7,813 research outputs found

    Perceptual factors that influence use of computer enhanced visual displays

    Get PDF
    This document is the final report for the NASA/Langley contract entitled 'Perceptual Factors that Influence Use of Computer Enhanced Visual Displays.' The document consists of two parts. The first part contains a discussion of the problem to which the grant was addressed, a brief discussion of work performed under the grant, and several issues suggested for follow-on work. The second part, presented as Appendix I, contains the annual report produced by Dr. Ann Fulop, the Postdoctoral Research Associate who worked on-site in this project. The main focus of this project was to investigate perceptual factors that might affect a pilot's ability to use computer generated information that is projected into the same visual space that contains information about real world objects. For example, computer generated visual information can identify the type of an attacking aircraft, or its likely trajectory. Such computer generated information must not be so bright that it adversely affects a pilot's ability to perceive other potential threats in the same volume of space. Or, perceptual attributes of computer generated and real display components should not contradict each other in ways that lead to problems of accommodation and, thus, distance judgments. The purpose of the research carried out under this contract was to begin to explore the perceptual factors that contribute to effective use of these displays

    Effect of short-term exposure to stereoscopic three-dimensional flight displays on real-world depth perception

    Get PDF
    High-fidelity color pictorial displays that incorporate depth cues in the display elements are currently available. Depth cuing applied to advanced head-down flight display concepts potentially enhances the pilot's situational awareness and improves task performance. Depth cues provided by stereopsis exhibit constraints that must be fully understood so depth cuing enhancements can be adequately realized and exploited. A fundamental issue (the goal of this investigation) is whether the use of head-down stereoscopic displays in flight applications degrade the real-world depth perception of pilots using such displays. Stereoacuity tests are used in this study as the measure of interest. Eight pilots flew repeated simulated landing approaches using both nonstereo and stereo 3-D head-down pathway-in-the-sky displays. At this decision height of each approach (where the pilot changes to an out-the-window view to obtain real-world visual references) the pilots changed to a stereoacuity test that used real objects. Statistical analysis of stereoacuity measures (data for a control condition of no exposure to any electronic flight display compared with data for changes from nonstereo and from stereo displays) reveals no significant differences for any of the conditions. Therefore, changing from short-term exposure to a head-down stereo display has no more effect on real-world relative depth perception than does changing from a nonstereo display. However, depth perception effects based on sized and distance judgements and on long-term exposure remain issues to be investigated

    Stereo TV enhancement study Final technical report

    Get PDF
    Human depth perception of television displays in stereo, and nonstereo presentation

    Near-Field Depth Perception in Optical See-Though Augmented Reality

    Get PDF
    Augmented reality (AR) is a very promising display technology with many compelling industrial applications. However, before it can be used in actual settings, its fidelity needs to be investigated from a user-centric viewpoint. More specifically, how distance to the virtual objects is perceived in augmented reality is still an open question. To the best of our knowledge, there are only four previous studies that specifically studied distance perception in AR within reaching distances. Therefore, distance perception in augmented reality still remains a largely understudied phenomenon. This document presents research in depth perception in augmented reality in the near visual field. The specific goal of this research is to empirically study various measurement techniques for depth perception, and to study various factors that affect depth perception in augmented reality, specifically, eye accommodation, brightness, and participant age. This document discusses five experiments that have already been conducted. Experiment I aimed to determine if there are inherent difference between the perception of virtual and real objects by comparing depth judgments using two complementary distance judgment protocols: perceptual matching and blind reaching. This experiment found that real objects are perceived more accurately than virtual objects and matching is a relatively more accurate distance measure than reaching. Experiment II compared the two distance judgment protocols in the real world and augmented reality environments, with improved proprioceptive and visual feedback. This experiment found that reaching responses in the AR environment became more accurate with improved feedback. Experiment III studied the effect of different levels of accommodative demand (collimated, consistent, and midpoint) on distance judgments. This experiment found nearly accurate distance responses in the consistent and midpoint conditions, and a linear increase in error in the collimated condition. Experiment IV studied the effect of brightness of the target object on depth judgments. This experiment found that distance responses were shifted towards background for the dim AR target. Lastly, Experiment V studied the effect of participant age on depth judgments and found that older participants judged distance more accurately than younger participants. Taken together, these five experiments will help us understand how depth perception operates in augmented reality

    Near-Field Depth Perception in Optical See-Though Augmented Reality

    Get PDF
    Augmented reality (AR) is a very promising display technology with many compelling industrial applications. However, before it can be used in actual settings, its fidelity needs to be investigated from a user-centric viewpoint. More specifically, how distance to the virtual objects is perceived in augmented reality is still an open question. To the best of our knowledge, there are only four previous studies that specifically studied distance perception in AR within reaching distances. Therefore, distance perception in augmented reality still remains a largely understudied phenomenon. This document presents research in depth perception in augmented reality in the near visual field. The specific goal of this research is to empirically study various measurement techniques for depth perception, and to study various factors that affect depth perception in augmented reality, specifically, eye accommodation, brightness, and participant age. This document discusses five experiments that have already been conducted. Experiment I aimed to determine if there are inherent difference between the perception of virtual and real objects by comparing depth judgments using two complementary distance judgment protocols: perceptual matching and blind reaching. This experiment found that real objects are perceived more accurately than virtual objects and matching is a relatively more accurate distance measure than reaching. Experiment II compared the two distance judgment protocols in the real world and augmented reality environments, with improved proprioceptive and visual feedback. This experiment found that reaching responses in the AR environment became more accurate with improved feedback. Experiment III studied the effect of different levels of accommodative demand (collimated, consistent, and midpoint) on distance judgments. This experiment found nearly accurate distance responses in the consistent and midpoint conditions, and a linear increase in error in the collimated condition. Experiment IV studied the effect of brightness of the target object on depth judgments. This experiment found that distance responses were shifted towards background for the dim AR target. Lastly, Experiment V studied the effect of participant age on depth judgments and found that older participants judged distance more accurately than younger participants. Taken together, these five experiments will help us understand how depth perception operates in augmented reality

    Near-Field Depth Perception in See-Through Augmented Reality

    Get PDF
    This research studied egocentric depth perception in an augmented reality (AR) environment. Specifically, it involved measuring depth perception in the near visual field by using quantitative methods to measure the depth relationships between real and virtual objects. This research involved two goals; first, engineering a depth perception measurement apparatus and related calibration andmeasuring techniques for collecting depth judgments, and second, testing its effectiveness by conducting an experiment. The experiment compared two complimentary depth judgment protocols: perceptual matching (a closed-loop task) and blind reaching (an open-loop task). It also studied the effect of a highly salient occluding surface; this surface appeared behind, coincident with, and in front of virtual objects. Finally, the experiment studied the relationship between dark vergence and depth perception

    An automated calibration method for non-see-through head mounted displays

    Get PDF
    Accurate calibration of a head mounted display (HMD) is essential both for research on the visual system and for realistic interaction with virtual objects. Yet, existing calibration methods are time consuming and depend on human judgements, making them error prone, and are often limited to optical see-through HMDs. Building on our existing approach to HMD calibration Gilson et al. (2008), we show here how it is possible to calibrate a non-see-through HMD. A camera is placed inside a HMD displaying an image of a regular grid, which is captured by the camera. The HMD is then removed and the camera, which remains fixed in position, is used to capture images of a tracked calibration object in multiple positions. The centroids of the markers on the calibration object are recovered and their locations re-expressed in relation to the HMD grid. This allows established camera calibration techniques to be used to recover estimates of the HMD display's intrinsic parameters (width, height, focal length) and extrinsic parameters (optic centre and orientation of the principal ray). We calibrated a HMD in this manner and report the magnitude of the errors between real image features and reprojected features. Our calibration method produces low reprojection errors without the need for error-prone human judgements

    Engineering data compendium. Human perception and performance. User's guide

    Get PDF
    The concept underlying the Engineering Data Compendium was the product of a research and development program (Integrated Perceptual Information for Designers project) aimed at facilitating the application of basic research findings in human performance to the design and military crew systems. The principal objective was to develop a workable strategy for: (1) identifying and distilling information of potential value to system design from the existing research literature, and (2) presenting this technical information in a way that would aid its accessibility, interpretability, and applicability by systems designers. The present four volumes of the Engineering Data Compendium represent the first implementation of this strategy. This is the first volume, the User's Guide, containing a description of the program and instructions for its use

    Attributing scientific and technical progress: the case of holography

    Get PDF
    Holography, the three-dimensional imaging technology, was portrayed widely as a paradigm of progress during its decade of explosive expansion 1964–73, and during its subsequent consolidation for commercial and artistic uses up to the mid 1980s. An unusually seductive and prolific subject, holography successively spawned scientific insights, putative applications and new constituencies of practitioners and consumers. Waves of forecasts, associated with different sponsors and user communities, cast holography as a field on the verge of success—but with the dimensions of success repeatedly refashioned. This retargeting of the subject represented a degree of cynical marketeering, but was underpinned by implicit confidence in philosophical positivism and faith in technological progressivism. Each of its communities defined success in terms of expansion, and anticipated continual progressive increase. This paper discusses the contrasting definitions of progress in holography, and how they were fashioned in changing contexts. Focusing equally on reputed ‘failures’ of some aspects of the subject, it explores the varied attributes by which success and failure were linked with progress by different technical communities. This important case illuminates the peculiar post-World War II environment that melded the military, commercial and popular engagement with scientific and technological subjects, and the competing criteria by which they assessed the products of science
    corecore