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ABSTRACT

This paper presents a comprehensive dataset intended to evaluate passive Human Activity Recognition (HAR) and localization
techniques with measurements obtained from synchronized Radio-Frequency (RF) devices and vision-based sensors. The
dataset consists of RF data including Channel State Information (CSI) extracted from a WiFi Network Interface Card (NIC),
Passive WiFi Radar (PWR) built upon a Software Defined Radio (SDR) platform, and Ultra-Wideband (UWB) signals acquired via
commercial off-the-shelf hardware. It also consists of vision/Infra-red based data acquired from Kinect sensors. Approximately
8 hours of annotated measurements are provided, which are collected across two rooms from 6 participants performing 6 daily
activities. This dataset can be exploited to advance WiFi and vision-based HAR, for example, using pattern recognition, skeletal
representation, deep learning algorithms or other novel approaches to accurately recognize human activities. Furthermore, it
can potentially be used to passively track a human in an indoor environment. Such datasets are key tools required for the
development of new algorithms and methods in the context of smart homes, elderly care, and surveillance applications.

Background & Summary
Over the past few years, Human Activity Recognition (HAR) has become an active area of research due to its potential
application in areas such as healthcare, Internet of Things (IoT), smart homes, surveillance, virtual gaming, among others.
Numerous techniques have been proposed for HAR, ranging from wearable sensors such as accelerometers and/or gyroscopes1,
vision-based methods such as Microsoft Xbox Kinect sensor2, to unobtrusive methods based on Radio-Frequency (RF) waves
such as WiFi Channel State Information (CSI)3, Passive WiFi Radar (PWR)4, Ultra-wideband (UWB)5, etc. Recognizing
human activities, especially using RF signals, is a challenge and open-source datasets would help in devising techniques and
algorithms that can boost research in this field, which can ultimately lead to standardization. A handful of works have made
their datasets open-source which are intended for a number of applications such as WiFi CSI-based activity recognition6, 7, sign
language recognition8, fall detection9, device-to-device localization10 or UWB-based gesture recognition11, motion detection12,
passive localization13, people counting14, physical activity sensing using accelerometer and RSSI measurements from wearable
sensors15, 16, vision-based action recognition using Kinect17, while others have proposed radar-based simulators for generating
synthetic datasets for day-to-day activities18.As compared to these works and to the best of the authorsâĂŹ knowledge, this is
the first work to propose a multimodal dataset comprising of RF and vision-based methods that is intended not only for sensing
of day-to-day activities but also for passive (uncooperative) localization. The contributions herein are:

• Multimodal data collection intended for human activity recognition and passive localization, i.e, the targets are oblivious
to these processes (non-collaborative) and they only reflect or scatter the signals from the transmitter to receivers. Most
datasets consider only one particular modality such as either UWB, WiFi CSI, PWR or Kinect, independently. In this
work, we consider multiple synchronized modalities. Experiments span across two environments which can be used for
investigating sensing in complex or untrained environments.

• Approximately 8 hours of measurements are annotated with high resolution location and activity labels, capturing
the participant’s movement and natural behaviour within the monitoring area, as would be the case in a real-world
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environment. The dataset is comprehensive in so far it contains over 1 Million annotated data points.

• The presented data can be exploited to advance human activity recognition technology in different ways, for example,
using various pattern recognition and deep learning algorithms to accurately recognize human activities. For this purpose,
the users can apply different signal processing pipelines to analyze the recorded WiFi CSI, PWR, UWB and Kinect
data and extract salient features that can be used to recognize the human activities and/or concurrently track the target’s
position within an indoor environment.

• This is the first dataset that is collected with an explicit aim to accelerate the development of self-supervised learning
techniques. Such techniques are extremely data hungry, requiring orders of magnitude larger datasets compared to more
traditional supervised learning.

This open-source dataset is intended for both HAR and non-cooperative localization, which are areas of growing interest
to research communities including but not limited to radar, wireless sensing, IoT and computer vision. To ensure that the
dataset aligns to the FAIR (Findable, Accessible, Interoperable, Reusable) Data principles of Open Science, we have (i) made it
publicly available for download via the figshare portal, (ii) provided an in-depth and clear description of the dataset for each
modality, (iii) formatted our dataset using standard filetypes and encoding, and (iv) provided example scripts/codes that will
allow the user to load and analyze the data from each modality.

Figure 1. Experiment rooms layouts.

Methods
Experiments were performed in a university environment in two furnished rooms, with desks, chairs, screens, and other office
objects lying in the surroundings. The room layouts are depicted in Fig. 1 along with their physical dimensions. A maximum
of six subjects of different age groups participated in the experiments which were intended for the sensing of day-to-day
activities as well as non-collaborative localization. The description of the various experiments performed is provided in Table 1.
Approximately 8 hours of data were collected across multiple modalities including WiFi Channel State Information (CSI),
Ultra-wideband (UWB), Passive WiFi Radar (PWR) and kinect sensor systems. The breakdown of the activities’ durations is
given in Table 2. The monitoring devices were installed on the extremity (boundary) of the rooms such that enclosed spaces of
dimensions 2.45m ×4.40m and 4.06m ×4.53m were used as monitoring areas for Room 1 and 2, respectively.

Even though no personal data has been collected from the participants during the experiments, each participant was still
fully informed about the purpose of the study and what was expected of them. Informed consent was obtained from each
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Experiment No. Details
exp001,exp019,exp034,exp055 Background (1) data (empty room).
exp002,exp006,exp010,exp014,exp020,
exp024

Person walking (2).

exp003,exp007,exp011,exp015,exp021,
exp025

Person sitting (3) and standing from chair (4).

exp004,exp008,exp012,exp016,exp022,
exp026

Person lying down on floor (5) and standing up from floor
(6).

exp005,exp009,exp013,exp017,exp023,
exp027

Person rotating upper-half of his/her body (7).

exp018,exp029-exp033 Person performing the six activities (2-7) continuously and
randomly (No predefined order).

exp056-exp061 Person performing the six activities (2-7) in a predefined or-
der, starting with activity "walking" and ending with activity
"body rotating".

exp028 Crowd counting. A maximum of six people walking contin-
uously and randomly. Experiment starts with six people and
then after every 5 min, one person steps out of the monitoring
area.

exp035-exp043 Device-free static localization. CSI transmitter (NUC3) and
CSI receiver (NUC2) are placed side by side and the target
stand still at a given position for each experiment number.

exp044-exp048 Device-free dynamic localization. CSI transmitter (NUC3)
and CSI receiver (NUC2) are placed side by side and the
target moves along a short straight path for each experiment
number.

exp049-exp054 Device-to-device localization. No human target present. CSI
transmitter (NUC3) and CSI receiver (NUC2) are placed at
different angles with respect to each other (-300, 00, +300,
-600, 00, +600) for each experiment number.

Table 1. Experiment description.

participant prior to the experiments. All studies that fall under the OPERA - Opportunistic Passive Radar for Non-Cooperative
Contextual Sensing project were thoroughly reviewed and fully approved by the University of Bristol Faculty of Engineering
Research Ethics Committee (application number: 96648). Risk assessment was also carried out and approved prior to the
experiments.

Referring to the experiment numbers in Table 1, exp001-exp054 were performed in Room 1 while exp055-exp061
were carried out in Room 2. exp028 is the crowd counting experiment whereby six people walked randomly and continuously
within the monitoring area of Room 1. Then, after approximately every 5 min, one person moved out of the room. Fig. 4 shows
the particular instant of exp028 where 5 out of the 6 people already left the monitoring area and only the last person’s ground
truth walking trajectory is shown. For illustration purposes only, a moving average filter is applied to the raw ground truth
positions to smooth the target’s trajectory path. The experiments exp034-exp048 were device-free localization experiments
involving a human target who was standing still at several positions or walking along a straight short path in a number of
directions as shown in Fig. 2. The target wore a tag to get his/her ground truth position. Note that only the WiFi CSI transmitter
(NUC3) and receiver (NUC2) were used during these experiments for recording data and they were placed side by side. As for
the device-to-device localization experiments (exp049-exp054), the CSI transmitter (NUC3) and receiver (NUC2) were
placed at different angles with respect to each other (00, 300, -300, 600, -600 ), as shown in Fig. 3 (no human target). Note that
one tag was placed on the CSI transmitter and another on the receiver to get their fixed ground locations within the environment.

WiFi CSI
The WiFi CSI system consistsed of three Intel Core i5 vPro Next Unit of Computing (NUC) devices. Each device is fitted with
an Intel5300 Network Interface Card (NIC). In order to extract the CSI from the NICs, the Linux 802.11n CSI tool19 need to
be installed on the devices running an appropriate kernel version of the Linux operating system. Appropriate firmware and
drivers need to be installed on the devices in order to expose the CSI. More information regarding the installation steps can be
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Activity Duration (min)
Background 18.3465
Sit on chair 35.2455
Stand from chair 34.8754
Walk 75.9323
Lie down 26.6891
Stand from the floor 26.4151
Upper body rotate 74.5893
Steady state (no activity) 124.8624
Crowd counting 27.4127
Localization (CSI receiver NUC2 only) 18.1803

Table 2. Activity duration distribution.

found in20. The CSI provides information about the wireless channel characteristics such as multipath propagation, attenuation,
phase shift, etc. It is regarded as a fine-grained information since it describes the amplitude and phase information of the signal
across multiple overlapping but orthogonal subcarriers in the Orthogonal Frequency Division Multiplexing (OFDM) physical
layer waveform. In a WiFi system based on OFDM, the CSI is used by the equalizer in the receiver to reverse the detrimental
effects of the channel and recover the transmitted signal. The channel estimate (i.e., CSI) is obtained by transmitting a training
sequence (pilot symbols) which is known by both the WiFi transmitter and receiver. This process is often referred to as channel
sounding. CSI or Channel Frequency Response (CFR) are often used interchangeably and they represent the wireless channel in
the frequency domain. Applying the Inverse Fast Fourier Transform (IFFT) to CFR gives rise to the Channel Impulse Response
(CIR) in the time domain and this characterizes the amplitude and phase information over multiple propagation paths, as shown
in Fig. 6. The Intel 5300 NIC extracts CSI over 30 subcarriers, spread evenly among the 56 subcarriers of a 20 MHz WiFi
channel or the 114 subcarriers in a 40 MHz channel19. To record the CSI, the injector mode was used whereby one NUC was
configured as the transmitter (injector) while the receivers were monitoring the channel into which packets were injected. This
method requires that both the transmitter and receiver be equipped with the Intel5300 NIC. In the access point (AP) method,
only the receiver needs to be equipped with the Intel5300 NIC and CSI data is logged at the receiver by pinging an access
point. However, this method is not very stable since there might be a lot of dropped packets (e.g., due to interference) and
also the packet rate is limited. The CSI data was stored on the receiver NUCs for offline processing. The raw data is in .dat
format and they need to be parsed by appropriate Matlab utilities20 to obtain the data in a format that can be easily interpreted.
Since the Intel5300 supports Multiple Input Multiple Output (MIMO) capability, the CSI data was logged as a 3D tensor of
complex numbers for each received packet, with nt ×nr ×N complex values, where nt is the number of transmit antennas, nr is
the number of receive antennas and N is the number of subcarriers. The parameters of the CSI system are summarized in Table
3. Referring to the green boxes in Fig. 1, the WiFi CSI system comprised of a single transmitter (NUC3) and two receivers
(NUC1 and NUC2). NUC1 was installed facing the transmitter in a Line-of-Sight (LoS) geometry, while receiver NUC2 was
placed in a bi-static configuration (900) with respect to the transmitter.

System WiFi CSI
WiFi Band 5 GHz (channel 149)
NIC Intel5300
Subcarriers, N 30 (out of 56)
Antenna omni-directional (6 dBi)
Packet Rate 1600 Hz
No. of transmit antennas, nt 3
No. of receive antennas, nr 3

Table 3. WiFi CSI system parameters.

UWB
Three UWB systems were used during the experiments. The first system (see red nodes in Fig. 1) was used to obtain the ground
truth position of the target while he/she wore one or more tags and moved within the monitoring area. The other two systems
(yellow and blue nodes) were fixed nodes installed a multi-static configuration and which were exchanging Channel Impulse
Response (CIR) data among themselves. The 4 passive nodes of UWB system 1 (yellow nodes in Fig. 1) were implemented
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Figure 2. Figure showing paths walked by target in dynamic localization experiments (exp044-exp048).

using the Decawave’s EVK100021 modules. The modules were programmed with a custom firmware so as to record CIR data
on all modules. Node ’0’ was acting as an initiator whereby it exchanged Single-Sided Two-Way Ranging (SS-TWR) messages
(poll, response and final) with each of the other 3 nodes. When a given node replies back, the frame is broadcast and heard by
all other nodes operating on the same channel. In this way, each node can read the received frames in their accumulator and
extract the CIR data. Therefore, CIR data is available in a bidirectional mode between all pairs of nodes. This means that all
nodes act as transmitters and receivers, giving rise to a maximum of 12 communication channels. The 4 nodes were connected
to laptops in order to record the CIR data via a serial terminal.

The 5 passive nodes of UWB system 2 (blue nodes in Fig. 1) were implemented using the Decawave’s MDEK100122

modules. The units were flashed with custom firmware so as to record CIR data on all nodes. Node ’0’ was acting as an initiator
and transmitted a packet at a set period. The packet essentially includes a time schedule for transmission for the other 4 nodes.
In this way, each node knows who needs to transmit next and when with minimal delay. Thus the transmission was performed
in a round-robin fashion to avoid collision. Nodes with IDs 1-4 were connected to laptops to record the CIR data via a serial
terminal. The average packet rate for UWB system 1 (yellow nodes) was around 400Hz while for UWB system 2 (blue nodes),
the average packet rate was around 195Hz, considering combined communication links. The other parameters for UWB system
1 and 2 are summarized in Table 4.

Parameter UWB system 1 UWB system 2
Channel 4 3
Carrier Frequency 3993.6 MHz 4492.8 MHz
Bandwith 1331.2∗ MHz 499.2 MHz
Pulse Repetition Frequency 64 MHz 64 MHz
Data Rate 6.8 Mbps 6.8 Mbps
Preamble Length 128 Symbols 128 Symbols
Preamble Accumulation Size 8 8
Preamble Code 17 9

Table 4. UWB systems’ parameters (∗maximum receiver bandwidth is approximately 900 MHz).

The Decawaves’s UWB chipset stores the CIR in an accumulator and each tap of the accumulator represents a sampling
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Figure 3. Device-to-device localization experiment setup (exp049-exp054).

interval of ∆τs≈1.0016 ns (i.e., half a period of the 499.2 MHz fundamental frequency)23. The accumulator spans over one
symbol time. This represents 992 and 1016 samples for the nominal Pulse Repetition Frequency (PRF) of 16 MHz and 64
MHz, respectively. Each measured CIR sample is a complex number which can be broken down into its real and imaginary
components. Only 35 and 50 CIR samples out of 1016 are considered in the experiments for UWB systems 1 and 2, respectively.
These correspond to a sensing range of 10.5m and 15m for UWB systems 1 and 2, respectively. Each CIR measurement
was read from the accumulator memory starting 3 samples (i.e., 3 ns) before the detected first path index (reported by the
FP_INDEX field in register 0x15 of DW1000 chipset) by the LDE algorithm. As the CIR magnitudes are dependent on the
number of preamble symbols used for CIR accumulation, for each CIR measurement in the UWB datasets, the magnitude
values are normalized using the Preamble Accumulation Count (PAC) value24 (see rx_pream_count column in UWB
datasets), as reported by the RXPACC register in the DW1000 chip.

System WiFi PWR
WiFi Band 5 GHz (channel 149), the CSI transmitter
RF Frontend USRP 2945
Antenna omni-directional (6 dBi)
Packet Rate 1600 Hz
No. of surveillance channel, ns 3
No. of reference channel, nr 1
Number of Doppler bins, nb 200

Table 5. PWR system parameters.

PWR
For the Passive WiFi radar (PWR) system, a USRP-294525 was used as the receiver which is equipped with four synchronized
channels. The USRP-2945 features a two-stage superheterodyne architecture with four independent receiving channels and
shares local oscillators for phase-coherent operation. Each receiving channel was equipped with a 6-dB directional antenna.
The collected raw data are then routed to a computing unit through a PCIe port, which is a desktop computer in this work. A
PWR system consists of a minimum of two synchronized channels; a surveillance channel which records reflected WiFi signals
from the monitoring area and a reference channel which records the direct signal emitted from the transmitter. As mentioned
previously, four channels are used in the USRP-2945, where one channel was used as the reference channel (denoted as "rx1"
in Fig. 1) while the other three channels were used as surveillance channels (denoted as "rx2", "rx3" and "rx4" in Fig. 1). Since
PWR does not transmit a signal (it only monitors received signals), it can use any third-party signal source as the illuminator but
however, a reference signal is needed. In this work, we used the CSI transmitter (NUC3) as the PWR source for convenience,
allowing a direct comparison between the two systems’ performance.

PWR correlates the signal from the surveillance and reference channels to estimate two parameters: relative range and
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Figure 4. Crowd counting experiment (exp028) in Room 1. This picture shows the last person’s walking path after the 5
previous participants have stepped out of the room sequentially.

Doppler frequency shift. Additionally, a CLEAN26 algorithm has been used to remove the direct signal interference. More
details on this signal processing can be found at26. However, due to the limitation of the WiFi signal bandwidth (40MHz
in this work), the range resolution is limited to 3.75 meters which is too coarse for indoor applications. Therefore, only the
Doppler frequency shifts are recorded in the form of Doppler spectrograms. The output from the PWR system is specified as
ns ×nb ×Nt real values, where ns is the number of surveillance channels, nb is the number of Doppler bins and Nt is the time.
Other details about the PWR’s parameters are given in Table 5.

Kinect
We used two of Microsoft’s Kinect v2 sensors to gather motion capture data from different human activities27. Kinect v2
incorporates an Infrared depth sensor, a RGB camera, and a four-element microphone array that provides functionalities such as
three-dimensional skeletal tracking, facial recognition, and voice recognition. Although the device was originally developed to
play games, numerous researchers have used it for applications beyond its initial intended purpose. Due to the low cost and wide
availability, it has now been used extensively in research areas, such as video surveillance systems where multiple Kinect devices
are synchronized to track groups of people even in complete darkness28, improve live three-dimensional videoconferencing29

and in medicines to measure a range of conditions such as autism, attention-deficit disorder and obsessive-compulsive disorder
in children30. Note that in skeleton tracking, Kinect might suffer from occlusion when some parts of the human body are
occluded with others and therefore cannot be tracked accurately.

Therefore, in this work, we used two Kinects to track three-dimensional time-varying skeletal information of the human
body, including 25 joints such as head center location, knee joints, elbow joints, and shoulder joints from two different directions.
The real advantage of using motion capture technology is capturing more accurate, more realistic, and complex human motions.
This three-dimensional joint information can further be used for simulating the corresponding radar scatterings mimicking a
typical PWR sensing system. In one of our previous works, we presented an open-source motion capture data-driven simulation
tool, SimHumalator, that can generate large volumes of human micro-Doppler radar data at multiple IEEE WiFi standards
(IEEE 802.11g, ax, and ad)18. Radar scatterings were simulated by integrating the animation data of humans with IEEE
802.11 complaint WiFi transmissions to capture features that incorporate the diversity of human motion characteristics and
the sensor parameters. More importantly, we have demonstrated that the human micro-Doppler data generated using the
simulator can be used to augment limited experimental data31, 32. Interested researchers can download the simulator from
https://uwsl.co.uk/.
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The output from the Kinect system is specified as Nt ×Nb ×Nd real values, where Nt is the number of time frames, Nb is
the number of tracked joints on the human body, and Nd is the three-dimensional position (x,y,z) information.

Ground Truthing
• The Decawave’s (now Qorvo) MDEK1001 development kit22 was used for obtaining the ground truth position of the

targets. 11 units were configured as anchors and mounted on walls in the experiment rooms (see red nodes in Fig. 1).
Their xy coordinates were manually measured using a laser measuring device, which were then entered in the DRTLS
Android app. A maximum of 6 tags were configured for exp028, while for the activity recognition experiments,
the person wore two tags, one on each arm. Two UWB units were also configured as listeners so as to record the xy
coordinates of the tags on a serial terminal on two laptops (for redundancy).

• As for the labelling of activities, a program was developed in Matlab with automated voice output to instruct the person
when to perform the various activities such as sitting, standing, etc. At the same time, the programmable script recorded
the timestamps at which the activity was instructed to be performed. The person just had to listen to the voice command
and perform the activity accordingly. As a backup solution, another activity labelling application was developed in
Matlab where one can insert the labels for the required activities. Then, an observer constantly looked at the person
doing the activities and clicked on the appropriate button in the app to record the start and stop times of the activity. All
labels were stored in text files along with their timestamps. Note that all modalities were synchronized to the same local
Network Time Protocol (NTP) server, resulting in synchronisation accuracy across all modalities of < 20ms.

Data Records
Four modalities have been used during the experiments, namely, WiFi CSI, UWB, PWR and Kinect sensor. With respect to
WiFi CSI and UWB, there were two systems in each case. The experimental datasets can be accessed and downloaded from the
figshare repository at https://figshare.com/s/c774748e127dcdecc667. The datasets have been compressed
(zipped) into separate folders for each modality, allowing the user to only download the data of interest. The zipped folders’
names and the number of files in each folder, along with their file formats, are specified in Table 6. The directories wificsi1
and wificsi2 refer to the data collected by the WiFi CSI receivers, denoted by "NUC1" and "NUC2" in Fig. 1, respectively.
uwb1 and uwb2 refer to the data collected by the two passive UWB systems, represented by the yellow and blue nodes in Fig. 1,
respectively. The directory pwr contains the PWR spectrogram data recorded from the three surveillance channels ("rx2", rx3"
and "rx4" represented as black triangles in Fig. 1) for each experiment (excluding exp001,exp019, exp034-exp054).
Finally, the directory kinect contains the Kinect sensor data files for each experiment (excluding exp001,exp019,
exp034-exp054, exp055).

Experiment Directory
Each file in the directories in Table 6 corresponds to a given experiment number (filename contains strings exp001,exp002,
etc.,), the details of which are provided in Table 1.

Directory Name No. of files File format
wificsi1 40 .mat
wificsi2 63 .mat
uwb1 40 .csv
uwb2 40 .csv
pwr 38 .mat
kinect 36 .mat

Table 6. Dataset directory details.

WiFi CSI dataset description
This section describes the structure of the data files residing in the wificsi1 (NUC1) and wificsi2 (NUC2) directories.
The files are in .mat format and each row in the file corresponds to a received CSI packet. The columns in the dataset have the
following headers:

• timestamp: UTC+01 00 timestamp in milliseconds when the CSI packet was received by the NUC devices.
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• activity: current activity being performed. The activity is specified as a string of characters with no spacing e.g.,
"background", "walk", "sit", "stand", "liedown", "standfromlie", "bodyrotate". These correspond to the activity numbers
1, 2, 3, 4, 5, 6 and 7 in the "Details" column in Table 1, respectively. The activity label "noactivity" refers to the case
where the person was not performing any activity, that is, his/her body was at rest, for example between activities
such as "sitting" and "standing" or "lying down on floor" and "standing up from the floor". For exp035-exp054,
the activity is specified as "Loc1", "Loc2", · · · , "Loc9" (device-free static target localization), "path1", "path2", · · · ,
"path5" (device-free dynamic target localization), "loc1", "loc2", · · · , "loc6" (device-to-device localization). For these
localization experiments, each file also contains a column with header notes which gives more details on the position
of the transmitter (tx) and receiver (rx) and the target (if applicable).

• exp_no: experiment number which is specified as "exp_001", "exp_002", etc. See Table 1 for more details.

• person_id: person ID specified as "One", "Two", "Three", etc.

• room_no: room ID specified as "1" (left room in Fig. 1) or "2" (right room in Fig. 1).

• tag4422_x, tag4422_y, tag89b3_x, tag89b3_y: refer to the ground truth position of the person in the moni-
toring area in terms of 2D x- and y- coordinates. Note that for all experiments, except exp001,exp019,exp034,
exp055,exp028 and exp035-exp054 (NUC2 only), the person was wearing two UWB tags on either arms, bear-
ing IDs 4422 and 89b3. The information regarding which tag is worn on which arm is given in the columns with
headers left_arm_tag_id and right_arm_tag_id. For the crowd counting experiment (exp028), there were
a maximum of 6 people and hence 6 UWB tags were used to obtain the ground truth position of each person. Each person
wore the tag on his/her left arm. In the WiFi CSI files for exp028, the x- and y- coordinates of the person is given
in the columns tag4422_x, tag4422_y, tag89b3_x, tag89b3_y, tag122c_x, tag122c_y, tag4956_x,
tag4956_y, tag1e85_x, tag1e85_y, and tag9118_x, 9118_y. The person bearing UWB tag id 4956 was
the first to step out of the monitoring area, followed by 9118, 1E85, 4422, 89B3, and finally 122C.

• anchor_node_xy_positions: x- and y- coordinates of the eleven UWB anchor nodes distributed across the room
(see red nodes in Fig. 1) for obtaining the ground truth position of the tag/s.

• tx1rx1_sub1,tx1rx1_sub2, · · · , tx3rx3_sub30 (270 columns): The first corresponds to the raw complex CSI
values for transmit antenna 1 (tx1), receive antenna 1 (rx1) and subcarrier 1 (sub1), the second corresponds to transmit
antenna 1 (tx1), receive antenna 1 (rx1) and subcarrier 2 (sub2), and so on. The WiFi CSI systems used a 3×3 MIMO
configuration and since the Intel5300 NIC extracts CSI data over 30 subcarriers, the total number of complex CSI values
per packet is 3×3×30=270.

• tx_x_coord, tx_y_coord, target_x_coord, target_y_coord (for exp035-exp054 only): For exp035
-exp048, tx_x_coord and tx_y_coord respectively correspond to the x- and y- coordinates of both the CSI trans-
mitter (NUC3) and CSI receiver (NUC2) since they were placed side by side while the target was standing still at several
positions or walking along a short path. The human target was holding a tag and its ground truth x- and y- coordinates are
given by target_x_coord and target_y_coord, respectively. As for exp049 -exp054, tx_x_coord and
tx_y_coord refer to the x- and y- coordinates of the CSI transmitter (NUC3), respectively, while target_x_coord
and target_y_coord refer to the x- and y- coordinates of the CSI receiver (NUC2), respectively. No human target
was present in this case.

UWB dataset description
This section describes the structure of the data files residing in the uwb1 (UWB system 1- yellow nodes) and uwb2 (UWB
system 2- blue nodes) directories. The files are in .csv format and each row in the file corresponds to a received UWB
packet. The UWB dataset files have the following fields similar to the WiFi CSI datasets: timestamp, activity,
exp_no, person_id, room_no, tag4422_x, tag4422_y, tag89b3_x, tag89b3_y, tag122c_x, tag122c_y,
tag4956_x, tag4956_y, tag1e85_x, tag1e85_y, tag9118_x, 9118_y, left_arm_tag_id, right_arm_
tag_id, and anchor_node_xy_positions. The additional column headers or those that are different from the WiFi
CSI dataset headers are described below:

• fp_pow_dbm: estimate of the first path power level (in dBm) of the UWB signal between a pair of nodes. The formula
for computing this value is given in23.

• rx_pow_dbm: estimate of the receive power level (in dBm) of the UWB signal between a pair of nodes. The formula
for computing this value is given in23.
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According to the manufacturer, the above two estimated parameters can be used to infer whether the received signal
is Line-of-Sight (LoS) or Non-Line-of-Sight (NLOS). It is stated that, as a rule of thumb, if the difference of the two
parameters, i.e., rx_pow_dbm - fp_pow_dbm is less than 6dB, the signal is most likely to be LoS, whilst if the
difference is greater than 10dB, the signal is likely to be NLoS23.

• tx_id: index of the transmitting node. For UWB system 1 (yellow nodes), the transmitting node IDs are 0, 1, 2 or 3.
For UWB system 2 (blue nodes), the transmitting node IDs are 0, 1, 2, 3 or 4 (see Fig. 1).

• rx_id: index of the receiving node. For UWB system 1 (yellow nodes), the receiving node IDs are 0, 1, 2 or 3. For
UWB system 2 (blue nodes), the receiving node IDs are 1, 2, 3 or 4.

• tx_x_coord,tx_y_coord: x- and y- coordinates of the transmitting node, respectively.

• rx_x_coord,rx_y_coord: x- and y- coordinates of the receiving node, respectively.

• tx_rx_dist_meters: separation distance between the pair of transmitting and receiving nodes in meters.

• fp_index: accumulator first path index as reported by the Leading Edge Detection (LDE) algorithm of the DW1000
UWB chipset in register 0x15 (in FP_INDEX field). It is a sub-nanosecond quantity, consisting of an integer part and a
fractional part.

• fp_amp1: first path amplitude (point 3) value reported in the FP_AMPL1 field of register 0x15 of the DW1000 UWB
chipset.

• fp_amp2: first path Amplitude (point 2) value reported in the FP_AMPL2 field of register 0x12 of the DW1000 UWB
chipset.

• fp_amp3: first path amplitude (point 1) value reported in the FP_AMPL3 field of register 0x12 of the DW1000 UWB
chipset.

Basically, fp_amp1, fp_amp2 and fp_amp3 are the magnitudes of the accumulator tap at the indices 3, 2 and 1,
respectively, beyond the integer part of FP_INDEX reported in register 0x15 of the DW1000 UWB chipset23. That is,
fp_amp1 = amplitude at ceiling(FP_INDEX) + 3, fp_amp2 = amplitude at ceiling(FP_INDEX) + 2 and fp_amp3 =
amplitude at ceiling(FP_INDEX) + 1.

• max_growth_cir: Channel Impulse Response (CIR) power value reported in the CIR_PWR field of register 0x12 of
the DW1000 UWB chipset. This value is the sum of the squares of the magnitudes of the accumulator from the estimated
highest power portion of the channel, which is related to the receive signal power23.

• rx_pream_count: Preamble Accumulation Count (PAC) value reported in the RXPACC field of register 0x10 of the
DW1000 UWB chipset. RXPACC reports the number of accumulated preamble symbols. The DW1000 chip estimates
the CIR by correlating a known preamble sequence with the received signal and accumulating the result over a time
period. The number of preambles used for the CIR estimation is dependent on the quality of the received signal.

• max_noise: LDE max value of noise.

• std_noise: standard deviation of noise.

• cir1,cir2, · · · : These correspond to the 35 and 50 raw complex CIR samples for UWB systems 1 and 2, respectively.

PWR dataset description
This section describes the structure of the data files residing in the pwr directory. The files are in .mat format and each row in
the files corresponds to a PWR measurement from each of the three receivers (surveillance channels) at a given point in time.

• exp_no: experiment number which is specified as "exp_002", "exp_003", etc. See Table 1 for more details. Note that
the PWR system does not need background scan. Hence, background data for "exp_001" and "exp_019" are omitted for
the PWR system.

• timestamp: UTC+01 00 timestamp in milliseconds when the Doppler spectrograms were recorded.

• activity: ground truth activity labels. The activity is specified as a string of characters with no spacing e.g., "walk",
"sit", "stand", "liedown", "standfromlie", "bodyrotate". These correspond to the activity numbers 1, 2, 3, 4, 5, 6 and 7 in
the "Details" column in Table 1, respectively.
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• person_id: person ID specified as "One", "Two", "Three", etc.

• room_no: room ID specified as "1" (left room in Fig. 1) or "2" (right room in Fig. 1).

• PWR_ch1: Doppler spectrogram measured from surveillance channel "rx2", as demonstrated in Fig. 5(d).

• PWR_ch2: Doppler spectrogram measured from surveillance channel "rx3".

• PWR_ch3: Doppler spectrogram measured from surveillance channel "rx4".

Kinect dataset description
This section describes the structure of the data files residing in the kinect directory. The files are in .mat format and each
row in the files corresponds to three-dimensional skeleton information captured from each of the two Kinects at a given point in
time.

• exp_no: experiment number which is specified as "exp_002", "exp_003", etc. See Table 1 for more details. Note that
the Kinect system does not need background scan. Hence, background data for "exp_001" and "exp_019" are omitted for
the Kinect data.

• timestamp: UTC+01 00 timestamp in milliseconds when the Kinect skeleton data were recorded.

• activity: ground truth activity labels. The activity is specified as a string of characters with no spacing e.g., "walk",
"sit", "stand", "liedown", "standfromlie", "bodyrotate". These correspond to the activity numbers 1, 2, 3, 4, 5, 6 and 7 in
the "Details" column in Table 1, respectively.

• person_id: person ID specified as "One", "Two", "Three", etc.

• room_no: room ID specified as "1" (left room in Fig. 1) or "2" (right room in Fig. 1).

• Kinect1: Velocity-time profile measured from Kinect skeleton data over a period of time is demonstrated in Fig. 5(c). It
perfectly captures human motion characteristics and is qualitatively similar to the envelope of the human-micro-Doppler
signatures presented in 5(d).

Technical Validation
WiFi CSI
Fig. 5(a) shows a 196s portion of the received WiFi CSI signals on NUC1 and NUC2 for exp018. CSI values for transmit
antenna 1, receive antenna 1 and subcarrier 10 has been considered here. The injection packet rate of WiFi CSI was set a 1600
Hz. For illustration purposes only, the CSI data has been filtered using a 1D wavelet denoising technique and the corresponding
results are shown in Fig. 5(a). It can be observed that the CSI measurements in the time domain capture variations in the
wireless signal due to the latter’s interaction with surrounding objects and human bodies. Therefore, machine or deep learning
algorithms can be used to train the observed patterns and automatically extract features from raw signals to predict human
activities. The CSI data can be processed and interpreted in different ways (feature extraction), for example spectrograms which
are generated by applying Short Time Fourier Transform (STFT) to the CSI amplitude data3–5. Note that the two receiving
NUCs (NUC1 and NUC2) were arranged differently with respect to the transmitter (NUC3). As shown in Fig. 1, in both rooms
NUC1 was facing the transmitter in a 1800 configuration while NUC2 was in a bistatic geometry (900) with respect to the
transmitter. By having multiple views of the same activity being performed, it is envisaged that the prediction accuracy can be
improved using algorithms such as contrastive learning33.

UWB
Fig. 5(b) shows the UWB signals between nodes ’0’ and node ’3’ for UWB system 1 and nodes ’1’ and ’2’ for UWB system
2, considering the same experiment number and time window. The raw CIR data has been converted to Channel Frequency
Response (CFR) using the Fast Fourier Transform (FFT) and the signals are plotted for the 10th CFR sample for each system.
Note that the terms CFR and CSI can be used interchangeably. Although the sampling rate of the UWB systems is much lower
(typically <100 Hz considering bidirectional data which are reciprocal) than the WiFi CSI system, the activities cause variations
in the UWB signals and these variations can be fed to machine or deep learning algorithms for activity prediction. The raw CIR
can also be used for human activity recognition (HAR) and yield high prediction accuracy, as demonstrated in5.

Considering the crowd counting experiment, Fig. 7(a) and 7(b) show the first path power level (in dBm) for the two UWB
systems between a given pair of nodes in each case. The first path power level has been computed using the formula given
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in the DW1000 manual23. As can be observed, the first path power level increases gradually as each person was moving
out of the monitoring area. This is an expected behaviour since the LoS signal becomes less and less obstructed. By using
the fp_pow_dbm parameter together with other parameters such as overall received UWB power level (rx_pow_dbm),
UWB CIR data and WiFi CSI data, the number of people in a given environment can be inferred through the use of artificial
intelligence algorithms.

While UWB modules such as Decawave’s EVK1000 and DWM1000 are used for active localization providing the 2D or
3D coordinates of a target carrying a tag, in this experiment, we deployed fixed UWB nodes programmed with custom software
to record CIR data in a multi-static configuration. The idea is to extend the functionality of pulse-based UWB systems from
active localization to the ability to sense their environment using the CIR data13, 24. Fig. 6(a) and 6(b) show 1000 aligned
and accumulated CIR measurements recorded between a given pair of UWB modules for each system in a static environment
(exp001). As can be observed from Fig. 6(a) and 6(b), when the room is empty, the accumulated CIR measurements are
stable. However, when a person is performing activities as in exp003, some variations occur in the accumulated CIR, as can
be observed in the region starting around τ − τFP ≈ 8ns and 10ns in Fig. 6(c) and 6(d), respectively. The earliest time at which
changes are observed in the CIR is the bi-static delay. Since the transceivers are fixed in the multi-static network and their
positions are known, the distance travelled by the direct (first path) signal between pairs of devices can be computed along with
its delay τFP. The black vertical lines in Fig. 6(c) and 6(d) represent the ground truth bi-static delay which is computed from the
tags’ coordinates. Note that the target was wearing two tags, one on each arm. Also, exp003 refers to the sitting on chair and
standing up from chair activities which were performed at a given location within the monitoring area. Therefore, the reported
locations for each tag were averaged over the 1000 accumulated CIR measurements to obtain a single 2D position per tag. Now,
the separation between the two tag’ coordinates are of a certain distance apart, which is around 60cm, corresponding to the
approximate diameter of the human (arm to arm distance). Therefore, the midpoint xy coordinates are taken as the ground truth
position of the target. The ground truth bi-static delay can then be computed by finding the transmitter-target-receiver path
length and subtracting the direct signal path length from it, given that the fixed UWB transmitter and receiver positions are
known. Assuming that the signal emitted from the transmitter reflects off the target and reaches the receiver without additional
scattering, then the bi-static range defines an ellipse on which the target is located13. This ellipse has the position of the
transmitter and receiver as foci points and the major axis length is equal to the bi-static range. In an ideal scenario, the common
intersection point of ellipses from multiple transmitter and receiver pairs indicates the location of the target.

It should be noted that in the multi-static UWB network, each transceiver device runs its own independent RF clock and
therefore CIR measurements between pairs of devices may be sampled at different times13. The DW1000 chip organizes the
CIR buffer in such a way that the reported first path index (FP_INDEX) in each CIR measurement is usually around 75034.
The chipset also estimates FP_INDEX in each CIR measurement with a resolution of 1.0016ns

64 , such that it is represented as a
real number, having integer and fractional parts (see column fp_index in UWB datasets). Now, since each CIR measurement
basically has a different FP_INDEX value but the same sampling resolution of 1.0016 ns, the accumulated CIR measurements
need to be aligned with their respective estimated FP_INDEX, and the latter can be shifted to be at the beginning of the CIR
buffer, as shown in Fig. 6. Furthermore, in order to remove outliers in the accumulated CIR, those CIR measurements where the
number of accumulated preamble symbols (see column rx_pream_count in UWB datasets) is less than half of the number
of transmitted preamble symbols (preamble length of 128 considered in the experiments) can be discarded13.

PWR
Fig. 5(d) illustrates the Doppler spectrogram collected by the PWR system from a given angle (see placement of "rx2", "rx3"
and "rx4" in Fig. 1). As mentioned previously, the PWR system uses the CSI transmitter (NUC3) as the signal source with an
injection packet rate of 1600Hz. The coherent processing interval was set at 1 second, and sampling rate was set at 20MHz
for each channel. The signatures in the Doppler spectrogram demonstrate the relative velocity between human and receiver
antenna. The bi-static velocity is maximum in a monostatic layout (0 degree), and minimum in a forward scatter layout (180
degrees). We can see large differences between the signatures from the "sit/stand" and "walk" activities in terms of Doppler
frequency shifts. This is because the velocity of the walking activity is much higher than other activities. The activities "lie
down" and "stand from floor" have opposite Doppler signatures due to the opposing directions the human body undertakes
when performing these activities. Such signatures can potentially be used for various machine learning applications such as
activity recognition, people counting, localization, etc.

Kinect
Fig. 5(c) illustrates the velocity-time profile of a human undergoing a set of activities. The motion profile is generated using the
time-varying three-dimensional position information of different joints on the human body, such as the torso, arms, legs, and
the head, at a frame rate of 10 Hz. To mimic accurate radar reflections from the target, we assume the radar scattering centers
lying approximately at the center of the bones joining these joints. Thus, the signatures in the velocity-time plot demonstrate
the relative velocity between human scattering centers and the Kinect position.
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Fig.5 (c)-(d), compare the velocity-time profile (generated using motion capture data) and the measured spectrograms,
respectively, for a human undergoing a series of motions. The envelope of the velocity-time profile is visually very similar to
the measured spectrogram indicating how well both systems capture the motion characteristics. For example, as the human sits
down, we observe negative Doppler due to the bulk body motion. The positive micro-Doppler arises due to arm motion and
legs moving slightly in the sensor direction while sitting down. After a 5sec delay, the human subject stands up from the chair,
resulting in primarily positive Dopplers. Similarly, the latter part of the spectrogram presents signatures corresponding to a
human transitioning from first walking to falling and then standing up from the ground to rotate his body while standing at a
fixed position.

In most realistic scenarios, the human motions might not be restricted to a single aspect angle with respect to the radar. In
such scenarios, the spectrograms might differ significantly. It could be due to the shadowing of some part of the human body if
captured at different angles. Therefore, we can leverage the animation data captured by the Kinect to feed as input to our human
radar simulator, SimHumalator and synthesize radar returns as a function of different target parameters (varying aspect angles)
and different sensor parameters (varying bi-static angles and operational parameters such as waveform design and antenna
characteristics). Such signatures can potentially augment otherwise limited real radar databases for various machine learning
applications such as activity recognition, people counting, and identification.

Figure 5. Signal analysis: (a) WiFi CSI data (considering transmit antenna 1, receive antenna 1 and subcarrier 10), (b) UWB
CFR data (considering the 10th CFR sample between nodes ’0’ and node ’3’ for UWB system 1 and nodes ’1’ and ’2’ for
UWB system 2), (c) Velocity information extracted from Kinect sensor data and (d) PWR Doppler spectrogram extracted from
surveillance channel ’rx2’. Only a 196s portion of exp018 is considered for the four synchronized modalities in this illustration.

Usage Notes
The dataset repository is available at https://figshare.com/s/c774748e127dcdecc667. The different directories
are specified in Table 6. Furthermore, the interested reader is encouraged to navigate to the codes directory where example
scripts on how to load and analyze a specific modality data are included. These are described in the following section.

Code availability
Some Matlab and Python scripts have been made available in the codes directory for the users to replicate some of the figures
in this Data Descriptor:
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(a) (b)

(c) (d)

Figure 6. 1000 accumulated and aligned CIR measurements in a (a) static environment (exp001) recorded between nodes ’1’
and ’3’ of UWB system 1 (yellow nodes) (b) static environment (exp001) recorded between nodes ’2’ and ’3’ of UWB system
2 (blue nodes) (c) dynamic environment (exp003) recorded between nodes ’1’ and ’3’ of UWB system 1 (yellow nodes) (d)
dynamic environment (exp003) recorded between nodes ’2’ and ’3’ of UWB system 2 (blue nodes). Note: Bidirectional CIR
data are reciprocal. τFP represents the first path (direct) signal time-of-flight between the pair of nodes.

• plot_wificsi.m: This script is used to load the complex WiFi CSI data recorded by each NUC device and visualize
the amplitude variations over time, as illustrated in Fig. 5(a). The user can specify the start and stop timestamps and
visualize the CSI stream in that time segment (for a given transmit antenna, receive antenna, and subcarrier index).
Furthermore, for comparison purposes, the generated plots consist of the raw (unfiltered) CSI data and those which have
been denoised using DWT.

• plot_uwb.m: This script is used to load the complex CIR data recorded by each passive UWB system, convert it into
CFR using FFT and visualize the amplitude variations over a given time segment (between a given pair of UWB nodes),
as illustrated in Fig. 5(b). Furthermore, this script allows the users to plot the aligned CIR measurements as shown in Fig.
6.

• plot_uwb_fppow_crowdcount.m: This script is used to load the UWB data for the crowd counting experiment
(exp028) and plot the first path power level (in dBm) over time for each UWB system (between a given pair of UWB
nodes), as illustrated in Fig. 7.

• plot_PWR_demonstration.m and plot_pwr_spectrogram.py : These scripts allow the users to visualize
the PWR spectrograms from the three surveillance channels: "rx2" (as illustrated in Fig. 5(d).), "rx3" and "rx4", as a
function of time and Doppler.
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(a) (b)

Figure 7. First path power level (dBm) of UWB signal in crowd counting experiment (exp028) between nodes (a) ’0’ and ’3’
of UWB system 1 (yellow nodes) (b) nodes ’3’ and ’4’ of UWB system 2 (blue nodes).

• plot_kinect_data.m: This script allows the user to plot the motion capture data (as a function of velocity versus
time) from one of the two Kinect systems, as illustrated in Fig. 5(c). Furthermore, the users can visualize the stick
(skeletal) representation of the kinect motion capture data as an animation over the specified time segment.

• oddet.py: This python script allows the user to extract only the modalities and features needed rather than needing
to take the entire files and then stripping out unused features. With this python script, one can select the modality,
experiment number and features needed through the command line interface. Additionally if a specific set of features
are required, one can also specify all the columns needed through YAML configurations which will allow the user to
curate the dataset to the format that more closely suits the usage. This python script is available at the following GitHub
repository: https://github.com/RogetK/ODDET.
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