1,043 research outputs found

    Radial Vibration Measurement of Rotary Shafts through Electrostatic Sensing and Hilbert-Huang Transform

    Get PDF
    Radial vibration measurement of rotary shafts plays a significant part in condition monitoring and fault diagnosis of rotating machinery. This paper presents a novel method for radial vibration measurement through electrostatic sensing and HHT (Hilbert-Huang Transform) signal processing. The foundational characteristics of the electrostatic sensor in the vicinity of a drifting shaft are studied through Finite Element Modelling. Experimental tests were conducted on a purpose-built test rig to characterize the operating condition of the rotor at different rotational speeds (400 rpm and 600 rpm). A normal working shaft and an eccentric shaft were tested and the output signals from the electrostatic sensors were analyzed. Through empirical mode decomposition (EMD) on the electrostatic signals, the intrinsic mode functions (IMF) including the vibration information of the shaft are identified and further analyzed in the time-frequency domain. Experimental results suggest that the electrostatic sensing technique in conjunction with HHT provides a simple and cost-effective approach to radial vibration measurement of rotary shafts

    Aplicações De Métodos De Sensoriamento De Vibração Baseados Em Técnicas

    Get PDF
    Orientadores: Fabiano Fruett, Claudio FloridiaTese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia Elétrica e de ComputaçãoResumo: Sensores à fibra óptica distribuídos têm sido empregados para monitorar vários parâmetros, tais como temperatura, vibração, tensão mecânica, campo magnético e corrente elétrica. Quando comparados a outras técnicas convencionais, tais sensores são vantajosos devido a suas pequenas dimensões, imunidade a interferências eletromagnéticas, alta adaptabilidade, robustez a ambientes nocivos, dentre outros. Sensores acústicos distribuídos em particular são interessantes devido a sua capacidade em serem usados em aplicações tais como monitoração de saúde de estruturas e vigilância de perímetros. Através da análise em frequência da estrutura, por exemplo uma aeronave, uma ponte, um edifício ou mesmo máquinas em uma fábrica, é possível avaliar sua condição e detectar danos e falhas em um estágio primário. Tais soluções podem cobrir ambas as aplicações de detecção de intrusão e monitoração estrutural com mínimas adaptações no sistema sensor. Desta forma, vibrações e distúrbios pequenas estruturas com resolução de dezenas de centímetros e em grandes estruturas ou perímetros com alguns metros de resolução espacial e centenas de quilômetros de alcance podem ser detectadas. Outra característica útil desta solução baseada em fibra óptica é a possibilidade de ser combinada com técnicas de processamento digital de sinais, permitindo a detecção e localização de perturbações rápidas, reconhecimento de padrões de intrusão em tempo real e multiplexação de dados de superfícies estruturais para aplicações SHM. O principal objetivo desta tese é fazer uso desses recursos para empregar técnicas de DAS como soluções de tecnologias- chave para várias aplicações. Neste trabalho, as técnicas de phase-OTDR foram estudadas e as principais contribuições da tese focaram em trazer soluções inovadoras e validações para aplicações de vigilância e vigilância. Este doutorado teve um período sanduíche nas instalações da RISE Acreo AB, Estocolmo, Suécia, onde experimentos foram realizados e foi parte da 42ª Chamada CISB/Saab/CNPqAbstract: Distributed optical fiber sensors have been increasingly employed for monitoring several parameters, such as temperature, vibration, strain, magnetic field and current. When compared to other conventional techniques, these sensors are advantageous due to their small dimensions, lightweight, immunity to electromagnetic interference, high adaptability, robustness to hazardous environments, less complex data multiplexing, the feasibility to be embedded into structures with minimum invasion, the capability to extract data with high resolution from long perimeters using a single optical fiber and detect multiple events along the fiber. In particular, distributed acoustic sensors (DAS) based on optical time domain reflectometry (OTDR), are of high interest, due to their capability to be used in applications such as structural health monitoring (SHM) and perimeter surveillance. Through the frequency analysis of a structure, for instance an aircraft, a bridge, a building or even machines in a workshop, it is possible to evaluate its condition and detect damages and failures at an early stage. Also, OTDR based solutions for vibration monitoring can be easily adapted with minimum setup modifications to detect intrusion in a perimeter, a useful tool for surveillance of military facilities, laboratories, power plants and homeland security. The same OTDR technique can be used as a non-destructive diagnostic tool to evaluate vibrations and disturbances on both small structures with some dozens of centimeters¿ resolution and in big structures or perimeters with some meters of spatial resolution and hundreds of kilometers of reach. Another useful feature of this optical fiber based solution is the possibility to be combined with high-performance digital signal processing techniques, enabling fast disturbance detection and location, real-time intrusion pattern recognition and fast data multiplexing of structure surfaces for SHM applications. The main goal of this thesis is to make use of these features to employ DAS techniques as key enabling technologies solutions for several applications. In this work, OTDR based techniques were studied and the thesis main contributions were focused on bringing innovative solutions and validations for SHM and surveillance applications. This PhD had a sandwich period at Acreo AB, Stockholm, Sweden, where experimental tests were performed and it was part of the 42ª CISB/Saab/CNPq CalDoutoradoEletrônica, Microeletrônica e OptoeletrônicaDoutora em Engenharia Elétrica202816/2015-0CAPESCNP

    Development of a distributed optical fiber sensor for geological applications

    Get PDF
    The purpose of the study was to develop a distributed optical fiber acoustic sensor for monitoring ground subsidence before collapse sinkholes form causing costly damage on infrastructure. Costs in excess of R1.3 billion have been incurred while dealing with sinkhole related measures in South Africa. Monitoring sinkholes and the presence of an early warning alert system can drastically reduce the impact, risk and cost caused by sudden ground collapse. A related goal was to construct a reliable collapse alert early warning system to facilitate disaster preparedness and avoid further damage from accidents. This was achieved by developing a spectroscopic shift monitoring algorithm which analysed changes in the subsurface vibration modes using ambient noise signals. For the first time to our knowledge, an optic fiber sensor with an early warning alarm, using ambient noise vibrations to detect and monitor sinkholes was developed at NMU. A polarisation-based, interferometric optical fiber seismic sensor was developed and compared to a commercial geophone. The fiber sensor exhibited superior performance in sensitivity, bandwidth, signal response and recovery times. The sensitivity of the optical fiber sensor was 0.47 rad/Pa surpassing the geophone sensitivity by 9.32%, and the bandwidth of 3.349kHz was 20 times greater for the optical fiber sensor. The fiber sensor was used to measure millisecond events as the impact duration of a bouncing ball was successfully obtained. It was used to detect sinkhole formation in the simulator model, designed. Ground collapse precursors were identified, and early warning alert was achieved using the spectral analysis algorithm, developed. The collapse precursor condition was identified as a functional combination of variations in the peak frequency, bandwidth and peak intensity. A distributed acoustic sensor was built to detect ambient noise induced subsurface signals. Vibrations were located along the 28km length of optical fiber with a relative error of 9.6%. The sensor demonstrated a frequency response range of 212.25Hz, an event distance precision of 224m with time resolution of 1.12µs, and a spatial resolution of 1km. The position of disturbance was measured within 300m of its actual point of 3.21km along the optical fiber. The results showed that distributed optical fiber sensing allows real-time monitoring of the subsurface over extended distances, using ambient noise signals.Thesis (PhD) -- Faculty of Science, School of Computer Science, Mathematics, Physics and Statistics, 202

    Development of a distributed optical fiber sensor for geological applications

    Get PDF
    The purpose of the study was to develop a distributed optical fiber acoustic sensor for monitoring ground subsidence before collapse sinkholes form causing costly damage on infrastructure. Costs in excess of R1.3 billion have been incurred while dealing with sinkhole related measures in South Africa. Monitoring sinkholes and the presence of an early warning alert system can drastically reduce the impact, risk and cost caused by sudden ground collapse. A related goal was to construct a reliable collapse alert early warning system to facilitate disaster preparedness and avoid further damage from accidents. This was achieved by developing a spectroscopic shift monitoring algorithm which analysed changes in the subsurface vibration modes using ambient noise signals. For the first time to our knowledge, an optic fiber sensor with an early warning alarm, using ambient noise vibrations to detect and monitor sinkholes was developed at NMU. A polarisation-based, interferometric optical fiber seismic sensor was developed and compared to a commercial geophone. The fiber sensor exhibited superior performance in sensitivity, bandwidth, signal response and recovery times. The sensitivity of the optical fiber sensor was 0.47 rad/Pa surpassing the geophone sensitivity by 9.32%, and the bandwidth of 3.349kHz was 20 times greater for the optical fiber sensor. The fiber sensor was used to measure millisecond events as the impact duration of a bouncing ball was successfully obtained. It was used to detect sinkhole formation in the simulator model, designed. Ground collapse precursors were identified, and early warning alert was achieved using the spectral analysis algorithm, developed. The collapse precursor condition was identified as a functional combination of variations in the peak frequency, bandwidth and peak intensity. A distributed acoustic sensor was built to detect ambient noise induced subsurface signals. Vibrations were located along the 28km length of optical fiber with a relative error of 9.6%. The sensor demonstrated a frequency response range of 212.25Hz, an event distance precision of 224m with time resolution of 1.12µs, and a spatial resolution of 1km. The position of disturbance was measured within 300m of its actual point of 3.21km along the optical fiber. The results showed that distributed optical fiber sensing allows real-time monitoring of the subsurface over extended distances, using ambient noise signals.Thesis (PhD) -- Faculty of Science, School of Computer Science, Mathematics, Physics and Statistics, 202

    Proceedings of the Thirteenth International Conference on Time-Resolved Vibrational Spectroscopy

    Get PDF
    The thirteenth meeting in a long-standing series of “Time-Resolved Vibrational Spectroscopy” (TRVS) conferences was held May 19th to 25th at the Kardinal Döpfner Haus in Freising, Germany, organized by the two Munich Universities - Ludwig-Maximilians-Universität and Technische Universität München. This international conference continues the illustrious tradition of the original in 1982, which took place in Lake Placid, NY. The series of meetings was initiated by leading, world-renowned experts in the field of ultrafast laser spectroscopy, and is still guided by its founder, Prof. George Atkinson (University of Arizona and Science and Technology Advisor to the Secretary of State). In its current format, the conference contributes to traditional areas of time resolved vibrational spectroscopies including infrared, Raman and related laser methods. It combines them with the most recent developments to gain new information for research and novel technical applications. The scientific program addressed basic science, applied research and advancing novel commercial applications. The thirteenth conference on Time Resolved Vibrational Spectroscopy promoted science in the areas of physics, chemistry and biology with a strong focus on biochemistry and material science. Vibrational spectra are molecule- and bond-specific. Thus, time-resolved vibrational studies provide detailed structural and kinetic information about primary dynamical processes on the picometer length scale. From this perspective, the goal of achieving a complete understanding of complex chemical and physical processes on the molecular level is well pursued by the recent progress in experimental and theoretical vibrational studies. These proceedings collect research papers presented at the TRVS XIII in Freising, German

    Bearing Wear In Electric Motors and Rotating Equipment Under the Aspect of VSD Converter Operation

    Get PDF
    Lectur

    Photonic Time-Stretch Enabled High Throughput Microwave and MM-Wave Interferometry Applied to Fibre Grating Sensors and Non-Contact Measurement

    Get PDF
    The research presented in this thesis is focused towards developing real-time, high-speed applications, employing ultrafast optical microwave generation and characterisation techniques. This thesis presents a series of experiments wherein mode-locked laser pulses are utilised. Photonics-based microwave and MM-Wave generation and detection are explored and employed for applications pertaining to fibre grating sensors and non-contact measurement. The application concepts leverage techniques from optical coherence tomography and non-destructive evaluation of turbid media. In particular, I use the principle of dispersion-induced photonic Time-Stretch to slow down high-speed waveforms to speeds usable by state-of-the-art photo-detectors and digital signal processors. The concept of photonic time-stretch is applied to map instantaneous microwave frequency to the time instant of the signal, which in turn is related to spatial location as established by the space-wavelength-time conversions. The experimental methods applied throughout this thesis is based upon Michelson interferometer architecture. My original contribution to knowledge is the realisation of Photonics-based, single tone, and chirped microwave and MM-Wave pulse generation applied to deciphering physical strain profile along the length of a chirped fibre Bragg grating employed in a Michelson interferometer configuration. This interrogation scheme allows intra-grating high-resolution, high-speed, and temperature independent strain measurement. This concept is further extended to utilise photonic generation of microwave pulses to characterise surface profile information of thin film and thin plate infrared transparent slides of variable thickness setup in a Michelson interferometer architecture. The method basis for photonically generated high-frequency microwave signals utilises the principle of photonic Time-Stretch. The research was conducted in the Photonics Lab at the University of Kent. In addition, the photonically generated microwave/ MM-Wave pulses is utilised as a potential broadband frequency-swept source for non-contact measurement of turbid media. Investigation of the proof-of-concept based on an MM-Wave coherence tomography set-up is implemented at Vrije Universiteit Brussel (VUB), Department of Electronics and Informatics (ETRO)

    Fiber Optical Sensing of Bearing Performance and Pump Conditions

    Get PDF
    Lectur
    • …
    corecore