33 research outputs found

    Opportunistic Splitting Algorithms for Wireless Networks with Fairness Constraints

    Get PDF
    In wireless networks, it is well established that the throughput can be increased by opportunistically scheduling transmissions to users that have good channel conditions. Several “opportunistic” medium access control protocols have been developed, which enable distributed users to opportunistically transmit without requiring a centralized scheduler. In this paper, we consider opportunistic splitting algorithms, where a sequence of mini-slots is used to determine the appropriate user to schedule at each time. In prior work, this type of algorithm has been developed for homogeneous systems in which all users have independent and identically distributed (i.i.d.) channel statistics. Here, we specify new splitting algorithms for a heterogeneous environment that may also include fairness constraints. The performance of the splitting algorithms are characterized via analysis and simulations. In particular, we show that in certain cases, a heterogeneous algorithm will perform at least as well as the homogeneous algorithm in a system with the same total number of users

    Optimal Cooperative MAC Protocol with Efficient Selection of Relay Terminals

    Get PDF
    A new cooperative protocol is proposed in the context of wireless mesh networks. The protocol implements ondemand cooperation, i.e. cooperation between a source terminal and a destination terminal is activated only when needed. In that case, only the best relay among a set of available terminals is re-transmitting the source message to the destination terminal. This typical approach is improved using three additional features. First, a splitting algorithm is implemented to select the best relay. This ensures a fast selection process. Moreover, the duration of the selection process is now completely characterized. Second, only terminals that improve the outage probability of the direct link are allowed to participate to the relay selection. By this means, inefficient cooperation is now avoided. Finally, the destination terminal discards the source message when it fails to decode it. This saves processing time since the destination terminal does not need to combine the replicas of the source message: the one from the source terminal and the one from the best relay. We prove that the proposed protocol achieves an optimal performance in terms of Diversity-Multiplexing Tradeoff (DMT)

    Splitting algorithm for DMT optimal cooperative MAC protocols in wireless mesh networks

    Get PDF
    A cooperative protocol for wireless mesh networks is proposed in this paper. The protocol implements both on-demand relaying and a selection of the best relay terminal so only one terminal is relaying the source message when cooperation is needed. Two additional features are also proposed. The best relay is selected with a splitting algorithm. This approach allows fast relay selection within less than three time-slots, on average. Moreover, a pre-selection of relay candidates is performed prior to the splitting algorithm. Only terminals that are able to improve the direct path are pre-selected. So efficient cooperation is now guaranteed. We prove that this approach is optimal in terms of diversity-multiplexing trade-off. The protocol has been designed in the context of Nakagami-mfading channels. Simulation results show that the performance of the splitting algorithm does not depend on channel statistics

    DMT Optimal Cooperative Protocols with Destination-Based Selection of the Best Relay

    Get PDF
    We design a cooperative protocol in the context of wireless mesh networks in order to increase the reliability of wireless links. Destination terminals ask for cooperation when they fail in decoding data frames transmitted by source terminals. In that case, each destination terminal D calls a specific relay terminal B with a signaling frame to help its transmission with source terminal S. To select appropriate relays, destination terminals maintain tables of relay terminals, one for each possible source address. These tables are constituted by passively overhearing ongoing transmissions. Hence, when cooperation is needed between S and D, and when a relay B is found by terminal D in the relay table associated with terminal S, the destination terminal sends a negative acknowledgment frame that contains the address of B. When the best relay B has successfully decoded the source message, it sends a copy of the data frame to D using a selective decode-andforward transmission scheme. The on-demand approach allows maximization of the spatial multiplexing gain and the cooperation of the best relay allows maximization of the spatial diversity order. Hence, the proposed protocol achieves optimal diversitymultiplexing trade-off performance. Moreover, this performance is achieved through a collision-free selection process

    Splitting Algorithms for Fast Relay Selection: Generalizations, Analysis, and a Unified View

    Full text link
    Relay selection for cooperative communications promises significant performance improvements, and is, therefore, attracting considerable attention. While several criteria have been proposed for selecting one or more relays, distributed mechanisms that perform the selection have received relatively less attention. In this paper, we develop a novel, yet simple, asymptotic analysis of a splitting-based multiple access selection algorithm to find the single best relay. The analysis leads to simpler and alternate expressions for the average number of slots required to find the best user. By introducing a new `contention load' parameter, the analysis shows that the parameter settings used in the existing literature can be improved upon. New and simple bounds are also derived. Furthermore, we propose a new algorithm that addresses the general problem of selecting the best Q1Q \ge 1 relays, and analyze and optimize it. Even for a large number of relays, the algorithm selects the best two relays within 4.406 slots and the best three within 6.491 slots, on average. We also propose a new and simple scheme for the practically relevant case of discrete metrics. Altogether, our results develop a unifying perspective about the general problem of distributed selection in cooperative systems and several other multi-node systems.Comment: 20 pages, 7 figures, 1 table, Accepted for publication in IEEE Transactions on Wireless Communication

    Optimal Timer Based Selection Schemes

    Full text link
    Timer-based mechanisms are often used to help a given (sink) node select the best helper node among many available nodes. Specifically, a node transmits a packet when its timer expires, and the timer value is a monotone non-increasing function of its local suitability metric. The best node is selected successfully if no other node's timer expires within a 'vulnerability' window after its timer expiry, and so long as the sink can hear the available nodes. In this paper, we show that the optimal metric-to-timer mapping that (i) maximizes the probability of success or (ii) minimizes the average selection time subject to a minimum constraint on the probability of success, maps the metric into a set of discrete timer values. We specify, in closed-form, the optimal scheme as a function of the maximum selection duration, the vulnerability window, and the number of nodes. An asymptotic characterization of the optimal scheme turns out to be elegant and insightful. For any probability distribution function of the metric, the optimal scheme is scalable, distributed, and performs much better than the popular inverse metric timer mapping. It even compares favorably with splitting-based selection, when the latter's feedback overhead is accounted for.Comment: 21 pages, 6 figures, 1 table, submitted to IEEE Transactions on Communications, uses stackrel.st

    Best Node Selection Through Distributed Fast Variable Power Multiple Access

    Get PDF
    In many wireless applications, it is highly desirable to have a fast mechanism to resolve or select the packet from the user with the highest priority. Furthermore, individual priorities are often known only locally at the users. In this paper we introduce an extremely fast, local-informationbased multiple access algorithm that selects the best node in 1.8 to 2.1 slots, which is much lower than the 2.43 slot average achieved by the best algorithm known to date. The algorithm, which we call Variable Power Multiple Access Selection (VP-MAS), uses the local channel state information from the accessing nodes to the receiver, and maps the priorities into the receive power. It is inherently distributed and scales well with the number of users. We show that mapping onto a discrete set of receive power levels is optimal, and provides a complete characterization for it. The power levels are chosen to exploit packet capture that inherently occurs in a wireless physical layer. The VP-MAS algorithm adjusts the expected number of users that contend in each step and their respective transmission powers, depending on whether previous transmission attempts resulted in capture, idle channel, or collision
    corecore