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Abstract
The pervasiveness of Wi‐Fi signals provides significant opportunities for human sensing
and activity recognition in fields such as healthcare. The sensors most commonly used for
passive Wi‐Fi sensing are based on passive Wi‐Fi radar (PWR) and channel state infor-
mation (CSI) data, however current systems do not effectively exploit the information
acquired through multiple sensors to recognise the different activities. In this study, new
properties of the Transformer architecture for multimodal sensor fusion are explored.
Different signal processing techniques are used to extract multiple image‐based features
from PWR and CSI data such as spectrograms, scalograms and Markov transition field
(MTF). The Fusion Transformer, an attention‐based model for multimodal and multi‐
sensor fusion is first proposed. Experimental results show that the Fusion Trans-
former approach can achieve competitive results compared to a ResNet architecture but
with much fewer resources. To further improve the model, a simple and effective
framework for multimodal and multi‐sensor self‐supervised learning (SSL) is proposed.
The self‐supervised Fusion Transformer outperforms the baselines, achieving a macro
F1‐score of 95.9%. Finally, this study shows how this approach significantly outperforms
the others when trained with as little as 1% (2 min) of labelled training data to 20%
(40 min) of labelled training data.

KEYWORD S
deep learning, multimodal/sensor fusion, passive WiFi‐based HAR, self‐supervised learning, vision transformer
(ViT)

1 | INTRODUCTION

In recent years, there has been growing research interest in
healthcare applications to diagnose and prevent mental and
physical diseases, often within the home, and often with the
objective to relieve the burden on healthcare services. Many
systems have been developed to collect and provide infor-
mation about a person's health condition in this way [1–7]. A
wide array of sensors have been deployed, from wearables, to
cameras, to more recently passive sensing systems using radio
frequency (RF) signals. Sensors such as Wi‐Fi are particularly
promising for in‐home healthcare applications, as they:
(1) perform sensing passively, (2) avoid any discomfort for
the user (as no sensors need to be worn), (3) are ubiquitous,

(4) and they are more privacy‐friendly than alternatives such
as cameras. Wi‐Fi‐based sensing systems have been studied
for tasks such as gesture recognition [8–10], sign language
recognition [11] and fall detection [12, 13]. These systems can
also be used for human activity recognition (HAR) [14–18] as
human activities cause changes in the wireless signal trans-
mitted by the passive Wi‐Fi sensors in terms of frequency
shifts, multipath propagation and signal attenuation [19]. Two
Wi‐Fi sensors are commonly used in HAR, namely passive
Wi‐Fi radar (PWR) and channel state information (CSI). CSI
represents how a wireless signal propagates from the trans-
mitter to its receiver at particular carrier frequencies along
multiple paths. The CSI data, which can be extracted from
specific network interface cards (NICs) such as Intel 5300
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[20] or Atheros [21], can be viewed as a 3D time‐series
matrix of complex values representing both the amplitude
attenuation and the phase shift of multiple propagation paths.
It captures how wireless signals travel through surrounding
objects or humans in time, frequency and spatial domains.
Despite that both CSI and PWR sensors use the same signal
source and have a similar function, PWR works differently. A
PWR system correlates the transmitted signal from a Wi‐Fi
access point and the reflected signal from the surveillance
area and calculates the distance between the antenna and the
object or human [17].

Research in radio‐based human sensing and activity
recognition has moved towards deep learning, principally
because deep learning models can learn complex representa-
tions from the data, even if the latter is noisy in nature. Deep
neural network architectures that are commonly used for Wi‐Fi
CSI‐based sensing include convolutional neural networks
(CNN) where the raw CSI data is transformed into image‐like
representations such as spectrograms (e.g. [16–18, 22]) or
recurrent neural networks (RNN) which work directly on the
raw Wi‐Fi data (e.g. [23, 24]). In this work, we study and
propose to use multiple synchronised sensors, or views, in an
indoor environment to improve the performance of a passive
HAR system. More specifically, we propose to build a system
that collects raw data from synchronised RF sensors, and after
some signal processing, all modalities can be fused effectively;
in this case using Transformers.

Recent work has demonstrated that the Vision Trans-
former (ViT) [25] architecture is capable of competitive or
superior performance on image classification tasks at a large
scale. Instead of convolutions, it uses a self‐attention mecha-
nism to aggregate information across locations. Thus, we
investigate the potential of the ViT for sensor and feature
fusion. For this purpose, we need to address the possible
challenges: firstly, how the self‐attention mechanism present in
the ViT can be used for sensor feature fusion? Secondly, does
ViT benefit from sensor fusion and lead to better predictions
for HAR? In this paper, we study these questions and compare
our findings with a traditional ResNet model. The main con-
tributions of this work are the following:

� We propose a model, the Sensor Fusion Vision Transformer
(SF‐ViT), based on the Vision Transformer (ViT) architec-
ture [25], that can fuse multiple image features and views.

� We extend it to a more general framework which we called
the Fusion Transformer, that can effectively fuse multiple
features from different types of sensors and we assess
the effectiveness of our transformer‐based model for
multimodal and multi‐sensor fusion.

� We evaluate the effectiveness of the Fusion Transformer on
a HAR dataset (collected using Wi‐Fi sensors) in a purely
supervised fashion, and compare its performance against
ResNet.

� We also propose a new method for multimodal and multi‐
sensor self‐supervised learning (SSL) that outperforms the
baselines using multiple image features and views for
passive HAR.

This paper is organised as follows: Related works on
multimodal sensor fusion are presented in Section 2. The
methodology and system design of our multimodal sensor
fusion transformer models are described in Section 3,
including details on the signal processing of Wi‐Fi‐based sig-
nals. Section 4 provides detailed information on the experi-
mental setup. Section 5 presents the results obtained using our
fully supervised Fusion Transformer model on a HAR dataset.
Section 6 describes our self‐supervised multimodal sensor
fusion transformer architecture, along with details on the
experiment setup and results. Finally, conclusions are drawn in
Section 7.

2 | RELATED WORK

Unimodal and multimodal sensing based on vision sensors (e.g.
RGB‐D cameras, infrared, thermal cameras etc.) and inertial
wearable sensors (e.g. accelerometers, gyroscopes, magnetom-
eters, audio‐signals etc.) have previously been studied for HAR.
The interested reader is kindly referred to [28] for a compre-
hensive review on different multimodal HAR methods and
fusion techniques (non‐radio based). Most works on multi-
modal or multi‐sensor fusion for human action recognition
using RF, inertial and/or vision sensors, have considered either
decision‐level fusion or feature‐level fusion. For example, the
authors of ref. [29] perform multimodal fusion at the decision
level to combine the advantages of Wi‐Fi and vision‐based
sensors using a hybrid deep neural network (DNN) model to
achieve a 97.5% cross‐validation accuracy on average for three
activities: sitting, standing and walking. The model essentially
consists of a Wi‐Fi sensing module (CNN architecture) and a
vision sensing module (based on the convolutional 3D model)
for processing Wi‐Fi and video frames for unimodal inference,
followed by a multimodal fusion module. Multimodal fusion is
performed at the decision level (after both the Wi‐Fi and vision
modules have made a classification) because this framework is
stated to be more flexible and robust to unimodal failure
compared to feature level fusion. The authors of ref. [30] pre-
sent a method for HAR, which leverages four sensor modal-
ities, namely, skeleton sequences, inertial and motion capture
measurements and Wi‐Fi fingerprints. The fusion of signals is
formulated as a matrix concatenation. The individual signals of
different sensor modalities are transformed and represented as
an image. The resulting images are then fed into a 2D CNN
(EfficientNet B2) for classification. The authors evaluated their
approach on four different datasets; the NTU RGB + D 120
dataset for skeleton data, the UTD‐MHAD dataset for skeleton
and inertial data, the ARIL dataset for Wi‐Fi data and the
Simitate dataset for motion capture data. Good experimental
results were achieved across the different sensor modalities.
The authors of ref. [31] proposed a multimodal HAR system
that leverages Wi‐Fi and wearable sensor modalities to jointly
infer human activities. They collected CSI data from a standard
Wi‐Fi NIC, alongside the user's local body movements via a
wearable inertial measurement unit (IMU) consisting of an
accelerometer, gyroscope, and magnetometer sensors. They
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calculated the time‐variant mean Doppler shift (MDS) from the
processed CSI data and magnitude from the inertial data for
each sensor of the IMU. Then, various time and frequency
domain features were separately extracted from the magnitude
data and the MDS. The authors applied a feature‐level fusion
method which sequentially concatenates feature vectors that
belong to the same activity sample. Finally, supervised machine
learning techniques were used to classify four activities, such as
walking, falling, sitting, and picking up an object from the floor.
The authors of ref. [17] conducted a comprehensive study on
the comparison of two RF sensing devices for the purpose of
HAR, namely, CSI and PWR systems. Two pipelines were
proposed for filtering and processing the raw signals from the
two sensors into Doppler spectrograms, which were then used
to train a simple supervised CNN to evaluate the HAR per-
formance. They considered the combined activity data from
three different layouts. In the first layout, the transmitter and
receiver were facing each other (in a line‐of‐sight configuration)
while in the second layout, the transmitter and receiver were at
90° to each other. Finally, in the third layout, the transmitter and
receiver were co‐located (placed next to each other). The CSI
system achieved an overall accuracy of 67,3% while the PWR
system had an accuracy of 66,7%. Although this work presents
a simple system which combines CSI and PWR spectrograms
by merging probabilities from two networks (decision‐level
fusion), current state‐of‐the‐art models are not specifically
designed for the fusion of multiple passive Wi‐Fi devices.

While CNN architecture was the de‐facto standard for
computer vision tasks, gradually, ViT showed very promising
results when pre‐trained on large amounts of data and then
fine‐tuned on mid‐sized or small‐sized image recognition
benchmarks while requiring fewer learnable parameters for
training [32, 33]. However, most ViT models are trained on
natural images of very large sizes, together with pre‐training
and very strong data augmentation techniques. A similar
work which also trained a ViT with spectrograms is the audio
spectrogram transformer (AST) [34], which presents a new
method for audio classification with a ViT using spectrogram

data. Recent works showed that ViTs could outperform
ResNets without pre‐training or strong data augmentations
[35], notably by using sharpness‐aware minimisation technique
[36], which simultaneously minimises the loss value and loss
sharpness by seeking parameters that lie in neighbourhoods
and having uniformly low loss. However, this technique re-
quires the computation of two forward‐backward propagations
to estimate the ‘sharpness‐aware’ gradient, and thus, leads to an
increased training time.

In this paper, we evaluate the performance of our
Transformer‐based sensor fusion model for HAR using image
data generated from multiple sensors. We evaluate its potential
for sensor fusion and propose a method for multimodal and
multi‐sensor self‐supervised learning (SSL).

3 | METHODOLOGY AND SYSTEM
DESIGN

3.1 | Signal processing of RF sensors

Inspired by another work in this area [17], which has
explored two pipelines for extracting image features from
RF sensors using signal processing techniques, we apply the
same principles. In this work, we use the OPERAnet dataset
[27], which includes publicly available data from both CSI
and PWR systems (as well as Kinect and ultra‐wideband
systems). The dataset was collected with the intention to
evaluate HAR and localisation techniques with measure-
ments obtained from synchronised RF devices and vision‐
based sensors. The experimental setup established to
collect both CSI and PWR data is shown in Figure 1.
Figure 2a,b show some examples of the generated spectro-
grams with these two pipelines, for each of the six activities,
namely, sitting down on a chair (‘sit’), standing from chair
(‘stand’), lying down on the floor (‘liedown’), standing from
floor (‘standff’), body rotation (‘bodyrotate’), and walking
(‘walk’). The pipelines are as follows:

F I GURE 1 The CSI system and PWR system
deployment [26]. The CSI system consisted of 2
receivers (denoted as NUC1 and NUC2) while the
PWR system consisted of 3 receivers/surveillance
channel (denoted as rx2, rx3 and rx4). For more
details on the dataset, the interested reader is kindly
referred to [26, 27].
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� In Figure 2a: we denoise the CSI signal using discrete
wavelet transform (DWT) and median filtering, then reduce
the dimensionality using principal component analysis
(PCA) and generate a spectrogram using short‐time Fourier
transform (STFT).

� In Figure 2b: we apply cross ambiguity function to the raw
PWR data, use the CLEAN algorithm and constant false
alarm rate (CFAR) for direct signal cancellation and noise
reduction, generating as output a Doppler spectrogram [17].

These two pipelines are necessary to extract informative
data from CSI and PWR sensors. The raw CSI data is very
noisy in nature, and thus the DWT technique helps to filter
out high frequency components and remove noises, while
preserving most of the information and avoiding the distor-
tion of the signal [16]. Afterwards, we perform median
filtering to remove any undesired transients in the CSI
measurements which have not been cause by human motion.
Despite that the CSI data is highly informative, it consists
of a lot of complex values per second, depending on the
number of transmit and receive antennas, orthogonal
frequency‐division multiplexing (OFDM) subcarriers and
packet rate (for example, the Intel 5300 chipset captures
complex CSI data over 3 transmit antennas, 3 receive an-
tennas and 30 subcarriers). Therefore, we use PCA to reduce
the computational complexity of such data, while preserving
as much information as possible. Finally, we convert the PCA
signal into spectrograms using STFT [17].

For the PWR signal, we first apply the cross ambiguity
function (CAF) to extract target range and Doppler informa-
tion. However, we also capture an interference source which is
the strong direct signal emitted from the Wi‐Fi access point
and which is captured by the PWR surveillance channels. Thus,
to remove this signal, we employ the CLEAN algorithm [37].
The last step consists of reducing the noise on the CAF sur-
face. We use CFAR to estimate the background noise and apply
it to the CAF surface. PWR's Doppler spectrogram is

generated by selecting the maximum Doppler pulse from each
Doppler bin within the CAF surface [17].

The interested reader is kindly referred to our previous
works [16–18] for more details on the signal processing
pipelines for Wi‐Fi CSI and PWR data. In this paper, we focus
mainly on the design of models that can fuse data from mul-
tiple modalities/sensors effectively for the purpose of HAR. It
should be noted that all the devices were synchronised to the
same network time protocol (NTP) server and were labelled in
sync. Thus, the raw data could be segmented as per the ground
truth activity labels and processed accordingly.

Using the CSI data, we also generate other features such as
scalograms and Markov transition fields (MTF). Each feature
captures particular information about the activity. Given all of
these different features, we aim to build a network that can fuse
all these images together effectively to improve the overall
system performance. In this work, we have extracted 15
different features (see Figure 3):

� PWR spectrogram data collected from the three receiver
surveillance channels, rx2, rx3, and rx4 in Figure 1 (denoted
as ‘PWR channel 1’, ‘PWR channel 2’, ‘PWR channel 3’,
respectively, in Figure 3);

� Spectrograms generated using STFT on amplitude CSI data
from the two receivers, NUC1 (‘Amp. spec. N1’) and NUC2
(‘Amp. spec. N2’);

� Spectrograms generated using STFT on phase difference
CSI data for each of the two receivers (‘Ph. diff. N1’, ‘Ph.
diff. N2’);

� Markov transition field (MTF) [38] features generated from
phase difference CSI data acquired from two receivers
(‘MTF ph. diff. N1’, ‘MTF ph. diff. N2’);

� MTF features generated from amplitude CSI data acquired
from two receivers (‘MTF amp. N1’, ‘MTF amp. N2’);

� Scalograms generated by applying continuous wavelet
transform (CWT) on the amplitude CSI data from NUC1
(‘Amp. scal. N1’) and NUC2 (‘Amp. scal. N2’) receivers;

F I GURE 2 Visualisation of CSI and PWR spectrograms for each activity: (a) Amplitude CSI spectrograms from view 1 (NUC1) and (b) PWR spectrograms
from first surveillance channel (rx2).
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� Scalograms generated using CWT on the phase difference
CSI data from the two CSI receivers (‘Ph. diff. scal. N1’, ‘Ph.
diff. scal. N2’).

Each channel and receiver can be seen as another view of
the human activity performed in the room. Previously, we
presented the spectrograms of CSI and PWR data, which give a
visual representation of the spectrum of frequencies of a signal
varying through time. Spectrograms are generated through
STFT by applying a sliding window to obtain equally sized
segments of the signal and then FFT is performed on the
samples in each segment, which converts the signal from
the time domain to the frequency domain. Similar to STFT, the
scalogram is a time‐frequency representation of a signal and it
is obtained from the absolute value of the CWT of a signal.
Finally, we also introduce another type of representation called
the Markov transition field (MTF), which is an image generated
from time series data, representing a field of transition prob-
abilities for a discretised time series.

3.2 | Multimodal sensor fusion transformer

3.2.1 | A first approach: Sensor fusion Vision
Transformer

We will first present the Sensor‐Fusion Vision Transformer
(SF‐ViT), which uses a similar architecture to the conventional
Vision Transformer (ViT). Nevertheless, in most applications

where ViT is used, the model is trained with ‘natural’ images of
size 224 � 224 � 3 (height, width, channels) that are divided
into small patches of size 16 � 16 or 32 � 32. Here instead, we
concatenate all image features and obtain an image of size
224 � (224 � N) � 1 where N is the number of different
image features concatenated. Instead of dividing our image
into small patches of size 16 � 16, we patch the image so that
each patch represents a different image‐based feature. Figure 4
illustrates an overview of the SF‐ViT, where the shape of the
input image has been changed for convenience.

The SF‐ViT trains a transformer to recognise human ac-
tivities by assigning a high attention weight to relevant features
(i.e. our patches of different features), and a low attention
weight to less pertinent image features. The SF‐ViT's inspira-
tion is that the more unique the image features that are used
with the ViT are, the more effective is the model for recognising
human activities, as each image feature will represent or capture
different information about the activity, and thus combining
them effectively should lead to a better performance.

3.2.2 | The Fusion Transformer

One potential issue with the SF‐ViT approach is that we do a
linear projection of patches of size 224 � 224 � 1 into a
feature space of size 512, which is computationally expensive
and results in a very large number of trainable parameters and
potential over‐fitting, as each input pixel is connected to the
linear layer. To remedy this, we instead first encode each image‐

F I GURE 3 Fifteen image features extracted via signal processing techniques representing a person walking in the monitoring area for a duration of
4 seconds: (a) PWR channel 1, (b) PWR channel 2, (c) PWR channel 3, (d) Amp. spec. N1, (e) Amp. spec. N2, (f) Ph. diff. N1, (g) Ph. diff. N2, (h) MTF ph. diff.
N1, (i) MTF ph. diff. N2, (j) MTF amp. N1, (k) MTF amp. N2, (l) Amp. scal. N1, (m) Amp. scal. N2, (n) Ph. diff. scal. N1, and (o) Ph. diff. scal. N2.
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based feature using a CNN encoder, which transforms the raw
image feature of size 224 � 224 � 1 into an image of size
16 � 16 � 64. This new architecture can be considered as a
multimodal model, where each modality is first passed into an
encoder that transforms the raw modality into a smaller feature
space. The corresponding model architecture, which we call
Fusion Transformer, is presented in Figure 5.

4 | EXPERIMENTAL SETUP

We evaluate the capabilities of our Fusion Transformer on the
HAR task and compare its performance with ResNet and show
that the Fusion Transformer is successful in achieving
competitive results while requiring less trainable parameters
than ResNet. In this section, the experimental setup used

F I GURE 4 Sensor‐Fusion Vision Transformer (SF‐ViT) model overview. We split our concatenated image into patches of fixed size, 224� 224, where each
patch corresponds to one of the image features. We linearly embed each of them, add position embeddings, and feed the output embeddings to the transformer
encoder. In order to perform classification, we add an extra learnable ‘classification token’. The network model is inspired from the original ViT architecture [25].

F I GURE 5 The Fusion Transformer model overview. Each modality is encoded into a new feature space and then linearly embedded. We add position
embeddings and feed the output embeddings to the transformer encoder. We add an extra learnable classification token.
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throughout the findings of the paper is presented. The system
was developed in PyTorch and all models have been trained on
a single GPU (Nvidia 2080Ti).

4.1 | Dataset and metrics

As mentioned previously, for our experimentation, we used
the OPERAnet dataset [27], which includes publicly available
data from both CSI and PWR systems. The RF sensors
captured the changes in the wireless signals while six daily
activities were being performed by six participants, namely,
sitting down on a chair (‘sit’), standing from chair (‘stand’),
lying down on the floor (‘liedown’), standing from floor
(‘standff’), body rotation (‘bodyrotate’), and walking (‘walk’).
It should be noted that the six activities were performed in
two different rooms and in each room the participants per-
formed the activities at different locations. The distribution of
the six activities performed by the six participants in the two
rooms is reported in [26]. Applying the signal processing
pipelines outlined in Section 3.1, led to a dataset composed of
2897 data samples (non‐overlapping windows each repre-
senting 4 s of an activity) for the six activities. Worth noting
however, as is the case in reality, the distribution of the
different activities a human engages in, is highly imbalanced.
In this case, we have an imbalanced dataset where the two
most represented classes are 'body rotating' and 'walking',
representing respectively 30% and 33% of the total observa-
tions. The two classes which are less represented are ‘standing
from floor’ and ‘lying down’, each representing 7% of the
dataset. For training and validation purposes, we randomly
split the dataset into a train set and a validation set, respec-
tively composed of 80% and 20% of the total dataset samples.
These two sets consist of activity samples from the two
experimental rooms as well as samples at different locations
within a given room (across all participants). The main

objective of the HAR algorithm/model is that, irrespective of
the physical environment or participant's location within the
environment or participant's demographics, it should be able
to generalise well and classify the human activities with high
accuracy. For this dataset, we use the accuracy and macro‐
averaged F1‐score as our main metrics.

4.2 | Models

In this section, we will initially focus on the Fusion Trans-
former. All experiments have been performed with the
configuration presented in Table 1. The width of the image is
N � 224, where N is the number of different image features
generated. We compare and train the model with different
number of features to analyse how the model's performance
scales.

In the Fusion Transformer shown in Figure 5, we add a
CNN encoder for our images to extract more relevant features
from the raw images and to reduce the size of the images. The
CNN encoder is composed of 4 blocks, where each block
consists of a convolution, ReLU and pooling layers. Each
image feature of size 224 � 224 � 1 is embedded in a new
image representation of dimension 16 � 16 � 64.

To compare the performance of the Fusion Transformer
with a baseline, we also train a ResNet model to evaluate
whether it achieves better performance when trained with
multiple image features, by considering each feature as a new
channel. We trained two models: ResNet18 and ResNet34.

4.3 | Training

All models, including ResNet, have been trained using the
AdamW optimiser, with β1 = 0.90 and β2 = 0.999, with a
weight decay settled at 0.01 and a batch size of 64. The learning

TABLE 1 ViT parameters
Image size Patch size Channels emb. dim. Depth qkv bias Drop out MLP ratio

224, N � 224 224, 224 1 512 3 False 0.1 1.0

TABLE 2 Performance comparison of the Fusion Transformer with ResNet

SF‐ViT ResNet18 ResNet34
Fusion
Transformer

Accuracy F1‐score Accuracy F1‐score Accuracy F1‐score Accuracy F1‐score

CSI amplitude spectrogram (view 1 = 1 feature) 80.3% 71.7% 92.8% 89.7% 73.3% 71.0% 88.3% 83.5%

CSI amplitude spectrogram (2 views = 2 features) 85.9% 78.6% 93.1% 90.0% 35.6% 43.4% 92.1% 87.0%

CSI ph. diff + amp. spectrograms (4 features) 84.3% 77.4% 94.5% 91.4% 95.7% 93.9% 92.2% 88.4%

CSI (amp. + ph. diff.) & PWR spectrograms (7 features) 91.6% 88.2% 95.0% 92.4% 96.6% 94.9% 95.9% 94.3%

CSI (amp. + ph. diff.) spectrograms + PWR spectrograms + CSI
(amp. + ph. diff.) MTF (11 features)

91.9% 88.6% 93.8% 91.1% 91.9% 88.2% 94.3% 91.9%

All 15 image features 92.8% 89.5% 91.0% 86.5% 93.3% 90.4% 93.6% 91.1%

Note: Bold font indicates the best result achieved with each model.
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rate has been initialised at 1e‐4, which is reduced during
training using a learning step scheduler with a unitary step size
and γ = 0.5. The loss function used for these experiments is
cross‐entropy.

Despite that recent works train ViTs using pre‐training or
transfer learning on large datasets, we decided to train our
model from scratch, to more closely study the benefit of our
sensor fusion model for activity recognition. Furthermore,
when training on smaller datasets, ViT‐based models have a
weaker inductive bias compared to CNNs and this leads to an
increased reliance on model regularisation or data augmenta-
tion [39]. In the case of CSI and PWR data, using similar data
augmentation techniques as those used on natural images is not
possible. Thus, throughout all our experiments, we did not use
data augmentation.

5 | RESULTS

5.1 | Fully supervised fusion transformer
results

Our experiments showed that when training both our Fusion
Transformer and ResNet from scratch, the Fusion Trans-
former obtained competitive results without any pre‐training
on a small amount of images. In Table 2, we present the
results of SF‐ViT, ResNet and Fusion Transformer perfor-
mance on the validation set when varying the number of
image‐based features used for training. With our Fusion
Transformer architecture, we obtained our best results when
using only PWR and CSI spectrograms, reaching a macro F1‐
score of 94.3%. With ResNet34, we also obtained the best
results when using PWR and CSI spectrograms, reaching a
macro F1‐score of 94.9%. The two confusion matrices are
shown in Figure 6.

Thus, ResNet34 seems to achieve slightly better perfor-
mance for HAR. However, the Fusion Transformer can ach-
ieve competitive performance with less parameters when
trained from scratch, without pre‐training. The Fusion Trans-
former has 11.7 M trainable parameters against 12.4 M for the
ResNet34. One benefit of the Fusion Transformer is that the
number of trainable parameters is invariant to the addition of
new image‐based representations. Unlike the Fusion Trans-
former, the number of trainable parameters increases with
ResNet when doing so.

We also assess the generalisation capability of the super-
vised Fusion Transformer model across different environ-
ments and participants (of different demographics). We use the
PWR and CSI spectrograms (7 features) as input to the Fusion
Transformer as these achieved the highest performance in
Table 2. The same model parameters as in Section 4.3 are used
and the model is trained for 100 epochs. In the first case, the
activity samples across all six participants for Room 1 are used
as training set (1886 samples) and the activity samples across all
six participants in Room 2 are used as validation set (1011
samples). In the second case, 5 participants' (persons 1, 2, 4, 5

and 6) activity samples are used as training set (2227 samples)
while the validation set (670 samples) consists of the unseen
activity samples from only one participant (person 3). Finally,
in the third case, 3 participants' (persons 1, 2 and 3) activity
samples are used as training set (1776 samples) and the vali-
dation set (1121 samples) consists of the activity samples from
the remaining participants (i.e. persons 4, 5 and 6). The last two
cases assess the model generalisation capability for HAR across
people of different demographics. The results are shown in
Figure 7 where an accuracy above 90% is observed in each

F I GURE 6 Visualisation of the confusion matrices of the models with
highest scores: (a) Confusion matrix for the Fusion Transformer model and
(b) Confusion matrix for the ResNet34 model.
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case, demonstrating that the supervised Fusion Transformer
model generalises well across different environments and
people.

6 | TOWARDS SELF‐SUPERVISION

Transformers outperform many state‐of‐the‐art models when
trained on large scale datasets. In this work, we succeeded in
achieving competitive results compared to ResNet while
training our model from scratch. However, we believe that
with self‐supervision, the Fusion Transformer can outperform
ResNet34 for HAR. Instead of training a model from scratch
with weights initialised arbitrarily, the model can be pre‐trained
via different self‐supervised learning (SSL) methods.

We propose a self‐supervised method based on image
masking as in [40]. However, instead of masking some parts of
a natural image, in our approach, we mask multiple image
features and we pre‐train our model to predict the masked
image features. The architecture used during the pre‐training
phase is presented in Figure 8, where a lightweight one‐layer
head (e.g. a linear layer) is used to predict the raw pixel
values of the masked image features and it performs learning
using a simple L1 loss function.

6.1 | Pre‐training phase: Experimental setup

We pre‐train our model with both PWR and CSI spectrograms,
using all different views and image‐based features. We masked

F I GURE 7 Assessing the generalisation capability of the Fusion Transformer model across different environments and participants (of different
demographics) for the HAR task. HAR, human activity recognition

F I GURE 8 Self‐supervised Fusion Transformer method. We randomly mask 60% of our modalities and we train a model to predict the masked modalities.
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60% of the image‐based features and pre‐train our model for
500 epochs. We use an AdamW optimiser and a multi‐step
learning rate scheduler. The batch size is fixed as 64, the
base learning rate as 5e‐4, weight decay as 0.05, β1 = 0.9,
β2 = 0.999 and a warm‐up for 10 epochs.

6.2 | Fine‐tuning phase: Experimental setup
and results

Next, we fine‐tune the pre‐trained model in a supervised way.
The strength of self‐supervised learning is that we can fine‐
tune the pre‐trained model on a smaller training set. This is
particularly useful when labelling the data is time consuming
and expensive. We train the model on different number of
training samples: 1 sample per class, 5% (10 min), 10%
(20 min), 15% (30 min), 20% (40 min) of the train set and also
the full train set. We fine‐tuned our model using the following
hyper‐parameters settings: an AdamW optimiser, a base
learning rate fixed at 1e‐3, β1 = 0.9, β2 = 0.999 and a warm‐up
for 10 epochs. We added multiple regularisation methods: a
weight decay of 0.05 and a stochastic depth [41] ratio of 0.1.
We report the results of our self‐supervised method in Table 3.

ResNet as an architecture is not well‐defined for SSL when
having multimodal and multi‐sensor data. Existing approaches
involve contrastive learning methods [42, 43], which require
multiple views for each modality, data augmentation techniques
and pairs of negative/positive samples. A similar work has
proposed a self‐supervised contrastive pre‐training method for
passive Wi‐Fi based activity recognition [44]. Although we can
simply pre‐train a model using a contrastive method with two
views on many different CNN benchmark models, this
framework is not well defined for multi‐view and multimodal
pre‐training and led to worse results than those presented by
our non pre‐trained ResNet34. Thus, in the context of multi‐
sensor fusion with multi‐views, we cannot rely on a ResNet
architecture.

In this work, we have proposed a simple but yet very
effective method for multimodal and multi‐sensor self‐super-
vised learning with a Fusion Transformer which outperforms
the results obtained with a non pre‐trained ResNet34 and a
non pre‐trained Fusion Transformer, regardless of the training
set size. The strength of the Fusion Transformer is that it can
be easily pre‐trained with multiple views, sensors and modal-
ities, thanks to the transformer architecture.

7 | CONCLUSION

We proposed a new architecture for multimodal, multi‐sensor
passive Wi‐Fi based HAR. Using signal processing, we
extracted 15 image‐based features from multiple sensors.
With our Fusion Transformer architecture, we first embed
each modality via an encoder and then pass it into our
transformer network. The Fusion Transformer can fuse
multiple image‐based features and train a classifier to predict
six daily activities performed by six participants. The best
results of this model were achieved with PWR and CSI
spectrograms, achieving competitive performance with
ResNet34, but with less trainable parameters. We next
demonstrated that with our proposed self‐supervision tech-
nique, our pre‐trained model outperformed non pre‐trained
ResNet34, achieving a macro F1‐score of 95.9% when fine‐
tuned on the full training set. Furthermore, it outperformed
the other models when fine‐tuned with as little as 1% (2 min)
of labelled training data with a macro F1‐score of 56.3%,
while the macro F1‐score achieved with 20% (40 min) of
training data was 91.2%. These results are promising given
the need to collect training data for each new indoor
environment.
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TABLE 3 Comparison between
pre‐trained and supervised Fusion
Transformer for various sizes of training set D

Macro F1‐score with different training set size D

1 sample per
class (%)

2.5% of
D (%)

5% of D
(%)

10% of
D (%)

15% of
D (%)

20% of
D (%)

Full
D (%)

Fusion Transformer
(with SSL)

56.30 77.00 84.50 89.70 90.40 91.20 95.90

Fusion Transformer
(no SSL)

32.80 60.00 67 83.10 84.40 84.40 94.30

ResNet34 32.60 43.40 56.90 62.70 62.20 73.80 94.90

Note: The best results are shown in bold font.
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