, which compares 
favorably to the optimal filter for step edge enhancement of Ganny ([Can83],
. [;Qan:8:6 ]).:;v ’

The above treatment shows that the maximum energy filter embodies a 
num ber of edge operators. Hence the optimality of the V 2G operator 
[MaH80] mid the directional V G operator [Can83] can lie explained in terms 
of the maximum energy criterion used in [piS77] and [Sht>79]. The 
relationship between these filters can be used to study the issue of filter 
support in the V 2G an d the V G operators.

Figure 4.3 shows the one- and two-dimensional V G filter. The filter is 
odd symmetric across the origin.

4.2.3. Regularization Filters

The rationale behind the design of the majority of edge enhancement 
operators is that the edge information lies on local maxima of the image 
intensity function. Differentiation is, of course, one of the well known 
optimization techniques used to obtain the location of local maxima. The 
problem with numerical data is that the function is defined only at specific 
locations in the domain of support. Since differentiation does not depend on 
the data continuously, edge enhancement (based on d i^ ren tia tion ) is an ill- 
posed problem in the sense of Hadamard [BeP88]. As a consequence, 
numerical differentiation may not provide a unique solution (edge definition), 
and it may produce an amplification of high frequency noise. To reduce the 
noise effect and to fill-in wherever data are missing or not reliable,
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regularization techniques (filters) are used (e.g. [KaS88], [BeP88])V Hence, 
the purpose of the regularization filters in edge enhancement is to convert the 
ill-posed numerical differentiation problem into a well-posed problem.

The optimum filters we studied previously can be separated into two 
operators: a smoothing operator (filter) followed by a differentiation operator. 
The smoothing filter serves as a regularization filter. The Gaussian filter is 
only one possible Choice from the class of regularization filters, We will 
describe, briefly, a few properties of this class of filters.

Suppose that the filter h(-) can be parameterized by a single parameter p, 
that is, h(x) = h(x,p) for one-dimensional filter, and the parameter p is 
positive (i.e. p > 0.) Let H(v,p) be its Fourier transform. H(v,p) is called a 
regularization filter if it satisfies the following conditions ([TiA77], [T0P86], 
[BaC88], [BeP88]):
(T) H (v,p) is bounded for p > 0 and all v.
(2) H(V,p) is an even function with respect to p, and it is square integrable 
(i.e. H (v,p) € L2 ).
(3) jVH(v,p) e L2.
(4) Iim H(v,p) = 0 for all p > 0.

(5) lim H(v,p)p—»0 : I for all v and, H(y,0) = I for all v.

It is easy to show that the Gaussian filter satisfies all the above 
properties. In this case, the parameter p is simply the standard deviation of 
the Gaussian kernel (i.e. p = a f.) The Gaussian filter is also a low pass filter 
with cutoff frequency which is a function of the standard deviation of the 
filter. The previously examined optimal filters that combine the regularization 
and numerical differentiation processes were based on the maximum energy 
output criterion. Since the edges correspond to high spatial frequencies in the 
image, to avoid a large degree of blur, the Gaussian filter must not indUce 
excessive spectrum alteration.

Results of the regularization theory Suggest that whenever the above 
criterion is met, the actual shape of the filter is not important. This might 
also explain why so many of the edge operators in the literature have a 
sinjilar form, as we pointed out above (see also [BaC88]).



4.3 . Selection of Filter Spatial Support

Edges in real world images are riot necessarily located at abrupt changes 
in intensity (i.eM they are not in the form of ideal step functions). However, 
some insight into the nature of filter spatial support can be gained by using 
step-edge models. Two such models were used by Lunscher arid Beddoes 
[LuB86a] in their study on the V 2G operator. By modeling the edge as an 
ideal step edge blurred by a Gaussian kernel, they were able to derive a 
design criterion for the V 2G operator spatial support in terms of the step- 
edge width, degree of blur, and the signal-to-noise ratio (SNR). We will 
derive a Lunscher-Beddoes type of criterion for the size of the V G operator 
(4.26) using the same edge models in [LuB86a].

4.3.1. Staircase Edges

The edge model used to represent a blurred infinite staircase edge of 
ascending magnitude is:

f(x) = hG(x ,o b) * £  u(x -  nT), (4.27)
Tl = -OQ

where hG(x ,a b) is the Gaussian kernel describing the blur and is defined as

hG(x ,a b)
yj 2 J t a b2

exp(-
2a b2

(4.28)

The response of the V G operator to the edge function in (4.27) is given by 
the following equation:

g(x) = V G * f(x), (4.29a)

that is, ■

g(x) = V Hc (XjOf) * f(x), (4.29b)

= hG(x ,a f) * hG(x ,a b) * £  8 ( x - n T ) ,  (4.29c)

where H0 (X ,af) is the Gaussian kernel with standard deviation Of used to 
smooth the edge before taking the derivative. In (4.29) we used the fact that 
the convolution and differentiation are commutative and that the derivative 
of the step function is the Dirac delta function,



u (x -  nT) = 8( x -  nT ),
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(4.30)

Edges are located at the maximum directional derivative (maximum 
gradient in the two-dimensional case). Taking the derivative of (4.30) and 
setting the result to zero, it is easy to show that the edges are located at 
X = -  nT, n = 0 ,1 2 ,  ,

Edge strength can be evaluated easily by transforming (4.29) into the 
frequency domain. The Fourier transform of the Gaussian pulse is given by

H g ( v) =  e x p ( - 2 jc2G 2V2).

The Fourier transform of (4.29) is

G(v) = exp(27c 2Caf2 + Gb2)v2) • •— X 5(v -  ^ r),

(4.31)

(4.32)

which can be written as

IG (v) = X exp(- 2tc 2(G f2 + Gb2)h2/T 2) • 8(v -  ^ ) .
1 n  =  - o o  A

(4.33)

To compare the results we derived for the V G operator with the V 2G 
results derived in [LuB86a], we define the following parameters:

a  = Gb/G f

P = T/Gf. ■

Thus, (4.32) becomes

(4.34)

(4.34)

G ( v ) =  - J -  £  e x p ( - 2 ) i V ( l  + a 2) /p2) - 8 ( v - -2-). (436)
^ n = — °v - Y •

Recall that the output g(x) results from convolution of the edge 
enhancement filter h(x) = V G and the input signal (image) f(x). Edges are 
allocated at the points of maximum response (i.e., the origin for the ideal 
step-edge model.) Hence, the edge strength can be readily obtained as 
follows:

Ig(O)1 = lL eo G(v)dvl. 

T h is iseasily ev a lu a ted to b e

(4.37)



Ig(O)I I
n

X exp(-2rc2n2(l + a 2)/p2). (4.38)

Due to symmetry of the exponent in (4.38)va; further simplification follows:

2Ig(O)I n [0.5 + X  exp(-27t2n2( l  + ot2)/(52)]. 
P ° f  n = I

(4.39)

The plot of (4.39) vs P and a  is shown in Figure 4.4. The following 
Qieastires can be readily obtained: For small a  (e.g. a <  0.2), the 3dB value 

(be magnitude response is at P = 0.27. For large a, the 3dB value of the 
magaitude response is at a  = 0.51 for P £ 5.5. Outside the 3dB-level region 

re 4.4 (the plateau), the magnitude response decays linearly in dB per 
« , and at a higher rate per decade p. The edges can be separated if

o b < 0.6o f

T £  7.6ob. (4.40)

For negligible blur, edges are separated if T ^ 6 .7of. Comparing with the 
V 2G figures [LuB86a], edges are fully resolved for reasonable blur if

Ob £ 0.51Of ;

T > 5.5ob, (4.41)

and for negligible blur if T ^  2.75of. Hence, the filter spatial support is 
smaller if the directional derivative is used as the criterion for edge 
localization, rather than the zero-crossings criterion. This is in accordance 
with what many authors have found: That the V G operator requires a 
narrower filter and thus provides better spatial localization than the Laplacian 
[BaC88].

4.3.2. Square Wave Edges

The edge model for periodically rising and falling intensity is given by 
the following relation [LuB86a]:

f(x) = hG(x ,o b) * u(x) u(T -  x) * X  8(x -  2nT)
^

(4.42)

where hG(x ,o b) is given by (4.29) and u(-) is the unit step function. The 
response of the V G operator is given by
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g(x) = V hG(x ,o f) * f(x)

= hG(x ,a f) * hG(x ,a b) * [V u(x)u(T  -  x)] * £  5(x -  2nT)
n = -oo

= hG(x ,a f) * hG(x ,c b)

* [u(T -  x)8(x) -  u(x)8(T -  x)] * £  8(x -  2nT). (4.43)
n = —oo

It is easy to carry the right most convolution of (4.43) which simplifies to

g(x) = hG(x,of) * hG(x,ob) *• X  8(x -  2nT) -  5(x -  (2n+ 1)T) I. (4.44)
l« = -~ ' J

The Fourier transform of g(x) is 

G(v) = ex p (- 2jc ̂ v2( a  f2 + q b2) )

•> Z «(v- -£r>- -j2nvT

' to..'
n = —oo

Z 8(v -  ^r)
n = -  oo

which can be simplified to the following form:

G(V) = - I -  i ; d  -
^ 1 n = - O O

• e x p (-2%2( a f2 +  a b2)n2/4T2)8(v -  ^ r ).

(4.45)

(4.46)

Again let a  = a b/O f and P = T/Of. Substituting in the above equation we 
obtain

G(v)
2P Of

£  (I -  e -^ " )
11 = — oo

• e x p (-Tt2n2( a 2 + l) /2 p 2) 8(v -  -£ -) .

The edge strength is 

Ig(O)I = IJ_~G (v)dvl 

I £  (I  -  e ^ * 11̂ ) exp(-7C2n2(d 2 + l) /2 p 2)l

(4.47)



Ni ! V ;

2 p a f n
X  ( I  -  cos(7 tn )) e x p ( - j c 2n 2( a 2 +  l ) / 2 p 2)

I ~
n = I

x  ( I -  Cps(TCn)) exp(-TC2n 2( a 2 +  l ) / 2 p 2). (4.48)

The plot of (4.48) vs P and a  is shown in Figure 4.5. The following 
measures cans be obtained: The 3dB value of the edge strength in (4.48) for 
small a  (e.g. bi < 0.2) is obtained at (3 = 6.7. For large a , the 3dB is reached 
first for a  -  0.5 and P > 7.36. Steady state 3dB is reached at a  < 0.6, 
P > 7.6. The respouse decays also linearly in dB per decade a , and at a much 
higher rate per decade p. Therefore it can be concluded that a blurred square 
wave image is fully resolved for

o b ^  0 .5af and T ^ 7.36af, (4.49)

and for the negligible blur case, T 2: 6 .7af. The figures obtained for the V 2G 
were[LuB86a]

CTb ^ 0.5l a f, and T > i .3 6 0 f, (4.50)

and fpr negligible blur, and T ^ 1.15of. Again, note that the filter spatial 
support needed for edge localization based on the directional derivative is 
smaller as compared to the spatial support required when the zero-crossings 
criterion is used.

An analysis similar to the above can be performed if a known noise 
distortion (e;g. Gaussian), in addition to the blur is considered. In the V 2G 
analysis and with Gaussian noise included (i.e. the edge model includes 
another Gaussian convolution), it was shown that at high SNR the measures 
for filter spatial support did not change significantly [LuB86a], [LuB86b]. The 
same conclusion can be drawn also in the case of the V G operator. Finally, 
due to the separability of the two-dimensional Gaussian kernel, the issue of 
filter spatial support in two-dimensions is essentially the same as in one- 
dimension. Practical aspects of digital implementation of the V 2G operator 
have been examined in [LuB86b] (see also [Lbg77]).



Figure 4.5. Magnitude response for the square wave edges.



4.4. Discussion and Conclusions

First, we emphasize that the filter of Shanmugam et al. [ShD79], the
V 2G, and the V G operators are optimal (in the sense of the stated criterion) 
for the enhancement Of step edges only. We have proved that following the 
general optimization problem in [ShD 79], we can derive the equation for the
V 2G and the V G operators. ThUse two operators are implemented in the 
spatial domain and have found wide applications, unlike the Shanmugams’s

. .ffltcr%hioh.:' iaVjinplementeiiJn the frequency domain. Several studies have 
been reported On the performance of the V 2G and the V G operators. Canny 
[Can-83] has shown that for ideal step edges, edge localization as obtained by 
the V G operator is superior by a factor of I ;63 to that obtained by the V 2G 
operator. He also showed that the SNR of the V G operator is better than 
that Of thu V 2G operator by a factor of 1.16oj when the input is an ideal 
step edge embedded in white Gaussian noise.

Since edges from zero-crossings form closed contours ending at the 
boundary of the image, corners will be displaced. Thus vertexes cannot be 
detected correctly by the V 2G operator, and spurious edges are introduced 
([Ber84], [BaG88]). Corners or vertexes are properly located* however, by 
the magnitude of the gradient. Different authors have reported different
results with the V 2G operator (e.g„ [Har84], [GrH85]v and [Har85]), The 
accuracy of the V 2G operator for edge enhancement can be best addressed, 
however, using edge models. This approach was used by a few authors (e.g. 
[BUr84] and [LuB86a]). Ideally, the V 2G operator locates edge contours 
accurately if intensity changes are linear [MaH80]. This linearity, however, is 
riot satisfied in most real world images. Berzins [Ber84] studied the 
performance of the V 2G operator on corners, curves, and nonlinearity of the 
intensity surface. Lunscher and Beddoes [LuB86b] studied the effects of
noise and quantization on the V 2G performance in the context of digital filter 
performance.

■̂ ;̂'-'--;;t,hf:;-resUlts o f Berzins [Ber84] show that the displacements of the edge 
location as detected by the V 2G operator is less than a f provided that: ( I) 
size of the region is large compared to o f; (2) the radius of curvature of the 
region is large compared to a f; (3) the distance to the nearest sharp corner is
larger compared to ©/Of, where © is the angle of the corner in radians, (4)
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the magnitude of the second derivative of the image intensity is small 
compared to that of the filter’s normalized impulse response multiplied by the 
size of the intensity jump at the edge. His results showed that for linear 
intensity variations (except at the corner), the displacement of the actual 
edge contours is less than V 2 a f, and that the gradient magnitude was small 
when the displacement was comparable to a f, so that contours with large 
displacements would be filtered out by a minimum threshold on the slope of 
the Laplacian. Large displacements or the disappearance of the contour occur 
when the !second derivative of the intensity was compared to the second 
derivative of the smoothing filter. Berzins also showed that nonlinear 
illuminations lead to spurious contours in case where the  second derivative of 
the intensity was positive (opposite to the second derivative at the Center Of 
the smoothing kernel).

The main advantage that the Laplacian of the Gaussian has over the 
gradient of the Gaussian is its simplicity for implementation. The Laplacian 
is a directionless quantity, and the zero-crossings form closed contours hence 
edges are easily traced.

In summary, we have demonstrated, mathematically, the equivalence of 
a num ber of optimal edge enhancement filters. We have indicated that 
modern approachs for edge enhancement based on regularization theory 
suggest that the actual shape of the filter is not important, provided that 
certain criterion is met. The issue of filter spatial support has been studied. 
We derived the corresponding criterion of Lunscher-Beddoes [LuB86a] for 
the V G operator on ideal edges. This provides a reasonable background for 
the linking process to be studied in Chapter 5.
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CHAPTER 5
EDGE-BASED SEGMENTATION:

2. EDGE LINKING BY SEQUENTIAL SEARCH

5.1; Introduction

While the literature is abundant on quantitative methods for edge 
enhancement, essehtially ad hoc techniques have been used to link edges. 

' jltis-':p fien> e$u^  edges where the object’s boundaries are not well
defihed. The introduction of sequential search techniques to link edges has 
been shown to provide better object boundaries. The use of search 
techniques in edge detection was first introduced by Martelli [Mar72], 
[Mar76]. He used edge properties in the evaluation function of the A* 
algorithm. His path metric, however, was problem related and ad hoc. Some 
improvements to this approach were introduced by Ashkar and Modestino 
[AsM78]. Most notable was the application of tree search techniques to the 
edge enhanced image instead of using the original image as in [Mar72]. Still, 
the path metric used to guide the search algorithm was problem related and 
to a great extent ad hoc.

A major step toward an analytic linking algorithm was taken by Cooper 
[Goo79]. He formulated edge linking as a maximum likelihood (ML) 
estimation problem. Realizing the computational burden needed to 
implement this approach, he resorted to suboptimal techniques that were 
implemented on simple boundaries [Coo79], [C0E8O], and [E1C82]. Another 
significant improvement to the search technique was introduced by Eichel and 
Delp [EiD84], [EiD85a], [EiD85b], and [EiD88]. Their sequential edge 
linking (SEL) algorithm is similar to that of [AsM78], but the path metric 
was quantitative. The metric in the SEL algorithm is a probabilistic measure 
similar to that introduced by Massey [Mas72] for sequential decoding.

This chapter examines recent progress in sequential search techniques 
applicable to edge linking. Specifically, we extend the sequential edge linking



(SEL) algorithm of EicheI and Delp [EiD84] to more general paths and 
image models, we develop estimation techniques for the nietric in SEL using 
random field theory, and we introduce a new path metric based on the linear 
iriodeli We examine implementation details and use these metrics on various 
test as well as real world images.

To provide a rationale for the use of graph search techniques to link 
edges, we exattiine the exact ML estimation technique for object boundary 
aUbeatiqn. We V'lll show that only suboptimal approaches can be implemented 
in practice and that graph search algorithms provide an easier arid relatively 
faster implementation for such approaches. In simple terms, a maximum 
likelihood formulation for the edge linking problem is stated as follows: On a 
random field G let us define a boundary process B, The observed image is 
considered a sample function o f G. The ML method provides an edge map 
for the objects in the image by maximizing the joint probability of the image 
and the boundary processes, that is, we need to maximize the following 
expression :;:''.;;..'

L = M e Cg b ) ,

= in p CGIB) )+■In P(B) , (5.1)

where /«(•) is the natural logarithmic function.

To solve the system in (5.1), we need to specify the boundary process B 
and the a posteriori probability P ( GlB). Several approaches for carrying out 
the above optirriization have been introduced in the literature (e.g., [NaM781, 
[Coo79], and [GeG88]). We present below one of these approaches which is 
based on simple models. This approach is due to Cooper [Coo79] (see also 
[CpESOj, [E1S81], and [E1C82]).

Cooper [Coo79] considered the ML formulation for a simple situation: 
The original image f was assumed to have a single object with gray level f0 
arid a backgrourid with gray level fb. The difference A = f0 -  fi is the 
contrast. The quantity A/2 was subtracted from the original image. The 

observed image g on the lattice S = {(x,y): 0 < x, y < M - I } is assumed to 
be formed from the original image plus additive zero-mean Gaussian noise. 
Hence a pixel at location (x,y) e S has the following gray level values:



jA /2  + Wxy on the object
A/2.+ Wxy on the background (5.2)

The noise random variable has a Gaussian probability density with mean zero 
and variance a ,  that is,

N(Q, a 2). (5.3)

Now, consider a discrete time stochastic process 
G -  (Gxy, x,y e [0 ,M -1]} with configuration space Q and state space S , that 
is, ̂G(CO): G -+ H, Co e G (Chapter 2). A boundary element bj is defined to 
be a line segment separating two adjacent pixels. An object boundary is a 
closed directed sequence {bj} which does not intersect itself.

Cooper [Coo79] modeled the boundary process as a K th order Markov 
chain. The state Xm of the Markov chain was defined to be the last K- 
boundary elements allocated before the present location on the boundary, 
that is,

{b„} ■
n = m - £ + l

(5.4)

Note that the transition from state Xltl to state Xm+V requires the knowledge 
of one element bm+ j. The transition probability of the Markov chain is 
defined as follows:

P ( x m -  Xm I X n ^  x n )  =  P(bm,bm_j, . . . ,  bm_K+l\bn bn_i ,  . . . ,  /^n- at+ i ) -  ( 5 . 5 )

The left-hand side will be written simply as P (x m Ixn) .

Now, consider a random boundary of length- N with a prior probability 
P0(N). The probability density of the boundary PB( O1,b2, • . ., bN) can be 
factorized by the chain rule as follows:

PB(b i,b 2, . . .,bfi) = P(xN lxN_ 1)P(xN_ 1lxN_2) . . . P(X2Ix1)P(Xi) (5.6) 

or,

PB( b) -  Tl P x ( x m lXm- l )  - P ( X j ) .
m=2

(5.7)



The likelihood function of the boundary process is now defined as follows:

= Zn PB(b) + Zn P0(N),
vH:; - V w . N \V ' " "v '■ ■' \ v '/ V-'  : V —

== Zn P(X1) + X  Zn PB(XmIxm̂ 1) + Zn P0(N). (5.8)
- V . ; + . '  m=2 ...

The a posteriori distribution P (G  = glB=b) can be expressed by the total 
pfbbabiUty rule as follows:

p (G  = glB=b) = P(GlB:bm <= object pixels) - P(Object) +

P(GlB:bm e boundary pixels) V P(background) . (5.9)

Assuming that the noise random variables (Wjty; ( x ,y )  e  S ) are 
independent and identically distributed (Hd), two adjacent edge elements 
bm — (Gxy -  Gjrtlo ,), and bm+1 = (Gx+1>y -  Gx+2iy) are Gaussian, however* 
not independent, As an approximation, Cooper [Coo79] also assumed an 
//^-distribution for all boundary elements. From these assumptions, the 
quantities P ( G lB:bm e object pixels) and P(G lB:bm € boundary pixels) can 
be written as products of univariate Gaussian probabilities; that is,

P (G lB ) = k t n  exp -  (gxy -  A l l ) 21I a 2 +
-/ +  V; . '  (x.y) e object ■■

.V : k2- ; - - f l  exp -  (gxy +  A/2) 2/2 a 2, (5.10)
U,y) e background

where k t and k2 are constants.

From (5.8) and (5.10), the likelihood L in (5.1) Can now be written as
•follows:;’: v,'<-

N V . '
L = In P(X1) + Zn P0(N) + X  pB(xmlxm -i) + C -

O -'V:' ■ m=2: ’
I

( 8 „ -  A/2)
(*.)0 e Object

( i x y  + M 2 ) ( 5.11)
(x,y) e background



where C is a constant.

Now, in order to o b ta in th e  ML solution, we need to maximize (5.11) 
over all possible boundary edge sequences. This requires the estimation of 

the state sequence {Xm} and the complete knowledge of the boundary 
process; hence, the calculations cannot be made recursively.

The above analysis shows clearly that even with the simplest image 
model (a binary image having one object corrupted with additive Gaussian 
noise), the optimal solution is hard to compute. This provides an incentive 
for suboptimal solutions. In the following we examine in detail how such a 
solution can be obtained using graph search.

5.2. The Graph Search Problem

Graph search has been an active research area in Al as well as other 
disciplines for many years (e.g., [Zig66], [HaN68], [Jel69], [Nil71], and 
[KaK88]). Before we state the general graph search problem, we will 
describe, briefly, some of the terminology associated with graph search. 
Consider a graph defined on a set of sites (nodes) S. On this graph, we 
define a set of line segments (arcs) {br s; r,s e S}. The segment br>s is an arc 
from node r to node s. Node r is called the predecessor (parent) of s, and s is 
the successor of r. A cost Cr s is assigned to arc br s such that Cr s > 8 > 0, 
where 8 is a small positive number. The graph is called a directed graph if, 
for every two nodes r, s € S, Cr s * Cs r, Figure 5.1 shows an example of a 
graph structure.

A tree is a directed graph with the following properties: Only one node 
(root node) has ongoing arcs, whereas all other nodes have exactly one 
incoming arc and any number of outgoing arcs. The root node is said to be 
of depth zero while the depth of any other node is defined to be the depth of 
its parent plus I. A node on the tree with no successors is called a tip node. 
A path p over a graph is a sequence of directed arcs. A solution path over a 
graph is a path consisting of finitely many arcs that begins at the root node r0 
and ends at a goal node r. The cost C(p) of a path p on a graph is the sum 
of the costs of arcs that make up that path.



m nodes 
at'level I

■m2 nodes 
at level 2'

Figure 5.1. An example of a graph.



Now, given a weighted directional graph with start node s and a set of 
goal nodes {sg}, the grajph search problem can be stated as follows: Find a 
least-cost path (optimal path) from s to members of the set {sg}.

Among the most studied algorithms for optimal path finding are the A* 
(e .g , [HaN68], .[Nil? I]., and [DeP88]) and the Stack (eg ., [Zig66] and 
[Jel69i) algorithms, both o f which execute sequential search using heuristic 
estimates of foe costs of different paths in the graph: In the rest of this 
section we will discuss, briefly, these algorithms which have been used in 
essentially all the work on sequential edge linking ih the literature (eg ., 
[Mar?2], [E1CS2], [A sM?81 [EiD 84]).

I. The A* Algorithm

The A* algorithm (e.g., [Nil8Q], [DeP88]) was developed for additive 
cost measures^ that is, where the cost of the path is defined as the sum of the 
costs of its arcs. The algorithm employs an additive evaluation function,

(5.12)

where J3(r) is the cost of the currently evaluated path from the start node s to
node r, and a (r) is a heuristic estimate for the cost o f  the path remaining 
between r and some goal node.

The algorithm constructs a tree of selected paths of the graph nsing the 
elementary operation of node-expansion, that is, generating all successors of 
a given node [DeP88]. Starting with s, the algorithm selects for expansion 
that leaf node of the tree which has the lowest value o f y( ), and only 
maintains the lowest evaluation function-path to any given node. The search 
halts as soon as a node selected for expansion is found to satisfy the goal 
conditions.

The A* algorithm finds a shortest solution path only if  the heuristic 
function a(-) never overestimates the actual distance to the goal. The 
optimality of the A* is studied elsewhere (e.g. [HaN68], [DeP88]).

The sequence of operations in the A* algorithm can be summarized as 
follows [DeP88]:

1. Place the start node s on a list called OPEN of an unexpanded node.
2. If OPEN is empty, exit with failure; no solution exists.
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3. Remove from OPEN a node r at which y(r) = (3(r) + a (r) is 
minimum and place it on a list called CLOSED to be used for 
expanded nodes. Ties are broken arbitrarily, but in favor o f  a goal 
node.
4. If r is a goal node, exit successfully with the solution obtained by 
tracing back the pointers from r to s. The pointers are established iii 
steps (5) and (6)
5. Expand node r, generating all its successors with pointers back to r.
6. For every successor r ' of r:

a. Calculate Y(r').
b. If r ' was neither in OPEN nor in CLOSED, then add it to 
OPEN. Assign the newly computed y (r') to node r'.
C; If r ' already resided in OPEN or CLOSED, compare the 
newly computed Y (fO with that previously assigned to r'. If the 
hew value is lower, substitute it for the old (r ' now points back 
to r instead of its predecessor). If the matching node r ' resided 
in CLOSED, move it back to OPEN.

7. Go to step (2).

2. The Stack Algorithm

The Stack algorithm, or the ZJ algorithm ([Zig66], [Jel69]) uses a stack 
or table in which the values of the arc costs (path metric) for previously 
explored and extended paths are stored. Each table entry contains 
information about the node location on each path previously explored 
together with the value of the path metric up that node in the tree. There is 
one table entry for each previously explored path. The entries are ordered in 
terms of decreasing values of the path metrics, that is, the pointer to the top 
of the stack refers to the node with the largest path metric. The Stack 
algorithm th en a ttem p ts  to expand the path through the node currently 
identified at the top of the stack. The basic assumption here is that the path 
metric is mpndtonically increasing along the correct paths and monotonically 
decreasing along the wrong paths.

The Stack algorithm searches for the optimum path in the following 
manner:



1. Initialize: Clear the stack, and insert the entry corresponding to the 
root node.
2. Retrieve the entry with the largest path metric at the top of the 
stack. If the corresponding node is at the end of the tree, the search is 
completed; Otherwise, go to step (3),
3. Compute the parameter {3j for the successors o f the node identified 
in step (2). Entries for these successor nodes are created and inserted 
at appropriate positions of the stack while the entry for the predecessor 
node is deleted.
4. Go[.to Step (2).

;.,/ :̂ -:.'The number of calculations required by the A* and the Stack algorithms 
is a random variable whose distribution depends on the quality of the data. 
The algorithms, however, are much faster than the exhaustive search 
approach.

The Stack algorithm was used in edge detection by Ashkar and 
Modestino [ASM78] and by Eichel and Delp [EiD85a]", The A* algorithm has 
been used, by other researchers (e.g., [Mar72] and [E1C823).

5.3. Edge Linking as a Graph Search

5.3.1. Problem Statem ent

Gn an image support, the graph {S,T|} is such that: S is a lattice, 
S -  {(x,y): G < x,y < M - 1} and any internal site (node) s = (x,y) has a 
unique set of eight neighbors (Figure 5.2a). Given a node s -  (x,y) on an 
edge path p, the path can be extended in eight possible directions. An edge 
path, therefore, is a tree in which each node has eight outgoing branches. 
The depth into the tree indicates the position along the path. Figure 5.3 
illustrates the tree structure where the root node is at level 0. Nodes at level 
k > O correspond to points at position (k + I) along the path originating from 
the root node. A node rn = (x,y)n is described by the horizontal location 
(row-location) and vertical location (column-location), respectively.

Definition 5.1: Over the lattice S, an edge path p of N nodes is defined 
to be a connected set o f  adjacent nodes (ordered set) satisfying some
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(a) The eight neighbors for node s = (x,y).
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(b) The eight possible directions from node ix^y).

Figure 5.2. Neighbors of node s = (x,y) and direction quantization.
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(arbitrary) conditions. □

The path can be described in one of two ways [EiD 85b]:
(i) By co-ordinates of the ordered set, that is,

P = {(x,y)i,(*,y)2 . . . (JCjJ )n ); or (5.13)

(ii) By a starting node, starting direction, and a set of letters to guide the 
direction from the starting node, e.g.

P -  (Jc,y)0 x d0 x Ca1Za2 . . .  aN) , ak e A, (5.14)

where the set A is the alphabet of possible directions. For example, in the 
SEL algorithm, A is restricted to have three possibilities: A = {L, D, R.} 
where L denotes left, D denotes direct (straight), and R denotes right.

Definition 5.2 [Rud76]: Consider two sets A and B. If there exists a 
one-to-one mapping of A onto B, we say that A and B are equivalent. This is 
represented by A -  B and has the following properties:

Reflexive: A -  A.
Symmetric: If A ~ B then B -  A.-s'
Transitive: If A ~ B and B -  C, then A -  C.

Any relation with these three properties is called an equivalence relation. □

Let us denote the random field variables corresponding to a given path 
oflength N (5.13) as

8 — Srj» Srj* • * •» Srfl — [Si*. • • *•» 8n3* (5.15)

This path p imposes an ordering on the variables {grk}, i.e.

Sr2 ^  ^  ^ 8rN* (5.16)

Now consider pairs of nodes rk, T1 of the image lattice, and some random root 
Iiodd r0 and let’s denote by < the binary relation distance from r0. Therefore, 
rk < Tj if the Euclidean distance Irk -  T0I < Ir1 -  r0l. The relation < is a 
partial order on the set of lattice nodes S because it is reflexive, 
ahtisytnmetric, and transitive. L et’s also denote the set of all paths v/ith root 
node r0 by Yro, that is,

{p: rk < T1 for all k < l}. (5.17)



Hence, the set of nodes {rk} comprising a path p e Yro is totally ordered (or, 

linearly ordered). Therefore, there is an isomorphism (one-to-one
correspondence) between nodes of a path and the random field observations 
along that path which imposes a linear ordering on the set g, that is,

g l <  g2 <  •< gN g  e  Y i (5 .18)

where g e  Y is understood to mean the corresponding p e Yro for some r0 

[EiD85a]. The set Y  can be the set of paths that do not "double back on 
themselves", or those that are "almost straight lines", etc.

In order to use existing fast algorithms for sequential search (e.g., the A* 
and Stack algorithms) in edge linking, a metric to guide the search is 
necessary. This quantity is a measure of differentiation between various paths 
in the enhanced edge map and is denoted by the path metric. For accurate 
edge linking, the path metric should satisfy some important requirements 
(e.g.i [GoE80], [EiD85a]). Among these requirements are the following: (I) 
The metric should not be biased by the path length. This means that all paths 
need to be compared on the basis of their probability of being on an edge 
path, regardless of their length. (2) The metric should have the necessary 
drift properties. That is, its value should be high on the correct path and 
decreasing otherwise. (3) The metric should be easy to calculate. For 
example, if the metric value at some node on the graph is related to the 
value of the metric at neighboring nodes, a great savings in the overall search 
time will result. This can be achieved if the metric equation can be written as 
a difference equation which enables recursive evaluation.

Two model-based metrics have been developed in the literature by 
Cooper and co-workers (e.g., [C0E8O] and tElC82]), and by Eichel and Delp 
[EiD 85a]. We examine these metrics next, before introducing a new metric 
based on the linear model. The metrics in the pioneering work of MarteIli 
([Mar72], [Mar76]) and that of Ashkar and Modestino [AsM78] will hot be 
examined further since they are problem related and to a great extent ad hoc. 
The idea in [AsM78] for using a prototype contour will be used, however, in 
a different context.
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5.3.2. The Cooper Algorithm

Cooper and co-workers (e.g., [C0E8O] and [E1C82]) used sequential 
graph search (the A* algorithm) to implement a suboptimal boundary finding 
algorithm. The metric used was based on the likelihood expression in (5.11). 
Their algorithm can be summarized as follows: Each node in the ^raph 
represents a state which is defined by the K t- order Markov chain (5.4 - 5.8). 
A likelihood value is assigned to each node which corresponds to the 
maximum of the likelihoods of all paths leading to that node front a 
predetermined start node. According to the edge element definition [C0E8O], 
each node has exactly three successor nodes. Figure 5.4 shows the tree 
structure in Cooper’s algorithm and Figufe 5.5 shows the node definition on 
the tree.

Let Xi be an arbitrary node (a state) On the tree and Xit j = 1,2,3 are 
its successors, the metric used has the following form:

In L(Xi t lJ) = In L(X 1) + In P8(XitlJlXi) + D (X ^ 1J) j =  1,2,3. (5.19)

In the above metric definition, the quantity D(Xit lJ) is the change in the 
picture data likelihood caused by adding node (state) X it ^ to the boundary 
sequence defined by the most likely path from the start node to node X itlJ. 
The quantity PB(XitlJlXi) is the state transition probability defined in (5.5), 
and L(X 1) is the likelihood of the starting node. Methods for estimating 
these quantities are discussed in [C0E8O] and [E1C82].

A few comments are in order about the Cooper algorithm. First, while 
the formulation is based on the maximum likelihood, the approximations 
involved in the calculation of the components in (5.19) make the procedure 
non-standard and almost impossible to replicate. The effect of the model 
parameters on each of the quantities in (5.19) cannot be determined. Also, 
the relative importance of each component of the metric cannot be readily 
seen. Second, although the metric in (5.19) is recursive, still an enormous 
num ber of calculations are required for any typical size image. The results 
shown by the authors so far have been mainly based on simple test images. 
Finally, the algorithm as a whole is based on the independence of 
observations assumption which does not necessarily hold (Chapter 2). The 
algorithm, however, does show the difficulties involved in implementing an
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Figure 5.4. Tree structure for sequential search. 
(Each node can be extended only in three directions.)



Figure 5.5. Node definition in the Cooper algorithm
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optimal approach for the boundary finding problem.

5.3.3. The SEL Algorithm

As in Cooper [Coo79], the path p in SEL [EiD85a] [EiD85b] is modeled 
as a K th order Markov chain. The path is defined as in (5.14), and the 
transitions from a given node s are restricted to only three possibilities: Left, 
Direct, and Right, That is, the alphabet set A = {L, D, r }. The state of the 
chain Xi is described by the previous X-connected nodes before reaching the 
present node, or by the ordered set of the last X-Ietters [a^j, I < j < X], 
that is,

f  aI-A+1» ai-K • • • ai ai e A - (5.20)

The probability density of the path p is related to the state transition 
probabilities o f the Markov chain by the following equations.

P(P) = P ( ^ a 2 --V an) (5.21 A)

=PCxn lxN, i) P(xN_ i lxN_2) . . . P(X1) (5.21.B)

= H P (X iIx i- I ) -P (X 1). (5.21.C)
. i = 2 '■ ■

Let H 1 denote the true edge hypothesis, and Ho be the random (no 
edge) hypothesis. Let Pi(Gr = gr) be the probability that the field observation 
at node r is gr conditioned on hypothesis H 1, and po(gr = gr) be the 
probability that the field observation at node r is gr conditioned on the null 
hypothesis (no edge node), that is,

P l(Gr = gr ) = P(Gr = ylH j), (5.22)

P0(Gr = gr) = P(Gr = ylH0). (5:23)

I, 2,For N observations (gr., i 
ratio is defined as follows:

K §) =  Pl(gri» Sr2> - * •» §rN^Po(§ri* Br?

The path metric is defined by the following equation:

Y (p,g) = ln (  P(P)-1(g)).

N) along a path p, the likelihood

Stn)- (5.24)

(5.25)
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If the observations are independent, the metric can be expressed in a 
recursive form which can be easily calculated. In this case the likelihood 
function in (5.25) can be written as follows:

Kg)

The path metric becomes:

PlCgr1) - PlCgr2) V- • PlCgrw) 
PoCgr1)PoCgr2) - - - PoCgrN)

(5.26)

N . Ol P^gr,) t .
Y(P’g) = X .(  / H ( a  v + in P(xilxi_ 1) ) .  

i=i in PoCgri)
( 5.27)

Extending the observations by another node, the metric in (5.27) at node 
(N + I) can be easily written as follows:

Tn+ i = Yn + (
in Pl(grN+1)

in PoCgrN.,)
+ In P(xN+1lxN)) ; ( 5.28)

The metric in (5.27) is formed of two components. The first is the ratio of 
the two probability measures in (5.22) and (5.23) defined from the random 
field model describing the image data. The second component is defined by 
the path model and it is a measure of the a priori probability that the edge 
path proceeds in a certain direction, given the last /if-branch directions. The 
metric in (5.27) possesses the drift characteristic, that is, its value increases 
over correct paths and decreases over wrong paths. It is also unbiased by path 
length [EiD85a].

Again, the fact that pixel data are dependent on each other cannot be 
overemphasized (Chapter 2). The structural (syntactic) information in the 
image imposes this dependency. It has been shown that any meaningful 
image model relates the image pixel value to the surrounding pixels in a 
certain neighborhood (e.g., [Bar75], [Bes74], [Kas81]). The dependency 
between pixels, however, decreases with distance.

To elevate the condition of independence, Eichel and Delp [EiD85a] 
assumed an ARMA-model structure for paths in the random field. The basic 
assumption was that the random field G is homogeneous, isotropic, has a 
zero mean, is Gaussian, and its autocorrelation function is exponential of the 
distance between nodes, and the distance measure is the city block. This 
random field was denoted by the discrete step isotropic model (D-SIM) and



Rg(d),

its autocorrelation function has the following form:

Rg (k, I) = Rg( IkI + 111)

where the distance between nodes k and I is given by d = d(k,l)
The Pth order D -SlM random field is a homogeneous field with an 
autocorrelation function of the form:

(5.29) 

Ikl + 111.

Rg(k, I) = O 2 [C 1C- a ^ lkl + + . . , + cpe ~ ^ lkl + i11) ] (5.30)

where G2 = Rg(0, 0) and ^  Ci =
i= l

I.

The path in SEL was defined as an ordered sequence of random field 
nodes such that, for a sequence of three nodes, the angle between the first 
two nodes and the second two is less than or equal to TC/4. Figure 5.6 shows 
an example of the paths defined by the SEL algorithm. The field 
observations along a given path in the set Y in (5.17) forms a linearly 
ordered set. This enables the use of classical linear prediction models for the 
paths in Y, e.g., ARMA models. The general one-dimensional ARMA 
equation is given by

gi ^  £  <l>k g*-k =  Ci ~  £  0 I C i-1»
k=i 1=1

(5.31)

where the <|>k are the p autoregressive coefficients and the 0i are the q moving 

average coefficients. The process {{£} is called the innovation process and has 
the property

E (C1 Ci J = Oc2 Sij. (5.32)

A correlated Gaussian random field which is P-SIM  makes it possible to 
use a path metric of the form (5.27 - 5.28). This can be stated by the 
following two theorems [EiD85a],

Theorem 5.1: A path p e Y in a m,h order D-SIM random field induces a 
super sequence g ' such that (5.31) holds for this g'. □

Theorem 5.2: With g' as in theorem 5.1, it is possible to construct a 
sequence g from past values of g such that:

gi ~  £  ^k g< i)-k  +  ^  0 I C(i)-1
k=l 1=1

(5.33)
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Figure 5.6. Examples for path definition in the SEL algorithm.
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Si -  Ii = C(i>

E {C (i)C (j)}=  0 C28 (i)(j)-0

Theoferns 5.1 and 5.2 state that if a random field is a D-SIM random 
field, then the paths in the set Y have an ARMA-Iike structure. Thus, it is 
possible to eonstfuct a super sequence g' from g such that uncorrelated 
innovations are generated which allow the evaluation o f the path branch 
metric recursively.

Among the problems with the above metric are first, that the adequacy 
of the D-SIM model cannot be easily justified. Since it is defined by an 
autocorrelation function, a D-SIM random field cannot be synthesized 
(simulated) except in the Gaussian case. Second, no clear procedure for 
deciding on the order of the D-SIM model and estimating the coefficients in 
the autocorrelation function is presented. Finally, no clue for evaluating the 
measures pi(-) and po(') in (5.22) and (5.23) is provided.

In the following subsection, we examine the metric in (5.25) and 
introduce a method for estimating it from the image data without the 
independence assumption.

5.3.4. A SuboptimaI ML Path Metric

According to the path definitions in [Coo79] and [EiD84], a path of 
length N leads to a search space of size 3N. The path metric should greatly 
reduce the number of nodes actually searched in the search space. We will 
implement the metric in (5.25) on a small neighborhood rather than on the 
whole graph. A recursive metric formulation will be obtained which will be 
locally optimal (on the neighborhood) and globally suboptimal. As before, 
the path process is modeled by a K th order Markov chain. Each node in the 
tree is, therefore, described by AT'* dimensional Markov state defined by the 
boundary generation process. A likelihood value is assigned to each node in 
the tree and it corresponds to the maximum of the likelihoods for all paths 
leading to that node from a predetermined start node. We define a goal node 
to be a boundary state within a neighborhood of the start node.

Our goal is to evaluate the metric yfo) in (5.25) on a small number o f  
observations (within some neighborhood). Since this metric will be



suboptimal, we will add the super script ' "hat" to y(-) in (2.25), that is,

f(P ,g) = M (P(p>) + /«  (l<g)), (5.34)

where the estimates P(p) and 1(g) are to be evaluated on the neighborhood 
rj. Two issues need to be addressed: First a method for selecting Tl must be 
provided and, second a method for estimating the quantities in (5.25) over 
this rj must be developed. A discussion of these two problems follows.

5.3,4.1. Neighborhood Selection

To reduce the size of the search space further, and hence shorten the 
execution time, we limit the area (admissible area) of the search to be inside 
a swath defined by a hypothesized boundary. This boundary can be selected 
by a variety o f ways. For example, an edge operator can be applied to the 
image and the resulting contour will be the hypothesized boundary; Or a 
priori information can be used to construct the hypothesized boundary. This 
is particularly useful if a prototype boundary is available (e.g., chest X-ray 
images used in [AsM78]), The approach we propose here is to apply the 
¥  2G operator to the original image and consider the zero-crossings loci, to be 
pur hypothesized boundary. The advantage of this approach is that the V 2G 
provides a closed boundary; thus, an easier definition of the swath is possible. 
We will use the hypothesized boundary for two purposes: Tp define the Swath 
of important boundary information, and to provide a measure for our a priori 
knowledge about the object’s boundaries in the scene.

As we indicated in Chapter 4, studies on the V 2G operator (e.g., [Ber84] 
and [Cla89]) lead to the following conclusions about the displacement from 
the ideal edge locations: For linear intensity variations (except at
discontinuities), the displacement of the contours is less than V 2 a f, and the 
magnitude of the gradient is generally small if the displacement is comparable 
to Of. Nonlinear illuminations lead to spurious double contours if the second 
derivative is positive (i.e. opposite to the second derivative at the Center d f  
the smoothing Gaussian kernel). These spurious contours correspond to 
minima in the magnitude of the gradient, and the slope of the Laplacian at 
the zero-crossings is comparable to that for proper edge contours [Ber84]. 
Classic methods of setting a minimum threshold value for the slope of the



Laplacian at computed edge contours will not discard the spurious contours in 
the nonlinear illumination case. This is why a maximum likelihood approach 
is better than thresholding. We will limit the size of the neighborhood to be 
within ± 2 a f of the zero-crossings contour.

Pefinition 5.3: The boundary swath b is a subset of the observation g 
which is formed of those gray scale pixels on the edge enhanced image 
separated by a maximum distance of 2 a { from the zero-crossings contour 
obtained from the V 2G operator. □

Once the hypothesized contour is selected, the sequential search is 
performed over portions of the image (edge enhancement image). This will 
be denoted by a sectioned search to distinguish it from the global search 
which uses all the data in the enhanced edge image at each node in the tree. 
Figure 5.7 illustrates the swath of important edge information surrounding a 
hypothesized contour.

Now, in accordance with the SEL path definition, we can identify all 
possible paths to be searched in a window, given the start node and direction. 
Figure 5.8 shows the possible paths for windows of widths 3 and 5. In each of 
these graphs, it is assumed that the start node and start direction are known. 
In Figure 5.8, the start node is denoted by x and the start direction is 
assumed to be horizontal. As expected, the number of possible paths 
increases with the window width. For a search window of dimensions 3 x 3, 
we have only three possible paths (from a preselected start node and start 
direction) and for a 5 x 5 search window, we have nine possible paths. 
Notice that the center of the neighborhood Tj is separated by one pixel from 
the start node.

S.3.4.2. Transition Probabilities Estimation

A Markov chain is usually specified by a state transition diagram and a 
state transition probability matrix. The selection of the neighborhood 
determines the number of possible states. Again, we will consider the path 
definition as in SEL algorithm [EiD84], [EiD85b]. Consider a 5 x 5  
neighborhood. As shown in Figure 5.8b, if the start direction is known to be 
horizontal, we have nine possible sequences from the current location. 
Similarly, we have nine possible sequences if the start direction is to the left
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Figure 5.7, Definition of the swath of important edge information
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(a) 3x3 neighborhood.
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Figure 5.8. Possible paths for 3x3 and 5x5 neighborhoods.
(The start node is denoted by x and the start direction is assumed hoizontal.)



and another nine possible sequences if the start direction is to the right, etc. 
Recall that a node on the tree is represented by X-dimensional state, blow 
suppose the first node of the tree (i.e., a start state represented by a start 
node and a sequence of transitions) was given (e g., ail straight: D ,D ,D); 
then, the next node of the tree will be chosen from nine possible states. The 
nine possible states for this situation are shown in Figure 5.8b.

Empirical techniques have been used in the literature to estimate the 
state transition probabilities of the Markov chain (e.g., [E1C82] and 
[EiD85a]). Our experiments at the end of this chapter use the state 
transition tables in [EiD85b]. These tables, however, were constructed for 
first- and second order Markov chains (i.e., K = I and 2); thus, they are 
suitable only for 3 x 3 neighborhoods. Using the chain rule of probability, 
the transition probability for a higher order Markov chain also can be 
calculated using these tables. For example, on a 5 x 5 neighborhood, the

transition probability for a state X = {bl5 b 
follows:

2» b3, b4 b5) is evaluated as

PCb1 b2 b3 b4 b5) = H p CbiIbi. ! )  POj1). 
.. i=2

(5.35)

Once the initial node and initial direction are known, the values P (b flbj_j) 
are readily obtained from the empirical tables in [Eil>85b] and the probability 
of the state can, therefore, be estimated.

S.3.4.3. Likelihood Ratio Estim ation

We examine here a technique for the estimation of the likelihood ratio 
in (5.24) based on the Auto-normal Markov random field model [Bes74]. 
We have shown in Chapter 2 that the observations on a Markov chain form a 
M arkov random field. Consider a path p of length n defined on the lattice. 
The gray levels on the pixel locations describing this path are assumed to be 
an observation from a Markov random field; that is, the set 
{go, gj, . . . ,g n_i}  ^considered a sample function of a Markov random field. 
Now a site i, (I < i < n -2 )  has neighbors (i -  I) and (i + I) while the 
boundary sites O and (n -  I) have the single neighbors T 
respectively. This neighborhood will be denoted by 1]̂  to distinguish it from
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the neighborhood t\ that defines the swath of important edge information.

From a given initial state on a neighborhood rj we know the subset of 
possible transitions, as we discussed in the previous section. We fit an Auto
normal model for the path observation on each possible transition. In 
Chapter 2 we studied this class of Markov random field models. The random 
variables GijT e  Ti are assumed to b e  jointly Gaussian. Note that the lattice 
under consideration is a small portion of the image determined by the 
neighborhood Tj. AVe assume that each possible path segment has a length n. 
6ver the neighborhood Tic defined by the Markov chain, the random variable 

(GiIGj, j e Tjc )  has a variance O 2 and a mean |i given by:

(X -  E (GiIGj, j e TicJ -  Hi + X  PyCgi- Uj).
: 0< i< j< n-1

(5 .3 6 )

The conditional probability is

PGiIGjCgi1Ej. j e T1C) = ex p (gj -  Iii) 2n o 2. ( 5 .3 7 )

By the chain rule, the joint probability is

PGCg= gO. gl. • • •. gn-l)
I

(2 j tG 2) " n/2
Ib I 1/2

exp( _  2 o ^ [g “  d  B{g 'y

where

g =  [Wo P i. • • H n-i]1

( 5 .3 8 )

( 5 .3 9 )

is an n X  I vector and B is an n x n symmetric matrix with elements by 
defined below.

b y =  5
I if i = J -  
- P y  if i ^  1’ (5.40)

The likelihood ratio in (5.25) is estimated by the natural logarithm of
(5.39) and we consider only the term in the exponent, that is, we take l(-) to 
be:

1(g) = ( -  - V l g -  g ]lB [ g -  g]). (5.41)



The parameters P i, a ,  and Py are estimated using the methods discussed 
in Chapter 2. Jh  the experiments reported in this chapter, we assumed a
Common mean p , that is estimated from the ensemble gray level values on 
each possible path. The estimates of the two components in (5.34) are scaled 
such that they will have an equal weight on the metric value.

The steps used in carrying out the sequential search using the metric 
estimation procedure we described above can be summarized as follows. (I) 
As in SElii the input to the search algorithm is an edge enhanced image 
formed from two maps, an edge magnitude and an edge angle map. In the 
examples in this chapter, we used the V G operator for edge enhancement, 
and the Stack algorithm for edge linking. (2) A hypothesized boundary for 
the objects in the image is obtained by the V 2G operator, and the swath of 
important edge information is determined as before. (3) The search is 
performed in the normal way starting from a node on the hypothesized 
contour. The starting direction is arbitrarily selected. The metric t  (p,g) is 
estimated as above on data values inside the swath.

The above procedure is quite simple to apply on test as well as real world 
images. The search algorithm that uses the above suboptimal metric, instead 
of the metric in [EiD 85a], will be denoted by SEL2 to distinguish it froni 
SEL, Several experimental results are provided at the end of this chapter.

5,4. A Path M etric Based on the L inear Model

In order to use existing fast algorithms for sequential search (e.g., the A* 
and Stack algorithms) in edge linking, a metric to guide the search is 
necessary. This quantity is a measure of differentiation between various paths 
in the enhanced edge map.

Let = {r0, r2̂ l), . . ., Tq_ i(l)} be a sequence Of nodes along the
i th path up to level Q in the tree, and let |3j(l) be a cost measure for the
transition from node Xj_i to node rj on this path. The cost o f  the transitions 
along the sequence of nodes p(l) will be the cumulative cost for the Q-
transitions along the i th path from a start node r0. The path metric is a
function Of this cost. If significant a priori information about edge paths in 
the image is known, it should be included in the path metric. Examples of a
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priori information can be the ratio of horizontal to diagonal edges, the types 
of objects in the image, etc. We propose a metric of the following form:

T Q(P(i)) -  £ Pj(i) + hj(p(i>), (5.42)

where is a measure for the selection of one of the three possible 
transitions along the j th branch of the path p(l), and hj(p(l)) is a measure of a 
priori information about this particular branch that can be extracted (in some 
fashion) from the edge enhanced image. The first component of the path 
metric in (5.42) will be derived from the linear model equation, which is 
considered next.

5.4.1. The L inear Model

Let the observed edge enhanced image be a sample function of a 
random field (two-dimensional random process) G = {Gs, s e S}. Consider 

another random field E in which the random variables {Es, s e S) have 
zero-mean Gaussian distribution with common variance a 2. The linear model 
equation is ([Gra76], [Men87]):

g = A© + e , ' (5.43)

where g and e are L x I vectors representing an observation from the

random fields G and E, respectively. The matrix A is of dimension L x k  
with L > k, and © is a k x I vector of unknown parameters.

We will consider the case where the coefficients of the matrix A are 
deterministic. Let us define the two hypothesis:

H 1: B © = c, . (5.43)

c , ;; (5.44)

where B is a given q x k matrix of rank q > k, c is a given q x I vector, 

and B© = c is a consistent set of linear equations.



Given the values of the parameters © and ct2, the random vector g is

Gaussian with mean A© and diagonal covariance matrix, CF2I where, I is 
L x L identity matrix, i.e.,

p (g I© ,a2) = ( - ---- j )  exp ( -  ——r (  g - - A e i tCg ~ A © )).
■ ■ -  27CO . ■ 2G ~ ; ■

Taking the natural logarithm of the above equation, we obtain 

\|/(a2,©) = /n p (g l© ,a 2)

(5.45)

r2 lav L  _ -ki*. O -  L  ^  « 2  1 /■_ * ~ v l ,\|/(a ,©) = -  — In 2it -  — In G -

(5.46)

( g -  A © )1( g -  A © ). (5.47)
2 7 2 " ’ 2a 2 -

The maximum likelihood estimates of a 2 and © can be obtained from the 
differentiation of (5.47) and equating the derivatives to zero, that is,

= - i .  — + - i _ ( g - A S ) '( S  -  A e )  = O. (5.48)
OG2 2 Oz 2 O4 -  .. -

Hence,

Similarly,

Hence,

a©

P 2 =; s  -  a ©) tC g -  a ©) .

■\|/(CT2,0 j — ( g -  A © )1 A -  At ( g -  A©) = 0.

© = Y  ( AtAf" ( A ^  -  g lA ).

Substituting (5.49), (5.51) into (5.45), and simplifying, we obtain

p(gl@,CT2) = ( 2 n d 2) y 2 exp ( -  ^ - ) ,

which is independent of the parameter ©.

Now, define the following likelihood ratio test (LRT):

p ( g!(©, G2) ^ )

- I i

(5.49)

(5.50)

(5.51)

(5.52)

LRT
p( g l(0 , CT2)H,)

(5.53)
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From (5.52), LRT simplifies to:

.G 2
LRT = ( — ) 

G1 '
(5.54)

The estimation of G1 and G2 will be addressed shortly. For the 
parameter Pj, we use a function of LRT, which is defined as follows:

(L R T -2' 1- -  1)( — ) = ( d ‘2 —q 6 ,
) . (5.55)

The statistic A has an F -distribution with (q , (L — k)) degrees of freedom 
([KeS77], [KaL86]).

5.4.2. Definition of Edge Hypothesis

On a 3 x 3 neighborhood, edge directions are usually quantized into 
eight directions (multiples of 45°). Hence, we can define the set 
{H, V, D 1, D2) of four edge models (edge hypotheses) on this neighborhood 
as shown in Figure 5.9. To use the statistic in (5.55), we need to specify 
L, k, and the parameters G1 and G2. The matrix A is specified by fitting a 
linear model to each edge model (edge hypotheses). Figure 5.10 shows the 
components of the linear model fit to edge model D2. The linear model 
equation for this edge model is written as follows:
. " - ... : /■' .. g = A h + e, (5.56)
, ;V: / /';;; ~ ; ~
where ■ V . - ■ •

g = I[gl &2 S3 • • • g j 1 (5.57)

e = I[e I- e 2 e 3 • •• ê t -.-rC'1'' - V /. =.’■
■ , - ■

0.5 I I 0 0.5 I 0 0 0.5 ■■■ ■- - ■■■ . :

0.5 0 0 I 0.5 0 I I 0.5 (5.59)

h = O1 h2] ‘, (5.60)
■ . V-.. ;v:: '

and the script t in (5.57)-(5.60) denotes matrix transposition.
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5.4.3. Param eter Estim ation

We now address the problem of parameter estimation. As we indicated 
before, for proper definition of the linear model, it is necessary that the 
matrix B and the vector c in (6-7) be Such that the q x k matrix B must

have a full rank (i.e., the rank = k), and the set of equations B© = c must

have a consistent set of solutions. A simple choice for the matrix B and the 
Vector c which satisfies these requirements is the following:

B = [I - l ] ,  (5.61)

C = O. (5.62)

This choice for B and c is also similar to that in [KaL86].

With the above choice for B and c , the hypothesis H 1 and H2 are now 

written as follows:

h,
H 1 : [ 1 - 1 ]

1I

= 0,

* 0.H 2 : [I  - 1 ]

From the above specifications of A, B, and c, 

L = 9, k = 2, and q = I. Hence the statistic A in (5.55) is

A 2 VA = 7 (
A  2 A 2O 1 -  O

)

(5.63)

(5.64) 

we have

(5.65)

The maximum likelihood estimation (MLE) for the parameters O2 and 
O1 can be easily calculated as follows: For the above choice of B and c , H 1 is

the no-edge hypothesis, that is, Ii1 = h2 = h. Hence, (5.42) becomes

g = A '+  e, (5.66)

where

A '=  A (5.67)



Equation (5.66) is the classic deterministic signal and additive noise problem. 
The MLE is

d .2 = I i ( S i - P ) 2. (5.68)

where

P  = -Q E  giV 
■ i= l

(5.69)

For hypothesis H2, the edge hypothesis, the MLE for C2 is obtained 
from the minimization of the natural logarithm in (5.46), which can be 
written in the following quadratic form:

J = 2  ( Si — h i) + 2  ('Si ~
i= 2,3,6 i=4,7,8

hi + h2
,  ) + 2  ( S i -  h2) .(5.70)
Z i= 1,5.9

Differentiating (5.70) with respect to Ii1 and h2 and equating the derivatives 
to zero, it is simple to show that the MLE for Ii1 and h2 are as follows:

■ ■ ,  ■ ■ . ■' hi =  W!lg, (5.71)

. ? ri2 = w2tg, . A . (5.72)
" . . '■ ’ ■ . . v

where . ; A A ; A , ’■■■ A A" a; AaA A > . a  ■ A ’ /

v A = i ? t 2 5 5 - 1  2 5 - I  - I  2 ]‘ (5.73)

arid ■ V / :  ' v A - ; '

: J ■ .
W2 = T J l 2

- I  - I  5 2 - I  5 5 2] V (5.74)

Hence, the estimate d 2 has the following form:

2 ^  /  r  V2 v ,  /  h l +  h 2A . ^  ,  \  2
2  ( s i -

i= 2.3,6 '■ i= 4,7,8

■ 2
) + 2  ( f t - h ; ) ' .  (5.75)

i= 1.5,9

The values for other edge models are similarly calculated. Table 5.1 
provides a summary of the equations needed to calculate the statistic (5.55) 
for the four edge models.
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Table 5.1. The test statisitic A for 4-edge models.

A = 7( — ; ) « t '-=  ( f t  -  IT)2 (T= - T r i s i
6- 1= I

hi = WiV  i € [1,2] g = Tgi g2 * • • g9] 

~  Edge model H

* 2  = X (&
i= 1.2,3

W 1 =

W2 =

h, + h2 . 2 ,
- V j l ) + £  ( a

Z : i= 7,8,9
" h i) + X  (Si

■; i= 4,5* 6

i [ 5  5 5 2 2 2 - 1  - 1  - I j t
I O
I r ; nt_L.[_1 - I  - I  2 2 2 5 5 5]

I O

h2)

Edge model V — — —  >
. 2 1̂1 + h2 2 V

h i )  +  X  ( S i "  -  -,-  )  +  X  ( g i
i= 2,5,8 : +  - i-3 ,6 ,9

i [ 5  2 - I  5 2 - I  5 2 - I ] 1 
■. Io

* 22 = 2  ( & -
i= 1,4,7 '

W 1

h2)

W2 =  -j j [ -  1 2  5 - I  2 5 - 1  2 5 ]1

«22 = I  ( s -  h i ) 2
i= 1,2,4

Edge model D1
> I i1 + h 2 %

*  I  (a -  -4-^-) -
i= 3,5,7 z

2  ( g i -  I i2 ) 2
i= 6,8,9

= 1T[5 5 2 5 2 -I 2 - 1 - I j 1

Wj “ T?[- 1 - 1 2 - 1 2 5 2 5 / '■ ''

i^ a g e  m o a e i  U 2 V VV';
^ 2 2 = X  ( g i  -  h i )■■■■■• i= 2,3,6

+ Z  ( s i -
i=4,7 ,8

h i  + h 2 2 

: 2 } + 2  ( g i -  I12 ) "
i= 1,5,9 v/‘v : '■

5 5 - 1 2 5 -1 -I 2]‘

" 1?[2 - 1 - 1 5 2 - 1 5  5 2]: .. ;
; ''V.' ■ 'V V- . . ■ 'V - ..•V-v/'-'; •
' , - \ : ' ■ - • ' ' ' . ; ' ’ V;-

' -V 7v "v > ’ VT V -, V.. ' ;V.

:' \ ■■ ■ y V y ' y



5.4.4. M etric Evaluation

The proposed metric in (5.42) is formed of two components: A measure 
for differentiation between possible transitions on a certain branch of the path 
(i.e., to select one of the three possible extensions of a certain node on the 
path), and a measure for a priori information about this specific branch. 
These two components were represented by the quantities and h j^ v 
respectively. Evaluation of the quantity hj() will be addressed in the 
following section. The quantity |5j() is evaluated from the linear model as 
follows:

(1) Knowing the predecessor of the current node, select the next node 
by choosing the edge model (among the three possible niodels) that 
has maximum value of A in (5.55).
(2) Set to be equal to the value of A in the previous step.

For example, in the situation shown in Figure 5.8a, we need to evaluate 
A for edge models {H, D 1, D2) and choose the maximum. Ties are selected 
either arbitrarily or according to the value of the a priori information measure 
(the second part of (5.42)), but always in favor of goal nodes.

Ignore for a moment the a priori information part in (5.42); that is, 
consider the following path metric:

YQ(Pa i) £ p/» .
j=i

(5.76)

The cost of the i th path having Q-nodes is the additive cost of all the nodes 
forming it. The cost associated with node j (the j th branch) is obtained from 
(5.65). It is obvious that only local calculations are needed to obtain this cost
and, therefore, the metric in (5.76) is very easy to calculate. While we have 
not yet proved that the metric in (5.76) possesses the desired drift 
characteristic or that it is unbiased with respect to the path length, our 
experimental results (using only the metric in (5.76)) seem to indicate that 
the metric does not overestimate the cost of a certain path (as evident in the 
resulting accurate edge localization.) Now, since the A* algorithm (which was 
used in our experiments) always finds the optimal path if the cost is not 
overestimated (see [DeP88]), therefore, we can conclude that our path 
metric is very adequate for implementing the sequential search to link the
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Finally, we should point out that Kay and Lemay [KaL86] have also 
used the linear model in their study. However, Our approach differs from 
theirs in four main points. First, they consider only two edge models, the 
horizontal Vand the vertical edge models {H, V}. Second, and most 
importantly, they detect edges solely based on the value of the ratio in 
(5.55), that is, a threshold is set, and an edge pixel is declared if the ratio 
exceeds this threshold. As a result, their approach suffers from the well 
known problems associated with edge detection by thresholding (e.g., 
[FaD86]). Third, their approach gives no consideration to edge orientation; 
thusj the issue of edge localization is totally ignored. This, in addition to the 
previous point, explains why the authors had poor edge detection results. 
Finally, our approach uses the linear model as a part of the linking algorithm 
on enhanced edges and not on the original image as in [KaL86]V

5.4.5. A Priori Information Measure

We first obtain a gross estimate of the actual object boundaries in the 
image. This was obtainedVby the zero-crossing contours of the V 2G [MaH80] 
operator. The selection of the V rather than, say, the V G [Can86] 
operator was due to the fact that the zero-crossing contours are continuous. 
Therefore, an estimate of the actual boundaries can be obtained at every 
point in the image. These boundaries are called prototype or typical 
boundaries. The quantity hj(pb>) in (5.42) is evaluated as follows: Over the 
support of the edge models discussed before (3 x 3 windows), the following 
distance measure is calculated for each of the two nodes off the center:

dm = £  k n  - X n0I  +  Iym -  y „ ° l ,
n = l

1, 2 , (5.77)

where x^and ym are the coordinates of the m th node off the center of the 
current node under consideration, and x„°and y„° are the coordinates of the 
n th node of the typical boundary (within the 3 x 3 neighborhood of the 
current node) obtained from the V 2G operator. The distance measure in 
(5.77) is to be used in conjunction with the angle information to decide, for a 
given edge model, which node is to be extended from the center node, i.e.,
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backward or forward.

For example, in the H -model, let the coordinates of the center node be 
r = (jt,y). The distance measure is calculated as follows:

d I = Z  ^n0! + K y-I) -  yB°l, (5.78)

and

d2 = S k - ^ 0I + I ( J H -I ) - J ./! .
--ViU=I/.; V-;

(5.79)

Now if dj < d2, the node to the left is chosen, provided that the angle 
information is not conclusive (and unless the node to the right is a goal 
node) and vice versa. Similarly, if the likelihood ratios of any two edge 
models are the same, then the distance measure evaluated for the nodes of 
the two models (off the center) decides where the next node is to be 
extended.

Our use of a prior information, as outlined above, is merely a guide in 
breaking ties. Other heuristics are possible (see [E1C82], [Mar76], and 
[AsM78]). The search algorithm that uses the metric we just described will 
be denoted by LINK.

5.5. The Linking Algorithm (LINK)

The sequential linking algorithm that uses the metric in (5.42) and the 
A* algorithm (or the Stack algorithm) is outlined in the following steps.

Algorithm:

Step I. Perform edge enhancement using a gradient operator of 
suitable width.

Step 2. Choose a starting node (a pixel with maximum gradient 
magnitude) and find the corresponding initial direction from the 
gradient angle.

Step 3. Transitions on a path i are carried out by the A+ algorithm (or



the Stack algorithm) depending on the value of the metric y(-) in 
(5.42).

Step 4. Stop the search when all goal nodes have been examined, when 
a stack overflow occurs, or when the paths discovered intersect each 
other. --V V. - - .;v,- -

So far, we have examined in detail the issue of a quantitative path 
metric. To useg raph  search algorithms in edge Iinking, we need also to 
define the following quantities: (I)  A representation of the edge information 
at each node; (2) A starting (root) node; (3) A class of goal nodes. We used 
the V G operator for edge enhancement. Therefore, the edge information 
(gradient vector) is represented in terms of a magnitude map and angle map. 
This is typical with the majority of the edge linking techniques in the 
literature (e.g., [AsM78] and [EiD85b]). In the rest of this section we will 
discuss, briefly, the issues of root node selection and goal nodes definition.

5.5,1, Root Node Selection

A quantitative measure for the root node selection is hot always possible. 
A general rule, however, is that this node should lie oh an actual edge. This 
will, in turn, provide a good start for the search algorithm and reduce the 
overall search time. An attempt to quantify the selection of the root node 
was given by Eichel and Delp [EiD85b]. Briefly, they used the classical 
solution of the signal detection problem involving two sighal levels plus an 
additive noise. The minimum probability of error solution selects the root 
node such that the probability of false alarms is minimized; thus, the node of 
the highest gradient magnitude is selected as the starting node.

If significant a priori information is known about the edges in the scene, 
empirical methods can be used to determine the root node. For example, in 
the experiments of [AsM78] on angiocardiograms, a prototype for the 
boundaries of the heart was used as a means of limiting the candidates for 
the root node to those who best fit the prototype model. The accuracy of this 
approach, however, is a function of the adequacy of the a priori information.

In this chapter, we will also select the root node to be the point of 
highest gradient magnitude.



5.5.2. GoalNodes Definition

No specific rules can be adopted for all applications- Again, a priori 
information and the general definition of edge elements are often used to 
determine goal nodes (e.g., [AsM78], [C0E8O], and [EiD85b]). I f  the 
objects in the scene have circular (or closed) boundaries, the class of goal 
nodes can be assigned such that the best path closes on itself. If the scene 
contains long objects, the goal nodes can be selected such that the search is 
terminated when the best path runs off the image boundaries.

If the path metric is such that beyond an abrupt edge its value decreases,
a criterion for goal node selection or search termination based on the 
behavior of the metric can be used [EiD85b]. This criterion is summarized as 
follows: When the metric of the best path falls below some specified fraction 
of the highest metric along that path, the search is terminated; While this 
approach seems reasonable for abrupt intensity edges, other edges that have 
smaller values or that are slowly fading might not be well characterized by the 
behavior of the path metric. In this case, empirical methods must be used to 
assign goal nodes.

In this chapter, the goal nodes were selected such that: (i) The nodes 
considered by the search algorithm have a Coiresponding gray level pixel 
values (gradient magnitude) within 30% of the maximum (that defines the 
root node); (uX Paths do not intersect the image boundary; and (iii) Short 
paths (less than 18 pixels long) are neglected.

5.6. Results

The two algorithms, SEL and LINK, have been applied to various test 
and natural scenes. We will compare the relative performance of the two 
algorithms, as well as their performance, to the non maximal suppression 
approach of Canny [Can86]. The comparison, to be of any value. must start 
from a certain step common to all (he algorithms. The output of 
nonmaximum suppression and thresholding is, usually, broken contours 
(streaks). Therefore, its comparison with the SEL and LINK algorithms is, 
essentially, to test the adequacy of the path models used in the algorithms to 
represent connected object boundaries. Two types of test images are used in 
these experiments: A step test image [Pra78], and a discs test image [KiR81 ].
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W e adopt the follow ing procedure for comparison o f  the algorithm s on 

test images:

(1) Edge enhancem ent is accom plished by the V G  operator. The edge 

enhanced map is in terms o f  an edge m agnitude M AG and an angle ANG  

file.

(2 ) N on m axim um  suppression is perform ed on the edge enhanced maps. 

The threshold used is selected by an analytical m ethod, e.g., the iteration 

m ethod |R iC 78] or the entropic thresholding m ethod [PanSlJ. (See [FaD 86| 

for m ore on these m ethods as well as various threshold selection techniques.)

(3) The SEL and LINK algorithms are run on the original edge enhanced  

map. The threshold from step (2) is used as an upper bound for the two 

linking algorithm s.

(4) In the case o f  the Step test im ager the Pratt figure o f  merit [Pra784 is used  

as a heuristic to test edge localization and the num ber o f  edge pixels detected  

by each algorithm. This figure o f  merit will be used to test the output o f  the 

linking algorithms as w ell as the nonm axim al suppression approach.

(5) Since the SEL algorithm in [E iD 85a| was im plem ented  using a first order 

M arkov chain m odel for the path, and since LINK uses an LRT on a 3 x 3 

window, the com parison should provide an evaluation o f  the m etrics used in 

SEL and LINK . N o a priori inform ation has been used in this com parison. 

That is, the value o f  the parameter hj(pW) in (5 .42) was set to zero.

In the follow ing discussion, first the edge enhancem ent procedure as  

described. Then, the performance o f  the algorithm s on test im ages is 

exam ined. Finally, we discuss how  the algorithms com pare (visually) on 

natural scenes.

5.6.1. G enera tionoftheE dge  E nhancem entM ap

In Chapter 4 we studied optimal edge enhancem ent filters and we also 

com pared the relative perform ances for two such filters, nam ely, the 

V G and the V 2G  operators. We concluded that the V G  operator



outperforms the V 2G operator in terms of edge localization/ The SEL and 
LINK algorithms were tested Pri edge enhancement maps generated /by the 
V G operator.

A practical implementation for edge enhancement by the V G operator is 
now described.
(1) Estimate the smoothing filter parameter Of (Chapter 4).
(2) Since the Gaussian kernel is separable, only one-dimehsiOnal convolution 

necessary/ thus, a gradient magnitude MAG and direction ANG files are
constructed as follows:

(a) Sample the one-dimensional Gaussian kernel such that the total 
■ .'A span is about 7 6 f.

(b) Construct two files gh, gv from the horizontal and vertical 
convolutions of the digital image with the 1-d GaussiankerneL
(c) Calculate an estimate of the gradient magnitude and direction using 
the following equations:

,0.5 - ■/
MAG = [gh2 + gv2]

ANG = tan" 1C — ).
Sh ^

(5.80)

(5.81)

(d) Quantize the direction map into eight possible values, as in Figure 
5.2b.

5.6.2. Performance on Test Images

We used two test images to evaluate the performance of the linking 
algorithm s: The step image of P ratt [Pra78] and the discs image of K itchen 
and Rosenfeld [KiR81]. These images have been used in the fiteratufe to 
test the performance o f edge operators. Zero-mean Gaussian noise with 
standard deviation a  is added to each test image. The signal-to-noise ratio 
(SNR) is defined as follows:

SNR = ( —  ) 2 (5.82)

where A is the image contrast (step height).



The Pratt figure of merit [Pra78] is used as a qualitative measure for the 
performance of the three algorithms on the step image. This figure of merit 
(R) penalizes an edge detection algorithm for wrong edge points and for 
missing an edge point. It is defined as follows [Pra78]:

I 1A I

1N £  I + ad 2
(5.83)

where In = m ax(lI?IA) and I1 and Ia represent the number of IdeM and 
actual edge map points, a  is a scaling constant, and d is the separation 
distance of an actual edge point normal to a line of ideal edge points. The 
above measure is normalized such that R =  I for perfectly detected edge 
points. The scaling factor a  may be adjusted to penalize edges that are 
localized but offset from the actual edge position. Normalization by the 
maximum of the ideal and actual edge elements insures a penality for 
smeared or fragmented edges [Pra78].

I. Step Image

The step test image is a 128 x 128 image formed such that the first half 
has a gray level value of 115, the second half has a gray level value o f 140, 
and the one-pixel wide column located in the center has a gray level value of 
128. A zero-mean Gaussian noise is added to this image. The variance of the 
Gaussian noise was selected such that the SNR defined in (5.82) takes on the 
values 100, 10, I, and 0.5. Figure 5.11 shows the original image for various

In Figure 5.12, the top row shows the results of NONMAX for various 
SNR, the second fOy/ shows the results of SEL for various SNR, the third 
row shows the results of the SEL2 algorithm, and the fourth row shows the 
results of LINK. Threshold values used in these graphs were 3, 9, 22, 28 for 
SNR=  100, 10, I, 0.5, respectively. Edge enhancement was performed by 
the V G  operator of size 7 x 7 (i.e., the standard deviation of the CJaussian 
kernel a f = 1.0).

Figure 5.13 is similar to Figure 5.12, except the size of the V G operator 
was 9 x 9  instead (i.e., the standard deviation of the Gaussian kernel 
a f = 1.3). Threshold values used in these graphs were 2, 6, 17, 21 for



Figure 5.11. A noisy step test image. 
(Upper left: SUR -  100; Upper right: SUR .,=■•. 10 
Lower left: SUR = I; Lower right: SUR = 0.5)
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Figure 5.12. Perform ance p f the linking algorithms on the step im age. 
Edges enhanced by a 7 x  7 V G  operator 

(Top row: Edge elem ents extracted by N O N M A X .
Second row: Edge linking by the SEL algorithm.
Third row: Edge linking by the SEL2 algorithm.

Bottom  row: Edge linking by the LINK algorithm .)
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Figure 5,13;. Performance of the linking algorithms on the .step image. 
: Edges enhanced by a 9 x 9 VG operator 

(Top row: Edge elements extracted by NONMAX.
. Second row: Edge linking by the SEL algorithm.

: Third row: Edge linking by the SEL2 algorithm.
Bottom row: Edge linking by the LINK algorithm;)
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SNR = 100, 10, I, 0.5, respectively.

All algorithms performed well at SNR = IOO, 10. The contour obtained 
from the SEL oscillated slightly around the actual edge location, however. At 
SNR -  I, N<3NMAX provided a broken edge contour and the number of 
false edge points increased as we lowered the threshold. SEL alsoprovided an 
oscillatory arid broken contour, while LINK provided the feWest oscillations 
of the three algorithms. The same conclusion can be drawn at SNR — 0.5. 
The Pratt figure of merit for the three algorithms is shown in Table 5,2. for 
the 7 x 7 window and in Table 5.3 for the 9 x 9 window. The tables indicate 
that LINK performed best, especially at lower SNR; The results of SEL and 
SEL2 are very close on the step image. The main advantages of using the 
subOptimal metric in (5.34)-(5.41) is that the metric is estimated from the 
actual image, thus we can isolate the errors due the metric from the errors 
due to the search algorithm.

2. Discs Image

The discs image is a 128 x 128 image formed as in [KiR81]. Briefiy, the 
iniage is formed originally from a 512 x 512 image consisting of two gray 
levels, 115 (dark) and 140 (light). The image contains a dark circle of radius 
64 at its center surrounded by six concentric circles of width 32 with 
alternating dark and light gray levels. The final 128 x 128 image is obtained 
by compressing the original image by a factor of four. The contrast A is 25, 
the same as in the step image. Zero-mean Gaussian noise was also added to 
the original image. Figure 5.14 shows the original image for various SNR,

Figure 5.15 shows the results of the algorithms on the discs image. The 
threshold values were 8, 8, 21, 30 for SNR == 100, 10, I, 0.5, respectively. 
The spatial support of the V G was 7 x I. Figure 5.16 shows the results of 
the algorithms on the discs image. The threshold values were 6, 6, 15, 21 for 
SNR = 100, 10, I, 0.5, respectively. The spatial support of the V G was

At SNR 10, SEL produced an incomplete contour in parts of the 
second circle from the outside. Ori the other hand, few false boundaries were 
detected by LINK because the threshold set on A was slightly low. As the 
SNR is reduced, the performance of the algorithms deteriorates. This was



Table 5.2. The Pratt figure of merit for 7 x 7 window.

SNR;:
P ra ttF igu reo fM erit

NONMAX Vs e l :;; SEL2 LINK

100 100% 99% 100% 100%

10 85% 85% 85% 94%

I 51% 50% 49% 53%

0.5 45% 25% 24% 39%

Table 5.3. The Pratt figure of merit for 9 x 9 window.

SNR
Pratt Figure of Nlerit

NONMAX SEL SEL2 LINK

100 100% 100% 100% . 100%

10 96% 94% 94% 94%

-V-vI:.'.''-/ 51% 52% 50% 62%

0.5 45% 30% 29% 49%



Figure 5.14. A noisy discs test im age. 
(U pper left: SNR = 100; Upper right: SNR = 10 
Low er left: SNR — I; Lower right: SNR = 0 .5)



Figure 5;15. Performance of the linking algorithms on the discs image. 
Edges enhanced by a 7.x 7 V G operator 

(Top row: Edge elements extracted by NQITMAX.O -i: ' 
-Second row: Edge linking by the SEL algorithm.
Third row: Edge linking by the SEL2 algorithm, 

row: Edge linking by the LINK algorithm.)
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Figure 5.16. Performance of the linking algorithms on the discs image. 
Edges enhanced by a 9 x 9 VG operator 

(Top row: Edge elements extracted by NONMAX. " 
Second row: Edge linking by the SEL algorithm.
Third row: Edge linking by the SEL2 algorithm.

Bottom row: Edge linking by the LINK algorithm.)
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the case for either enhancement filter spatial supports.
The following conclusions can be drawn from the above experiments ©e 

the step image and the discs image: First, the performance of the algorithms 
depends to. a. large extent on the accuracy of .'the enhancement step ..; At this 
point -we should emphasize that a larger spatial support of the V Q-. operator 
might not always be a good choice and the classical, compromise between 
spatial- and' temporal resolutions should always he -.-addressed. - Secondly, the 
path .definition's: used in SEL (also adopted in our experiments)-might not be 
su ita i^ e : '^ :high'ly-oscillating edge boundaries,: '

Since- the results o f -SEL andSEL2 were .very comparable on test images, 
we will com pare the results' of LINK vs . NONMAX and SEL only' on,, real
scenes. ■ - \  A

S,6.3f. ,Performance on Real Scenes ..-. i. ■.

In this section we discuss the relative performance of LINK, NONMAX, 
and !SEL op some real world scenes. The following description- is common to 

all figures: - T^e original image - is shown - in the upper' left-hand ■ corner, 
NONMAX ,results, in the upper right-hand corner,.-..SEL; results in the .lower , 
left-hand corner, and: the results of LINK'are shown .in'.thedower.ri^i-t-hand. 
corner. ,A:; A- . A-";  '.

Figure. 5,17 shows the results on. the airport image. Edge- enhancement 
was; accomplished- by a V G  operator of spatial support %  x ;T, (i.e.» Of = 1.0). 

The SEL m issed  totally the airplane- located on the topmost, right-hand side - 
of the original im age. This specific airplane' was -detected by-TdNK;: a few 
extra, details along with the : airplane’s, boundaries ’ were also :detected,, 
however. 'The upper bound for the threshold used in the three algorithms -was 
30.0.

Figure : 5.18 shows the results on the mechanical .parts'(rods)- image. 
Enhancement was performed by a V G operator of. ,spatial support 14 x !4- 
(i.e.,' =2).; The upper bound, threshold was 'TOO.;The three 'algorithms
■performed'approximately the same. SEL did not provide a complete outline 
for the contours while LINK contours, were better localized. ;1 A  smaller spatial 
support for"the -enhancement algorithm should be, more;;’appropriate,; for this
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Figure 5.17. Performance of the linking algorithms on the airport image.
(Upper left: original, upper right: NONMAX, lower left: SEL, lower right: LINK)
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Figure 5.18. Performance of the linking algorithms on the rod's im age.'
(Upper left: original, upper right: NONMAX, lower left: SEL, lower right:.LINK)



image.

figu re  5.19 shows the results on the outdoor scene enhanced by a V G 
operator of spatial support 7 x 7 and a threshold upper bound of 25. Many of 
the details in the image were preserved by the algorithms, in spite of its 
overcrowding. Note that the trees, particularly those on the upper left-hand 
portion of the original image, were not picked up by the SEL because of the 
inherent tendency to emphasize long edges. Also note that LINK boundaries 
were not completely closed, especially in the car image. This is an example of 
where the metrics in the linking algorithms cannot adequately allocate the 
object boundaries. A priori information of the scene can be useful in such 
situations. ■

Finally, Figure 5.20 shows the performance on the girl image enhanced 
by a V G operator of spatial support 7 x 7  and an upper bound threshold of 
23 for the three linking algorithms. Notice the distinct improvement on this 
picture compared to Figure 5.19. The picture herb was less crowded, and the 
contrast between the object and the background was great which resulted in a 
very good enhancement map. This was reflected on the response of the three 
linking algorithms. LINK shows, however, too many details of the image. A 
higher threshold for the A used in the algorithm would reduce these details.

The following conclusions can be drawn form the results of the 
algorithms on real scenes. First, LINK performed at least as well as the SEL 
on all of the images. This indicates that the assumptions and the heuristics 
included with these algorithms are adequate. Secondly, when the contrast is 
low or when the image is crowded, only LINK provided adequate details 
about the object’s boundaries in the scene. Finally, LINK performed as fast 
as the SEL because of the restrictions which were included on the size of the 
search domain.



Figure 5.19. Performance of the linking algorithms on the outdoor image. 
(Upper left: original, upper right: N O N M A X , lower left: SEL, lower right: LINK)



Fijgure 5,20. Performance of the linking algorithms on the girl image.
(Upper left: original, upper right: NONMAX, lower left: SEL, lower right: LINK)

..I. -. 4»,:.. IKj' 'f "



5.7, Sum m ary

In this Chapter we examined the application of sequential search 
techniques for edge linking. Various important issues of sequential search 
were studied. A new metric based on the linear model was developed and 
analyzed. A search algorithm (LINK) that used this metric and the Stack 
algorithm for edge linking was constructed. Results of LINK compare well 
with respect to nonmaximal suppression and thresholding [Can86] and also 
with respect to the SEL algorithm [EiD85b], and [EiD88]. The metric is easy 
to compute and provides more accurate results than the nonmaximal 
suppression technique, and at least as accurate results as the SEL algorithm 
with comparable execution time.
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CH APTER 6 
CONCLUSIONS

6.1. Problem Review

In this thesis we have developed two image segmentation algorithms 
based on recent results in random field theory. As we pointed out, the
purpose of image segmentation is to isolate Objects in a scene from the 
background. This is a very important step in any computer vision systetn 
since variou s tasks, such as shape analysis and object recognition, require 
accurate image segmentation. Image segmentation can also produce 
tremendous data reduction. Edge-based and region-based segmentation have 
been examined and two new algorithms have been developed.

The edge-based segmentation algorithm uses the pixel gray level 
intensity information to allocate object boundaries - in two stages: Edge 
'enhancement,, followed by edge linking. Edge enhancement is accomplished 
by maximum energy filters used in one-dimensional bandlimited signal 
analysis. The issue of filter spatial support was examined on ideal edge 
models. Edge linking is performed by quantitative sequential search using the 
Stack algorithm. A probabilistic search metrics is introduced and its 
performance is evaluated on test as well as real scenes. Compared to other 
methods, this algorithm is shown to produce more accurate allocation of 
object boundaries.

Region-based segmentation was modeled as a MAP estimation problem 
in Which the actual (unknown) objects were estimated from the observed 
(known) image by recursive algorithm. The observed image was modeled by 
an autoregressive (AR) model whose parameters were estimated locally, and 
a Gibbs-Markov random field (GMRF) model was used to model the 
unknown scene. A computational study was conducted" on images having 
various types of texture images. The issues o f parameter estimation, 
neighborhood selection, and model orders were examined.



6.2. Conclusions

The following are the main conclusions of this research. First, it was
shown that a number of edge enhancement filters belong to the class of 
maximum energy filters. The link between these filters is used to study the 
problem of filter spatial support selection. We have shown that for ideal 
edges (e.g., edges in the step dr discs test images an accurate formula 
relating the filter width tP tUe edge structure was possible. This is not, 
however, possible in general because the actual edge structure cannot be 
known a priori in actual scenes. Gaussian smoothing before taking the 
derivative (Laplacian or gradient) provides the necessary regularization to 
change the ill-posed numerical differentiation problem into a well-pOSed 
problem.

Secondly, the problem of sequential search as applied to edge linking was 
further quantified. We have developed a suboptimal metric to guide the 
search in the SEL algorithm. The proposed metric is globally optimal (i.e., it 
corresponds to the metric in [EiD85a]) and locally suboptimal since it uses 
data on a neighborhood of a pre-selected boundary. The optimality in 
question relates mainly to the desired drift property; that is, the metric will 
tend to have a smaller magnitude on wrong (random) edge paths than its 
value on correct edge paths [EiD 85a], [EiD88], We have developed 
estimation techniques for this metric that uses the gradient magnitude in the 
edge enhanced image by a gradient operator (e.g., the V G operator)^ 
Through this suboptimal metric, the SEL algorithm becomes fully data- 
driven. A novel metric based On the linear model Was alsd introduced. By 
fitting a linear model to four possible edge models defined on a 3 x 3  
windows of the edge enhanced image, a likelihood ratio test (LRT) was 
derived to guide the process of node extension in sequential search. The 
resulting metric is easy to implement and provides a very comparable results 
to the SEL metric on test as well as real world images. The new metric is 
data-driven, and the execution time of the search algorithm with/(his.,;mptr.iC' 
is lower than its value with the SEL metric.

Finally, we conclude that the MAP approach for region segmentation 
generally works well on images having a large content of 'microtextures,, 
which can be properly modeled by both AR and GMRF models. On these



texture images, second-order AR and GMRF models were shown to be 
adequate. :

6.3. Suggestions for Further Work

Sequential search relies on the ability of the Cvkluatibh function (path 
metric) to discover only those paths having a higher probability of being 
object boundaries. In adjusting the edge linking problem to sequential tree 
search, heuristics were introduced. Since this, in general, is problem related, 
the need exists for an optimum set of rules which are not problem 
dependent. This can be done by further quantifying the edge enhancement 
step such that edge definitions are specifically included in the linking 
algorithm. Although this was done in our current work, the question of edge 
definition to a great extent remains open.

The search metrics developed in this thesis depend upon the random 
field model fitted to the data window. A class of random field models can be 
used in this regard. An accurate criterion for the selection between the
various members of this class is needed. This is still an open research area of 
both theoretical and practical importance. Also, modern stochastic 
optimization techniques such as simulated annealing might be useful in 
getting the MAP solution instead of the recursive approach we implemented 
in this thesis.

Finally, a quantitative comparison between the more recent model-based 
techniques for edge detection techniques, whether parallel (e.g., Geman et al. 
[GeG88]) or sequential (e.g., the algorithms developed in this thesis), should 
be researched. Further study will help us understand the advantages and 
limitations of using random field concepts in edge detection. Further research 
is also needed in the area of image segmentation using random field models. 
The majority of the algorithms in the literature, thus far, have centered on 
texture images.
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APPENDIX
TEXTURE SYNTHESIS

Monte Carlo methods [HaH64] can be used for generating sample 
functions of a random field once the probability distribution of the field is 
specified. It has been used by various researchers for texture synthesis (e.g. 
[HaS80], [CrJ83], and [DeE87]). In general, this method is computationally 
expensive. For finite fandom fields, we saw in Chapter 2 that a simpler 
description results from using the torus assumption ([Mot73], [KaC83]). 
With this assu m ption , a m atrix form u lation s for th e Markov ran dom fields 
(MRF) and simultaneous autoregressive (SAR) models result; these 
formulations have a convenient structure for fast calculations by the FFT 
algorithm. A simulation technique based on the torus assumption was 
developed by Kashyap [Kas80] that has been used in various texture studies 
(e.g. [Che81], [KaC83], [Kho83], and [KaK86]). We will use the Kashyap 
algorithm for generating the synthetic textures used in Chapter 3. A
description for this algorithm for the MRF and the SAR random fields now
r  l t  -  ■ ■ v  :v  ■ ■■■■'■■• ' . ' U -  ' ' - U  U v v v  ■■follows.

I. Kashyap Algorithm for MRF Texture Synthesis

Consider a square lattice S = {(i,j): O < i,j ^  M - 1}, and a symmetric 
neighbor system ry e S. The random field G is described by (S , F, P, {Gs}). 

Consider also another stationary Gaussian random field E = {Es; s e S } with 
correlation structure as below (Equ. 2.34)

E(EsE1)
v if s = r

■—0(s- r)v if ( s - r )  e Tj 
O otherwise.

(A.I)

Using the torus assumption, we can write the finite lattice form MRF 
equation in the following form (Equ. 2.38):

Gs = £  GrG(*>.+• E ,  (A.2)
r e I)



In matrix form, (A 2) can be written, using the lexicographic representations 
(Equ. 2.2), as follows:

/ /(Q )g = e , (A .3)

where g and e are M2 X  I column vectors representing the gray level

information at pixel sites and the the innovation (non white), respectively. 
The matrix H(Q)  is M2 x M2 block circuIant and symmetric. Equation (A.3)

can be written, equivalently, as follows [Kas81]:

V/7(0)g = Vv T], (A.4)

where Tl is zero mean, unit variance, iid Gaussian random numbers. The

matrix 'I H(Q)  is also block-circulant and positive definite; thus its inverse 

can be obtained by Fourier calculations. The vector g, can be written as 

below.

j J s xS

- ” Mr ?  ViIT(Q) ’
(A.5)

.where

x S =  ^ v J y sttII ■'

■' ■' M 5 )  = ; 1 -  2 0 V S>

where the script t stands for transposition, and the vectors ys and <|>s are 

defined as follows for S = (i,j):

ys = [ l ,  ^jtj, X,2tj —' 1 tj.]1 - M2 x I vector

Ij = [ i ,  Xi, Xj2 -  a /* - 1] 1 - /-•

Xi = e x p (V - l  ^ ( i - 1 ) )
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where T|s is the asymmetric neighbor set (see Chapter 2.)
The Kashyap algorithm for M RF, as described above, can be 

implemented as follows:
(I)  Generate M2 random numbers for the vector t |.  Arrange these numbers

in an M x  M matrix x and get its two-dimen siphal discrete Fourier transform 
(D FT). Call this X.

(2) Scale each entry Xs € X, s = (i,j) by the factor V M G )

(3) Obtain the inverse DFT for the results in step (2).

It should be pointed out that the above algorithm generates strictly
stationary MRF configurations when the noise is Gaussian. For arbitrary 
distribution of the noise, the result is wide sense stationary Markov [Che81].

The convention used for the vector 0 for up to the third-order MRF (ry

is symmetric) is as follows:

;-V;- e = [B1 1 e2 1 e3], . ; (A.6)

where

Bi = [B(i,j-i), B(i+1>j), 0(i,j_i), B( ĵf l ) ] (A.7.a)

02 -  [B(i-i,j-i)v B(IfiJfi), ®(i-i.j+D’ B(i+ij_ i)] (A.7.b)

i B3 = [0 (̂ 2,j)» 0(i+2,j)»B(i,j-2)vB(iij+2)] • (A.7.c)

In the above equations, [O1] is the set of coefficients for the first-order MRF, 
[®i I 62] is the set of coefficients for the second-order MRF, and 
[O1 IO2 I 03] are the third-order MRF coefficients.

2. K ashyapA lgorithm forS A R T ex tu reS yn thesis

Consider, as before, a square lattice S = {(i,j): 0 < i,j < M - 1}, a 
neighbor system "n e S. The random field G is described by ( S, F, P, {Gs}). 

Consider another random field W = {Ws, s e S} in which the random 
variables Ws have a distribution with zero mean and unit variance. Recall that 
there is no restriction on the neighbor system Ti, that is, it need not be 
symmetric (Chapter 2.) The SAR model for finite lattice is described by a



difference equation as follows (see 2.55):

Gs = X  GrG(SH-T) © Ws, (A .8)
r e tI

where T) is an arbitrary neighbor set, {Ws} is a sequence of zero mean 
uncorrelated random variables with unit variance, and 
s =  (i,j) e S and r = (k,l) e ^  specify pixel locations on the image.

Now, using the toroidal assumption, we can write the finite lattice form 
corresponding to (A .8) as follows:

5 (0 )  g =  Vp w,  (A.9)

where the matrix 5(0) is block circulant involving at most M distinct blocks 
[Kas81]. Since the matrix 5 (0 )  is block circulant, its inverse can be obtained

by decomposition of the eigen values evaluated by the FFT algorithm. 
Equation A.9 can be written as follows:

S =  - ^ X y s J V t w / | t s(0 ) , (A .io)

where w is an M x M matrix of random numbers, y is the Fourier vector 

defined in (A.5), and iis(0 ) is defined as follows:

M  ®) = ( I “ ©V )

Ws= [exp(V ^T  -^ - ( s  -  1)V), r e T) ] .

The term ( ( s  — l ) lr) in the above equation and in the definition of the 
vector Ys is calculated as follows: let s = (i,j) and r = (k,l). Then this term

will be equal to ( (i— I) x k + (j—I) x l)

A configuration from an SAR random field can be generated by the 
Kashyap algorithm as follows:
(1) Generate M2 random numbers for the vector w. Arrange these numbers

in an M x M matrix w, and obtain its two-dimensional discrete Fourier 
transform .(P-FT)-. Call this W.

(2) Scale each entry Ws € X, s = (i,j) by the factor
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(3) Obtain the inverse DFT for the results in step (2).

We use the same convention for Tj as described above in the MRF. If T] 
is not symmetric, we put the zeros for the missing elements in the vector 0.
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