494 research outputs found

    Passive Radar for Opportunistic Monitoring in e-Health Applications

    Get PDF
    This paper proposes a passive Doppler radar as a non-contact sensing method to capture human body movements, recognize respiration, and physical activities in e-Health applications. The system uses existing in-home wireless signal as the source to interpret human activity. This paper shows that passive radar is a novel solution for multiple healthcare applications which complements traditional smart home sensor systems. An innovative two-stage signal processing framework is outlined to enable the multi-purpose monitoring function. The first stage is to obtain premier Doppler information by using the high speed passive radar signal processing. The second stage is the functional signal processing including micro Doppler extraction for breathing detection and support vector machine classifier for physical activity recognition. The experimental results show that the proposed system provides adequate performance for both purposes, and prove that non-contact passive Doppler radar is a complementary technology to meet the challenges of future healthcare applications

    OPERAnet:A Multimodal Activity Recognition Dataset Acquired from Radio Frequency and Vision-based Sensors

    Get PDF
    This paper presents a comprehensive dataset intended to evaluate passive Human Activity Recognition (HAR) and localization techniques with measurements obtained from synchronized Radio-Frequency (RF) devices and vision-based sensors. The dataset consists of RF data including Channel State Information (CSI) extracted from a WiFi Network Interface Card (NIC), Passive WiFi Radar (PWR) built upon a Software Defined Radio (SDR) platform, and Ultra-Wideband (UWB) signals acquired via commercial off-the-shelf hardware. It also consists of vision/Infra-red based data acquired from Kinect sensors. Approximately 8 hours of annotated measurements are provided, which are collected across two rooms from 6 participants performing 6 daily activities. This dataset can be exploited to advance WiFi and vision-based HAR, for example, using pattern recognition, skeletal representation, deep learning algorithms or other novel approaches to accurately recognize human activities. Furthermore, it can potentially be used to passively track a human in an indoor environment. Such datasets are key tools required for the development of new algorithms and methods in the context of smart homes, elderly care, and surveillance applications.Comment: 17 pages, 7 figure

    UWB and WiFi Systems as Passive Opportunistic Activity Sensing Radars

    Get PDF
    Human Activity Recognition (HAR) is becoming increasingly important in smart homes and healthcare applications such as assisted-living and remote health monitoring. In this paper, we use Ultra-Wideband (UWB) and commodity WiFi systems for the passive sensing of human activities. These systems are based on a receiver-only radar network that detects reflections of ambient Radio-Frequency (RF) signals from humans in the form of Channel Impulse Response (CIR) and Channel State Information (CSI). An experiment was performed whereby the transmitter and receiver were separated by a fixed distance in a Line-of-Sight (LoS) setting. Five activities were performed in between them, namely, sitting, standing, lying down, standing from the floor and walking. We use the high-resolution CIRs provided by the UWB modules as features in machine and deep learning algorithms for classifying the activities. Experimental results show that a classification performance with an F1-score as high as 95.53% is achieved using processed UWB CIR data as features. Furthermore, we analysed the classification performance in the same physical layout using CSI data extracted from a dedicated WiFi Network Interface Card (NIC). In this case, maximum F1-scores of 92.24% and 80.89% are obtained when amplitude CSI data and spectrograms are used as features, respectively

    Passive WiFi Radar for Human Sensing Using A Stand-Alone Access Point

    Get PDF
    Human sensing using WiFi signal transmissions is attracting significant attention for future applications in ehealthcare, security and the Internet of Things (IoT). The majority of WiFi sensing systems are based around processing of Channel State Information (CSI) data which originates from commodity WiFi Access Points (AP) that have been primed to transmit high data-rate signals with high repetition frequencies. However, in reality, WiFi APs do not transmit in such a continuous uninterrupted fashion, especially when there are no users on the communication network. To this end, we have developed a passive WiFi radar system for human sensing which exploits WiFi signals irrespective of whether the WiFi AP is transmitting continuous high data-rate OFDM signals, or periodic WiFi beacon signals whilst in an idle status (no users on the WiFi network). In a data transmission phase, we employ the standard cross ambiguity function (CAF) processing to extract Doppler information relating to the target, whilst a modified version is used for lower data-rate signals. In addition, we investigate the utility of an external device that has been developed to stimulate idle WiFi APs to transmit usable signals without requiring any type of user authentication on the WiFi network. In the paper we present experimental data which verifies our proposed methods for using any type of signal transmission from a stand-alone WiFi device, and demonstrate the capability for human activity sensing

    Respiration and Activity Detection based on Passive Radio Sensing in Home Environments

    Get PDF
    The pervasive deployment of connected devices in modern society has significantly changed the nature of the wireless landscape, especially in the license free industrial, scientific and medical (ISM) bands. This paper introduces a deep learning enabled passive radio sensing method that can monitor human respiration and daily activities through leveraging unplanned and ever-present wireless bursts in the ISM frequency band, and can be employed as an additional data input within healthcare informatics. Wireless connected biomedical sensors (Medical Things) rely on coding and modulating of the sensor data onto wireless (radio) bursts which comply with specific physical layer standards like 802.11, 802.15.1 or 802.15.4. The increasing use of these unplanned connected sensors has led to a pell-mell of radio bursts which limit the capacity and robustness of communication channels to deliver data, whilst also increasing inter-system interference. This paper presents a novel methodology to disentangle the chaotic bursts in congested radio environments in order to provide healthcare informatics. The radio bursts are treated as pseudo noise waveforms which eliminate the requirement to extract embedded information through signal demodulation or decoding. Instead, we leverage the phase and frequency components of these radio bursts in conjunction with cross ambiguity function (CAF) processing and a Deep Transfer Network (DTN). We use 2.4GHz 802.11 (WiFi) signals to demonstrate experimentally the capability of this technique for human respiration detection (including through-the-wall), and classifying everyday but complex human motions such as standing, sitting and falling

    On CSI and Passive WiFi Radar for Opportunistic Physical Activity Recognition

    Get PDF
    The use of Wi-Fi signals for human sensing has gained significant interest over the past decade. Such techniques provide affordable and reliable solutions for healthcare-focused events such as vital sign detection, prevention of falls and long-term monitoring of chronic diseases, among others. Currently, there are two major approaches for Wi-Fi sensing: (1) passive Wi-Fi radar (PWR) which uses well established techniques from bistatic radar, and channel state information (CSI) based wireless sensing (SENS) which exploits human-induced variations in the communication channel between a pair of transmitter and receiver. However, there has not been a comprehensive study to understand and compare the differences in terms of effectiveness and limitations in real-world deployment. In this paper, we present the fundamentals of the two systems with associated methodologies and signal processing. A thorough measurement campaign was carried out to evaluate the human activity detection performance of both systems. Experimental results show that SENS system provides better detection performance in a line-of-sight (LoS) condition, whereas PWR system performs better in a non-LoS (NLoS) setting. Furthermore, based on our findings, we recommend that future Wi-Fi sensing applications should leverage the advantages from both PWR and SENS systems

    Using RF Transmissions from IoT Devices for Occupancy Detection and Activity Recognition

    Get PDF
    IoT ecosystems consist of a range of smart devices that generated a plethora of Radio Frequency (RF) transmissions. This provides an attractive opportunity to exploit already-existing signals for various sensing applications such as e-Healthcare, security and smart home. In this paper, we present Passive IoT Radar (PIoTR), a system that passively uses RF transmissions from IoT devices for human monitoring. PIoTR is designed based on passive radar technology, with a generic architecture to utilize various signal sources including the WiFi signal and wireless energy at the Industrial, Scientific and Medical (ISM) band. PIoTR calculates the phase shifts caused by human motions and generates Doppler spectrogram as the representative. To verify the proposed concepts and test in a more realistic environment, we evaluate PIoTR with four commercial IoT devices for home use. Depending on the effective signal and power strength, PIoTR performs two modes: coarse sensing and fine-grained sensing. Experimental results show that PIoTR can achieve an average of 91% in occupancy detection (coarse sensing) and 91.3% in activity recognition (fine-grained sensing)
    corecore