4 research outputs found

    Multi-objective Anti-swing Trajectory Planning of Double-pendulum Tower Crane Operations using Opposition-based Evolutionary Algorithm

    Full text link
    Underactuated tower crane lifting requires time-energy optimal trajectories for the trolley/slew operations and reduction of the unactuated swings resulting from the trolley/jib motion. In scenarios involving non-negligible hook mass or long rig-cable, the hook-payload unit exhibits double-pendulum behaviour, making the problem highly challenging. This article introduces an offline multi-objective anti-swing trajectory planning module for a Computer-Aided Lift Planning (CALP) system of autonomous double-pendulum tower cranes, addressing all the transient state constraints. A set of auxiliary outputs are selected by methodically analyzing the payload swing dynamics and are used to prove the differential flatness property of the crane operations. The flat outputs are parameterized via suitable B\'{e}zier curves to formulate the multi-objective trajectory optimization problems in the flat output space. A novel multi-objective evolutionary algorithm called Collective Oppositional Generalized Differential Evolution 3 (CO-GDE3) is employed as the optimizer. To obtain faster convergence and better consistency in getting a wide range of good solutions, a new population initialization strategy is integrated into the conventional GDE3. The computationally efficient initialization method incorporates various concepts of computational opposition. Statistical comparisons based on trolley and slew operations verify the superiority of convergence and reliability of CO-GDE3 over the standard GDE3. Trolley and slew operations of a collision-free lifting path computed via the path planner of the CALP system are selected for a simulation study. The simulated trajectories demonstrate that the proposed planner can produce time-energy optimal solutions, keeping all the state variables within their respective limits and restricting the hook and payload swings.Comment: 14 pages, 14 figures, 6 table

    An Efficient Marine Predators Algorithm for Solving Multi-Objective Optimization Problems:Analysis and Validations

    Get PDF
    Recently, a new strong optimization algorithm called marine predators algorithm (MPA) has been proposed for tackling the single-objective optimization problems and could dramatically fulfill good outcomes in comparison to the other compared algorithms. Those dramatic outcomes, in addition to our recently-proposed strategies for helping meta-heuristic algorithms in fulfilling better outcomes for the multi-objective optimization problems, motivate us to make a comprehensive study to see the performance of MPA alone and with those strategies for those optimization problems. Specifically, This paper proposes four variants of the marine predators' algorithm (MPA) for solving multi-objective optimization problems. The first version, called the multi-objective marine predators' algorithm (MMPA) is based on the behavior of marine predators in finding their prey. In the second version, a novel strategy called dominance strategy-based exploration-exploitation (DSEE) recently-proposed is effectively incorporated with MMPA to relate the exploration and exploitation phase of MPA to the dominance of the solutions - this version is called M-MMPA. DSEE counts the number of dominated solutions for each solution - the solutions with high dominance undergo an exploitation phase; the others with small dominance undergo the exploration phase. The third version integrates M-MMPA with a novel strategy called Gaussian-based mutation, which uses the Gaussian distribution-based exploration and exploitation strategy to search for the optimal solution. The fourth version uses the Nelder-Mead simplex method with M-MMPA (M-MMPA-NMM) at the start of the optimization process to construct a front of the non-dominated solutions that will help M-MMPA to find more good solutions. The effectiveness of the four versions is validated on a large set of theoretical and practical problems. For all the cases, the proposed algorithm and its variants are shown to be superior to a number of well-known multi-objective optimization algorithms. </p

    Multi-objective volleyball premier league algorithm

    Get PDF
    This paper proposes a novel optimization algorithm called the Multi-Objective Volleyball Premier League (MOVPL) algorithm for solving global optimization problems with multiple objective functions. The algorithm is inspired by the teams competing in a volleyball premier league. The strong point of this study lies in extending the multi-objective version of the Volleyball Premier League algorithm (VPL), which is recently used in such scientific researches, with incorporating the well-known approaches including archive set and leader selection strategy to obtain optimal solutions for a given problem with multiple contradicted objectives. To analyze the performance of the algorithm, ten multi-objective benchmark problems with complex objectives are solved and compared with two well-known multiobjective algorithms, namely Multi-Objective Particle Swarm Optimization (MOPSO) and Multi-Objective Evolutionary Algorithm Based on Decomposition (MOEA/D). Computational experiments highlight that the MOVPL outperforms the two state-of-the-art algorithms on multi-objective benchmark problems. In addition, the MOVPL algorithm has provided promising results on well-known engineering design optimization problems

    Enhanced Harris's Hawk algorithm for continuous multi-objective optimization problems

    Get PDF
    Multi-objective swarm intelligence-based (MOSI-based) metaheuristics were proposed to solve multi-objective optimization problems (MOPs) with conflicting objectives. Harris’s hawk multi-objective optimizer (HHMO) algorithm is a MOSIbased algorithm that was developed based on the reference point approach. The reference point is determined by the decision maker to guide the search process to a particular region in the true Pareto front. However, HHMO algorithm produces a poor approximation to the Pareto front because lack of information sharing in its population update strategy, equal division of convergence parameter and randomly generated initial population. A two-step enhanced non-dominated sorting HHMO (2SENDSHHMO) algorithm has been proposed to solve this problem. The algorithm includes (i) a population update strategy which improves the movement of hawks in the search space, (ii) a parameter adjusting strategy to control the transition between exploration and exploitation, and (iii) a population generating method in producing the initial candidate solutions. The population update strategy calculates a new position of hawks based on the flush-and-ambush technique of Harris’s hawks, and selects the best hawks based on the non-dominated sorting approach. The adjustment strategy enables the parameter to adaptively changed based on the state of the search space. The initial population is produced by generating quasi-random numbers using Rsequence followed by adapting the partial opposition-based learning concept to improve the diversity of the worst half in the population of hawks. The performance of the 2S-ENDSHHMO has been evaluated using 12 MOPs and three engineering MOPs. The obtained results were compared with the results of eight state-of-the-art multi-objective optimization algorithms. The 2S-ENDSHHMO algorithm was able to generate non-dominated solutions with greater convergence and diversity in solving most MOPs and showed a great ability in jumping out of local optima. This indicates the capability of the algorithm in exploring the search space. The 2S-ENDSHHMO algorithm can be used to improve the search process of other MOSI-based algorithms and can be applied to solve MOPs in applications such as structural design and signal processing
    corecore