15,708 research outputs found

    Workshop proceedings: Information Systems for Space Astrophysics in the 21st Century, volume 1

    Get PDF
    The Astrophysical Information Systems Workshop was one of the three Integrated Technology Planning workshops. Its objectives were to develop an understanding of future mission requirements for information systems, the potential role of technology in meeting these requirements, and the areas in which NASA investment might have the greatest impact. Workshop participants were briefed on the astrophysical mission set with an emphasis on those missions that drive information systems technology, the existing NASA space-science operations infrastructure, and the ongoing and planned NASA information systems technology programs. Program plans and recommendations were prepared in five technical areas: Mission Planning and Operations; Space-Borne Data Processing; Space-to-Earth Communications; Science Data Systems; and Data Analysis, Integration, and Visualization

    Information technologies for astrophysics circa 2001

    Get PDF
    It is easy to extrapolate current trends to see where technologies relating to information systems in astrophysics and other disciplines will be by the end of the decade. These technologies include mineaturization, multiprocessing, software technology, networking, databases, graphics, pattern computation, and interdisciplinary studies. It is easy to see what limits our current paradigms place on our thinking about technologies that will allow us to understand the laws governing very large systems about which we have large datasets. Three limiting paradigms are saving all the bits collected by instruments or generated by supercomputers; obtaining technology for information compression, storage and retrieval off the shelf; and the linear mode of innovation. We must extend these paradigms to meet our goals for information technology at the end of the decade

    MOSAIC: A Model for Technologically Enhanced Educational Linguistics

    Get PDF

    Toward bio-inspired information processing with networks of nano-scale switching elements

    Full text link
    Unconventional computing explores multi-scale platforms connecting molecular-scale devices into networks for the development of scalable neuromorphic architectures, often based on new materials and components with new functionalities. We review some work investigating the functionalities of locally connected networks of different types of switching elements as computational substrates. In particular, we discuss reservoir computing with networks of nonlinear nanoscale components. In usual neuromorphic paradigms, the network synaptic weights are adjusted as a result of a training/learning process. In reservoir computing, the non-linear network acts as a dynamical system mixing and spreading the input signals over a large state space, and only a readout layer is trained. We illustrate the most important concepts with a few examples, featuring memristor networks with time-dependent and history dependent resistances

    Interconnects for DNA, quantum, in-memory and optical computing: insights from a panel discussion

    Get PDF
    The computing world is witnessing a proverbial Cambrian explosion of emerging paradigms propelled by applications such as Artificial Intelligence, Big Data, and Cybersecurity. The recent advances in technology to store digital data inside a DNA strand, manipulate quantum bits (qubits), perform logical operations with photons, and perform computations inside memory systems are ushering in the era of emerging paradigms of DNA computing, quantum computing, optical computing, and in-memory computing. In an orthogonal direction, research on interconnect design using advanced electro-optic, wireless, and microfluidic technologies has shown promising solutions to the architectural limitations of traditional von-Neumann computers. In this article, experts present their comments on the role of interconnects in the emerging computing paradigms and discuss the potential use of chiplet-based architectures for the heterogeneous integration of such technologies.This work was supported in part by the US NSF CAREER Grant CNS-1553264 and EU H2020 research and innovation programme under Grant 863337.Peer ReviewedPostprint (author's final draft
    • …
    corecore