797 research outputs found

    Unobtrusive and pervasive video-based eye-gaze tracking

    Get PDF
    Eye-gaze tracking has long been considered a desktop technology that finds its use inside the traditional office setting, where the operating conditions may be controlled. Nonetheless, recent advancements in mobile technology and a growing interest in capturing natural human behaviour have motivated an emerging interest in tracking eye movements within unconstrained real-life conditions, referred to as pervasive eye-gaze tracking. This critical review focuses on emerging passive and unobtrusive video-based eye-gaze tracking methods in recent literature, with the aim to identify different research avenues that are being followed in response to the challenges of pervasive eye-gaze tracking. Different eye-gaze tracking approaches are discussed in order to bring out their strengths and weaknesses, and to identify any limitations, within the context of pervasive eye-gaze tracking, that have yet to be considered by the computer vision community.peer-reviewe

    Wireless Software Synchronization of Multiple Distributed Cameras

    Full text link
    We present a method for precisely time-synchronizing the capture of image sequences from a collection of smartphone cameras connected over WiFi. Our method is entirely software-based, has only modest hardware requirements, and achieves an accuracy of less than 250 microseconds on unmodified commodity hardware. It does not use image content and synchronizes cameras prior to capture. The algorithm operates in two stages. In the first stage, we designate one device as the leader and synchronize each client device's clock to it by estimating network delay. Once clocks are synchronized, the second stage initiates continuous image streaming, estimates the relative phase of image timestamps between each client and the leader, and shifts the streams into alignment. We quantitatively validate our results on a multi-camera rig imaging a high-precision LED array and qualitatively demonstrate significant improvements to multi-view stereo depth estimation and stitching of dynamic scenes. We release as open source 'libsoftwaresync', an Android implementation of our system, to inspire new types of collective capture applications.Comment: Main: 9 pages, 10 figures. Supplemental: 3 pages, 5 figure

    PlaceRaider: Virtual Theft in Physical Spaces with Smartphones

    Full text link
    As smartphones become more pervasive, they are increasingly targeted by malware. At the same time, each new generation of smartphone features increasingly powerful onboard sensor suites. A new strain of sensor malware has been developing that leverages these sensors to steal information from the physical environment (e.g., researchers have recently demonstrated how malware can listen for spoken credit card numbers through the microphone, or feel keystroke vibrations using the accelerometer). Yet the possibilities of what malware can see through a camera have been understudied. This paper introduces a novel visual malware called PlaceRaider, which allows remote attackers to engage in remote reconnaissance and what we call virtual theft. Through completely opportunistic use of the camera on the phone and other sensors, PlaceRaider constructs rich, three dimensional models of indoor environments. Remote burglars can thus download the physical space, study the environment carefully, and steal virtual objects from the environment (such as financial documents, information on computer monitors, and personally identifiable information). Through two human subject studies we demonstrate the effectiveness of using mobile devices as powerful surveillance and virtual theft platforms, and we suggest several possible defenses against visual malware

    A review of smartphones based indoor positioning: challenges and applications

    Get PDF
    The continual proliferation of mobile devices has encouraged much effort in using the smartphones for indoor positioning. This article is dedicated to review the most recent and interesting smartphones based indoor navigation systems, ranging from electromagnetic to inertia to visible light ones, with an emphasis on their unique challenges and potential real-world applications. A taxonomy of smartphones sensors will be introduced, which serves as the basis to categorise different positioning systems for reviewing. A set of criteria to be used for the evaluation purpose will be devised. For each sensor category, the most recent, interesting and practical systems will be examined, with detailed discussion on the open research questions for the academics, and the practicality for the potential clients

    LightSense: enabling spatially aware handheld interaction devices

    Full text link
    devices. The outside-in approach tracks the light source and streams the data to the phone over Bluetooth. a) A wall-mounted map with embedded light sensors provides hotspot tracking. b) A table-top setup tracks the phone with a camera through a diffused glass surface. c) The spatially aware device augments a physical map with a detailed interactive road map of the area of interest. The vision of spatially aware handheld interaction devices has been hard to realize. The difficulties in solving the general tracking problem for small devices have been addressed by several research groups and examples of issues are performance, hardware availability and platform independency. We present Light-Sense, an approach that employs commercially available components to achieve robust tracking of cell phone LEDs, without any modifications to the device. Cell phones can thus be promoted to interaction and display devices in ubiquitous installations of systems such as the ones we present here. This could enable a new generation of spatially aware handheld interaction devices that would unobtrusively empower and assist us in our everyday tasks. CR Categories: H.5.1 [Multimedia Information Systems]: Artificial, augmented, and virtual realities; H.5.2. [User Interfaces]: Graphical user interfaces, Input devices and strategies; I.3.6 [Methodology and Techniques]: Interaction techniques

    Software-Defined Lighting.

    Full text link
    For much of the past century, indoor lighting has been based on incandescent or gas-discharge technology. But, with LED lighting experiencing a 20x/decade increase in flux density, 10x/decade decrease in cost, and linear improvements in luminous efficiency, solid-state lighting is finally cost-competitive with the status quo. As a result, LED lighting is projected to reach over 70% market penetration by 2030. This dissertation claims that solid-state lighting’s real potential has been barely explored, that now is the time to explore it, and that new lighting platforms and applications can drive lighting far beyond its roots as an illumination technology. Scaling laws make solid-state lighting competitive with conventional lighting, but two key features make solid-state lighting an enabler for many new applications: the high switching speeds possible using LEDs and the color palettes realizable with Red-Green-Blue-White (RGBW) multi-chip assemblies. For this dissertation, we have explored the post-illumination potential of LED lighting in applications as diverse as visible light communications, indoor positioning, smart dust time synchronization, and embedded device configuration, with an eventual eye toward supporting all of them using a shared lighting infrastructure under a unified system architecture that provides software-control over lighting. To explore the space of software-defined lighting (SDL), we design a compact, flexible, and networked SDL platform to allow researchers to rapidly test new ideas. Using this platform, we demonstrate the viability of several applications, including multi-luminaire synchronized communication to a photodiode receiver, communication to mobile phone cameras, and indoor positioning using unmodified mobile phones. We show that all these applications and many other potential applications can be simultaneously supported by a single lighting infrastructure under software control.PhDElectrical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/111482/1/samkuo_1.pd

    Doctor of Philosophy

    Get PDF
    dissertationThe next generation mobile network (i.e., 5G network) is expected to host emerging use cases that have a wide range of requirements; from Internet of Things (IoT) devices that prefer low-overhead and scalable network to remote machine operation or remote healthcare services that require reliable end-to-end communications. Improving scalability and reliability is among the most important challenges of designing the next generation mobile architecture. The current (4G) mobile core network heavily relies on hardware-based proprietary components. The core networks are expensive and therefore are available in limited locations in the country. This leads to a high end-to-end latency due to the long latency between base stations and the mobile core, and limitations in having innovations and an evolvable network. Moreover, at the protocol level the current mobile network architecture was designed for a limited number of smart-phones streaming a large amount of high quality traffic but not a massive number of low-capability devices sending small and sporadic traffic. This results in high-overhead control and data planes in the mobile core network that are not suitable for a massive number of future Internet-of-Things (IoT) devices. In terms of reliability, network operators already deployed multiple monitoring sys- tems to detect service disruptions and fix problems when they occur. However, detecting all service disruptions is challenging. First, there is a complex relationship between the network status and user-perceived service experience. Second, service disruptions could happen because of reasons that are beyond the network itself. With technology advancements in Software-defined Network (SDN) and Network Func- tion Virtualization (NFV), the next generation mobile network is expected to be NFV-based and deployed on NFV platforms. However, in contrast to telecom-grade hardware with built-in redundancy, commodity off-the-shell (COTS) hardware in NFV platforms often can't be comparable in term of reliability. Availability of Telecom-grade mobile core network hardwares is typically 99.999% (i.e., "five-9s" availability) while most NFV platforms only guarantee "three-9s" availability - orders of magnitude less reliable. Therefore, an NFV-based mobile core network needs extra mechanisms to guarantee its availability. This Ph.D. dissertation focuses on using SDN/NFV, data analytics and distributed system techniques to enhance scalability and reliability of the next generation mobile core network. The dissertation makes the following contributions. First, it presents SMORE, a practical offloading architecture that reduces end-to-end latency and enables new functionalities in mobile networks. It then presents SIMECA, a light-weight and scalable mobile core network designed for a massive number of future IoT devices. Second, it presents ABSENCE, a passive service monitoring system using customer usage and data analytics to detect silent failures in an operational mobile network. Lastly, it presents ECHO, a distributed mobile core network architecture to improve availability of NFV-based mobile core network in public clouds
    • …
    corecore