139 research outputs found

    Trapping of light beams and formation of spatial solitary waves in quadratic nonlinear media

    Get PDF
    Summary form only given. In this paper we report the outcome of our comprehensive investigations to study the dynamics of the beam trapping in both bulk crystals and optical planar waveguides made of quadratic nonlinear media in second-harmonic generation configurations. We address and discuss the suitable experimental conditions required to form spatial solitary waves in critical phase-matching and quasi-phase-matching settings.Peer ReviewedPostprint (published version

    Optical Splitters Based on Self-Imaging Effect in Multi-Mode Waveguide Made by Ion Exchange in Glass

    Get PDF
    Design and modeling of single mode optical multi-mode interference structures with graded refractive index is reported. Several samples of planar optical channel waveguides were obtained by Ag+Na+ and K+Na+ one step thermal ion exchange process in molten salt on GIL49 glass substrate and new special optical glass for ion exchange technology. Waveguide properties were measured by optical mode spectroscopy. Obtained data were used for further design and modeling of single mode channel waveguide and subsequently for the design of 1 to 3 multimode interference power splitter in order to improve simulation accuracy. Designs were developed by utilizing finite difference beam propagation method

    Flexible Polymer Planar Optical Waveguides

    Get PDF
    We report about design, fabrication and properties of flexible polymer optical planar waveguides made of Epoxy Novolak Resin as planar waveguides deposited on various foil substrates. The design of the presented planar waveguides was realized on the bases of modified dispersion equation and was schemed for 633 nm, 850 nm, 1310 nm and 1550 nm wavelength. Propagation optical loss measurements were done by the fibre probe technique at wavelegnth 633 nm (He-Ne laser) and samples have optical losses lower than 2 dB/cm. Unlike the up-to-now presented structures our constructin is fully flexible what makes it possible to be used in innovative photonics structures

    Fabrication of optical planar waveguides in KY(WO4)2KY(WO_4)_2 by He-ion implantation

    Get PDF
    In this paper, planar waveguides produced by He-ion implantation have been demonstrated in undoped and Yb-doped KY(WO/sub 4/)/sub 2/ crystals. The effective refractive indices of guided modes in surface planar waveguides were measured by dark m-line spectroscopy and the refractive index profiles were reconstructed by calculations based on the inverse WKB method. The end-faces of implanted crystals were polished and the waveguiding properties of the obtained planar structures were investigated using a laser diode at 980 nm and a CCD camera

    Double tungstate lasers: From bulk toward on-chip integrated waveguide devices

    Get PDF
    It has been recognized that the monoclinic double tungstates KY(WO4)2KY{(WO_4)}_2, KGd(WO4)2KGd{(WO_4)}_2, and KLu(WO4)2KLu{(WO_4)}_2 possess a high potential as rare-earth-ion-doped solid-state laser materials, partly due to the high absorption and emission cross sections of rare-earth ions when doped into these materials. Besides, their high refractive indexes make these materials potentially suitable for applications that require optical gain and high power in integrated optics, with rather high integration density. We review the recent advances in the field of bulk lasers in these materials and present our work toward the demonstration of waveguide lasers and their integration with other optical structures on a chip

    Design and investigation of properties of nanocrystalline diamond optical planar waveguides

    Get PDF
    Diamond thin films have remarkable properties comparable with natural diamond. Because of these properties it is a very promising material for many various applications (sensors, heat sink, optical mirrors, chemical and radiation wear, cold cathodes, tissue engineering, etc.) In this paper we report about design, deposition and measurement of properties of optical planar waveguides fabricated from nanocrystalline diamond thin films. The nanocrystalline diamond planar waveguide was deposited by microwave plasma enhanced chemical vapor deposition and the structure of the deposited film was studied by scanning electron microscopy and Raman spectroscopy. The design of the presented planar waveguides was realized on the bases of modified dispersion equation and was schemed for 632.8 nm, 964 nm, 1 310 nm and 1 550 nm wavelengths. Waveguiding properties were examined by prism coupling technique and it was found that the diamond based planar optical element guided one fundamental mode for all measured wavelengths. Values of the refractive indices of our NCD thin film measured at various wavelengths were almost the same as those of natural diamond

    Analysis and optimization of propagation losses in LiNbO3 optical waveguides produced by swift heavy-ion irradiation

    Get PDF
    The propagation losses (PL) of lithium niobate optical planar waveguides fabricated by swift heavy-ion irradiation (SHI), an alternative to conventional ion implantation, have been investigated and optimized. For waveguide fabrication, congruently melting LiNbO3 substrates were irradiated with F ions at 20 MeV or 30 MeV and fluences in the range 1013–1014 cm−2. The influence of the temperature and time of post-irradiation annealing treatments has been systematically studied. Optimum propagation losses lower than 0.5 dB/cm have been obtained for both TE and TM modes, after a two-stage annealing treatment at 350 and 375∘C. Possible loss mechanisms are discussed

    Fabrication of alignment structures for a fiber resonator by use of deep-ultraviolet lithography

    Get PDF
    We present a novel method to mount and align an optical-fiber-based resonator on the flat surface of an atom chip with ultrahigh precision. The structures for mounting a pair of fibers, which constitute the fiber resonator, are produced by a spin-coated SU-8 photoresist technique by use of deep-UV lithography. The design and production of the SU-8 structures are discussed. From the measured finesses we calculate the coupling loss of the SU-8 structures acting as a kind of fiber splice to be smaller than 0.013 dB.Comment: 4 pages, 3 figure
    • …
    corecore