
Southern Illinois University Carbondale
OpenSIUC

Conference Proceedings Department of Electrical and Computer
Engineering

2006

Opportunistic Splitting Algorithms for Wireless
Networks with Fairness Constraints
Xiangping Qin
xqin@siu.edu

Randall Berry
Northwestern University

Follow this and additional works at: http://opensiuc.lib.siu.edu/ece_confs
Published in Qin, X., & Berry, R. (2006). Opportunistic splitting algorithms for wireless networks
with fairness constraints. 2006 4th International Symposium on Modeling and Optimization in
Mobile, Ad Hoc and Wireless Networks, 1-8. ©2006 IEEE. Personal use of this material is permitted.
However, permission to reprint/republish this material for advertising or promotional purposes or
for creating new collective works for resale or redistribution to servers or lists, or to reuse any
copyrighted component of this work in other works must be obtained from the IEEE. This material
is presented to ensure timely dissemination of scholarly and technical work. Copyright and all rights
therein are retained by authors or by other copyright holders. All persons copying this information
are expected to adhere to the terms and constraints invoked by each author's copyright. In most
cases, these works may not be reposted without the explicit permission of the copyright holder.

This Article is brought to you for free and open access by the Department of Electrical and Computer Engineering at OpenSIUC. It has been accepted
for inclusion in Conference Proceedings by an authorized administrator of OpenSIUC. For more information, please contact opensiuc@lib.siu.edu.

Recommended Citation
Qin, Xiangping and Berry, Randall, "Opportunistic Splitting Algorithms for Wireless Networks with Fairness Constraints" (2006).
Conference Proceedings. Paper 26.
http://opensiuc.lib.siu.edu/ece_confs/26

http://opensiuc.lib.siu.edu?utm_source=opensiuc.lib.siu.edu%2Fece_confs%2F26&utm_medium=PDF&utm_campaign=PDFCoverPages
http://opensiuc.lib.siu.edu/ece_confs?utm_source=opensiuc.lib.siu.edu%2Fece_confs%2F26&utm_medium=PDF&utm_campaign=PDFCoverPages
http://opensiuc.lib.siu.edu/ece?utm_source=opensiuc.lib.siu.edu%2Fece_confs%2F26&utm_medium=PDF&utm_campaign=PDFCoverPages
http://opensiuc.lib.siu.edu/ece?utm_source=opensiuc.lib.siu.edu%2Fece_confs%2F26&utm_medium=PDF&utm_campaign=PDFCoverPages
http://opensiuc.lib.siu.edu/ece_confs?utm_source=opensiuc.lib.siu.edu%2Fece_confs%2F26&utm_medium=PDF&utm_campaign=PDFCoverPages
http://opensiuc.lib.siu.edu/ece_confs/26?utm_source=opensiuc.lib.siu.edu%2Fece_confs%2F26&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:opensiuc@lib.siu.edu


Opportunistic Splitting Algorithms for Wireless
Networks with Fairness Constraints

Xiangping Qin
Dept. of Electrical and Computer Engineering

Boston University
8 St. Mary’s Street, Boston, MA 02215

Email: xqin@bu.edu

Randall Berry
Dept. of Electrical and Computer Engineering

Northwestern University
2145 Sheridan Rd., Evanston IL 60208

Email: rberry@ece.northwestern.edu

Abstract— In wireless networks, it is well established that the
throughput can be increased by opportunistically scheduling
transmissions to users that have good channel conditions. Several
“opportunistic” medium access control protocols have been
developed, which enable distributed users to opportunistically
transmit without requiring a centralized scheduler. In this paper,
we consider opportunistic splitting algorithms, where a sequence
of mini-slots is used to determine the appropriate user to schedule
at each time. In prior work, this type of algorithm has been
developed for homogeneous systems in which all users have
independent and identically distributed (i.i.d.) channel statistics.
Here, we specify new splitting algorithms for a heterogeneous
environment that may also include fairness constraints. The
performance of the splitting algorithms are characterized via
analysis and simulations. In particular, we show that in certain
cases, a heterogeneous algorithm will perform at least as well
as the homogeneous algorithm in a system with the same total
number of users.

I. INTRODUCTION

It is well established that the throughput of wireless net-
works can be increased by opportunistically transmitting to
users when they have good channel conditions. A variety
of approaches for opportunistic scheduling have been studied
such as [1]–[5], where a centralized controller decides which
users to schedule given the channel gains of every user. In
large networks, the overhead required for such a centralized
approach can become prohibitive. To reduce this overhead for
the uplink in a wireless network, various distributed oppor-
tunistic scheduling algorithms have been proposed, e.g. [6]–
[10]. These algorithms assume that each transmitter has dis-
tributed channel knowledge, i.e., each transmitter knows its
own channel gain, but has no knowledge of the other user’s
gains. For example, this could be estimated from a pilot signal
broadcast by the receiver in a time-division duplex system.
Given this distributed knowledge, the main goal is to determine
which user should be scheduled without requiring all users to
feedback their channel gains to a centralized controller.

In this paper, we consider a distributed scheduling algorithm
based on the idea of an opportunistic splitting algorithm
presented in [7]. In such an algorithm, a sequence of mini-
slots is used to determine which user is scheduled. Each user

This research was supported in part by the Motorola-Northwestern Center
for Telecommunications and NSF CAREER award CCR-0238382.

transmits in a given mini-slot if its channel gain lies in a
given range. From mini-slot to mini-slot, the range is adjusted
until only the user with the best channel gain is transmitting.
In [7], an opportunistic splitting algorithm is presented for a
homogeneous system, where every user’s channel gains are
i.i.d. In that case, it is shown that independent of the fading
distribution and the number of users, the average number of
mini-slots required to find the best user is bounded by 2.509.
This suggests that overhead requirements of an opportunistic
splitting algorithm will scale to accommodate a large number
of users.

Here we present generalizations of the opportunistic split-
ting algorithm from [7], which can be applied to a hetero-
geneous network, where the channel gains of different users
are still independent, but may not be identically distributed.
Additionally, our algorithms can take into account fairness
constraints based on the concept of distribution fairness in-
troduced in [11]. This is a form of temporal fairness, where in
the long run, each class of users is guaranteed to be scheduled
a fixed fraction of time. We first consider an algorithm for a
system where the number of users in each class involved in
a collision is known. In this case we show that the average
number of mini-slots required by this algorithm is no greater
than that required in a homogeneous system with the same
number of users, where the splitting algorithm from [7] is
used. In particular, this means the average number of mini-
slots is still upper-bounded by 2.509. We then consider an
algorithm where the number of users involved in a collision is
not known. In this case, the average number of mini-slots, until
the first collision or success is less than that in a homogeneous
system, but we can not guarantee that the average total number
of mini-slots will be less. Simulation results suggest that
the number average number of mini-slots increases, but only
slightly. Some preliminary work along these lines is reported
in [11], where we presented a different splitting algorithm for
a heterogeneous network and only analyzed its performance
for a two user network. In this paper, we give a different
splitting algorithm and a more rigorous analysis that applies
to an arbitrary number of users.

Next we give specify the system model and the definition
of distribution fairness that we will use. In Section III-A, we
give the first splitting algorithm for the case where the number
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of users in each class involved in a collision is known. Next,
in Section III-B, we give an algorithm for the case where the
number involved in a collision is not known. Several proofs
are given in the appendices.

II. MODEL DESCRIPTION AND DISTRIBUTION FAIRNESS

We consider the up-link in a wireless network with n users
all transmitting to a common receiver. The channel between
each user and the receiver is modeled as a time-slotted, block-
fading channel. During each time-slot, the received signal y(t)
is given by

y(t) =
∑
=1

√
H x (t) + z(t),

where x (t) is the transmitted signal of user i, H is the user’s
channel gain, and z(t) is additive white Gaussian noise. The
channel gain is assumed to be fixed during each time-slot and
to randomly vary between time-slots. The channel gains of
each user in each time-slot are modeled as independent random
variables, with continuous cumulative distribution functions
(c.d.f.s) F

i
(h ) on [0,∞) for all i = 1, . . . , n. Let F̄

i
(h ) =

1 − F
i
(h ) denote complimentary c.d.f. for user i’s channel

gain.
We consider a time division multiplexed (TDM) system,

where during each time-slot at most one user can successfully
transmit. Users are assumed to be rate-adaptive, so that the
transmission rate if user i successfully transmits in a time-slot
is given by R(h ), where R(·) is an increasing function of
the user’s channel gain. We assume that all users are infinitely
back-logged, and focus on the average throughput achieved by
each user. Clearly in such a system, the total throughput will
be maximized by scheduling the user with the best channel
gain in each time-slot. It is well know that such a throughput
maximizing approach can be unfair. Next, we review one the
definition of fairness from [11]. For this purpose, consider
a centralized TDM scheduler which, given the vector of
channel gains h = (h1, h2, ..., h ) at each time-slot, schedules
one of the users to transmit. Let A(h) denote a (stationary)
scheduling policy, i.e., A(h) = i if user i is scheduled when
the joint channel state is h. Let {p1, . . . , p } be a probability
mass function (p.m.f.). A scheduling rule A(H) is defined to
be distribution fair with parameters p1, p2, ..., p , if it solves

min
(H)

EH

(∑
=1

F̄
i
(H )1 (H)=

)
subject to: Prob {A(H) = i} = p for i = 1, . . . , n.

(1)

Here, 1 (H)= is the indicator function for the event A(H) =
i. The p.m.f. {p1, . . . , p } specifies the fraction of time that
each user will transmit. Given this constraint, a distribution fair
scheduler will attempt to schedule users with a small value of
F̄

i
(h ); this corresponds to a user having a channel that is

statistically strong relative to its own distribution.
The optimization problem in (1) is similar to one studied

in [2], which considers maximizing the sum expected utility
under the same constraints. Viewing the complimentary dis-
tribution function as a particular type of utility function, the

...

β T
c

Fig. 1. A time-slot made up of several mini-slots.

results in [2] can be applied to show that the optimal solution
to (1) is given by

A(H) = arg min
=1

(F̄
i
(H ) + v ), (2)

where the parameters v for i = 1, .., n are chosen to satisfy
the constraints Prob{A(H) = i} = p . If p > p , it can be
shown that v < v . For convenience, we can set v = 0 for
i = max =1 p , so that v ≥ 0, for all j.

III. SPLITTING ALGORITHMS FOR HETEROGENEOUS
NETWORKS

For a given vector of channel gains h, a centralized
distribution-fair scheduler schedules the user given by (2). In
this section, we describe splitting algorithms with the goal
of scheduling the same user in a distributed manner. At the
beginning of each time-slot, the splitting algorithms use several
mini-slots with length β to communicate with the base station
(see Fig. 1). Here β is equal to the round-trip time required
for a user to transmit a small reservation packet and detect
if a collision occurs. Let T denote the length of one time-
slot during which a user’s channel gain is fixed (i.e., T is
the length of a block in the block-fading model). We consider
an idealized model where each time-slot contains K of these
mini-slots (i.e., T = Kβ), i.e. the channel’s coherence time is
on the order of K mini-slots. Each splitting algorithm specifies
a range of channel gains [h , h ] for each user i, during each
mini-slot. The user will only transmit in the mini-slot if its
channel gains lie within this range. At the end of a mini-slot,
the base station sends (0, 1, e) feedback indicating idleness,
a success or a collision, respectively. If a success occurs, the
successful user will continue transmitting for the remainder of
the time-slot. Otherwise, all of the users update their ranges
according to the specific splitting algorithm.

For a homogeneous network, the splitting algorithm in [7]
can be viewed as solving (1), when for all i, F̄ i

(h) = F̄ (h)
and p = 1/n. In that case, v1 = v2 = · · · = v = 0 and (2)
is equivalent to

A(H) = arg max
=1

{H },

i.e., in this case a centralized scheduler that schedules the user
with the best channel gain in each time-slot is distribution fair.
In the distributed splitting algorithm in [7], every user has the
same range [h , h ]; whenever a collision occurs, this range is
split into two parts and the users with channel gains in upper
part transmit in the next mini-slot. As discussed above, it can
be shown that this algorithm will require on average no more
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than 2.509 mini-slots to find the user with the best channel
gain, independent of the channel distribution or the number of
users, n.

In the heterogeneous case, we assume that the users are
classified into K different classes according to their service
priorities. For k = 1, . . . ,K , let C denote the set of class k
users, and let n = |C | be the number of class k users. Each
user i in class k, has the same priority; with some abuse of
notation, we indicate this priority by p so that p = p for
all iinC . The class with higher priority has a larger p in (1),
and accordingly, a smaller v in (2). We assume that all users
know the total number of users in each class, n as well as
the corresponding parameter v . With a small finite number of
classes that change slowly, the additional overhead to convey
this will be small.

The scheduling rule in (2) can be viewed as finding the
minimum of a set of random variables {X }, where for
each j ∈ C , X = F̄

j
(h ) + v is an i.i.d. uniform

random variable on [v , 1 + v ]. For the heterogeneous case,
we describe our splitting algorithms in terms of these {X }
random variables. Specifically, each user will keep track of two
thresholds X and X , and only transmit when X ∈ [X ,X ].
These thresholds will be the same for each user; however, the
corresponding channel thresholds h = F̄−1

i
(X − v ) and

h = F̄−1
i
(X −v ) may now be different for different users.

A. Known number of users per collision

We first give a splitting algorithm for the idealized case
where the number of users in each class involved in each
collision is known, i.e. this information is somehow measured
and feedback to the users after each mini-slot. Subsequently,
we will relax this assumption and give an algorithm for the
case where this information is not known. To simplify our
discussion, we consider a case with only K = 2 classes, with
v1 = 0 and v2 = v. At the end of this section we comment
briefly on how to extend these results to an arbitrary number
of classes.

At the beginning of each time-slot for i ∈ C1, X is
uniformly distributed on [0, 1] and for i ∈ C2, X is uniformly
distributed on [v, 1+v]. Assume at a given mini-slot, we know
there are m1 class one users whose values X lie in the interval
[a1, b1] ⊆ [0, 1] and m2 class two users with X values in the
interval [a2, b2] ⊆ [v, 1 + v], where a1 ≤ a2 ≤ b1 ≤ b2. For
i = 1, 2, let F (x|a , b ) be the conditional c.d.f. of X for the
class i users, conditioned on X being in the interval [a , b ],
i.e., F (x|a , b ) will be the uniform c.d.f. on [a , b ], so that

F (x|a , b ) =
x − a

b − a
.

For x ∈ [a1, b2], let

F̂ 1 2(x|a1, a2, b1, b2)

=
m1

m1 + m2
F1(x|a1, b1) +

m2

m1 + m2
F2(x|a2, b2),

(3)

so that F̂ 1 2(x|a1, a2, b1, b2) is the average of the condi-
tional c.d.f.s of all the users in the indicated intervals.

We develop our splitting algorithm by considering a ho-
mogeneous system with m1 + m2 users with X values in
the range [a1, b2] and the c.d.f. F̂ 1 2(x|a1, a2, b1, b2). In
this homogeneous system, the probability of a success in the
next time-slot is maximized by allowing only the users in the
interval [a1, b

∗] to transmit, where b∗ is is chosen so that each
user transmits with probability 1

1+ 2
. This is given by the

following “splitting” function:

b∗ = split(a1, a2, b1, b2,m1,m2)

= F̂−1
1 2

(
1

m1 + m2

∣∣∣∣a1, a2, b1, b2

)
.

Using this function our first splitting algorithm is given in
Algorithm 1. Here a ∨ b = max(a, b). Also, note that X ≤
X ≤ X , where X indicates the highest value for which
it is known that at least one user has X < X , due to a
previous collision.

Algorithm 1 Generalized Splitting Algorithm I:
initialize: X = 0, X = 1 and X = split(0, v, 1, 1 +
v, n1, n2)
while m �= 1 and k ≤ K do

if X ≤ X ≤ X then
Transmit

end if
Receive feedback m ∈ (0, 1, e), m1 and m2;
if m = e then

X = X , X = split(X ,X ∨ v,X ,X ,m1,m2);
else if m = 0 then

if X �= 1 then
X ′ = split(X ,X ∨ v,X ,X ,m1,m2);

else
X ′ = split(X ,X ∨ v, 1, 1 + v, n1, n2);

end if
X = X ;
X = X ′ ;

end if
k=k+1

end while
if Transmitted in the last mini-slot and m = 1 then

Continue transmitting until k = K
end if

In Algorithm 1, all users with X values less than X =
split(0, v, 1, 1+v, n1, n2) will transmit in the first mini-slot. If
more than one user transmits (m = e), then the interval [0,X ]
will be split and users in the lower portion will transmit in the
next mini-slot. If no users transmit, then the interval [X , 1]
will be split. The algorithm will continue in this fashion, until
either there are no more mini-slots in the current time-slot or
a success occurs. Note that if, for example, after the first mini-
slot, a collision occurs then we know that the m1 class 1 users
have X values in the range in [0,X ], while the m2 class 2
users have X values in the range [v,X ]. This was the reason
for including the a and b parameters in the definition of the
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split function. It is easy to see that when a success occurs it
must be the same user selected by the scheduling rule in (2).
Next we analyze the average number of mini-slots needed to
find this user.

Let E(v, n1, n2) denote the average number of mini-slots
required by Algorithm 1 for a system with n1 class one users,
n2 class two users, an offset of v and an infinite number of
mini-slots/time-slot. Note that when there are a finite number
of mini-slots/time-slot, the algorithm will require fewer mini-
slots due to those times that it stops because k = K. When
v = 0, this splitting algorithm can be shown to be equivalent
to the basic algorithm from [7] applied to a homogeneous
system with n1+n2 users, when the number of users involved
in a collision is known.1 We will prove that E(v, n1, n2) ≤
E(0, n1, n2) for any v ∈ [0, 1]. This result implies that the
average number of mini-slots used by Algorithm 1 is no
greater than in the homogeneous case, and so is also bounded
by 2.509.

Our proof uses the following theorem for independent, non-
identically distributed random variables from [12]. Suppose
that X1,X2, ..., X are independent random variables with
corresponding continuous c.d.f.s F (x), for i = 1, .., n. Let
F = {F (x)} =1 and let F̂ (x) = 1

∑
=1 F (x) denote the

average c.d.f. of these random variables. We use Pr{X ∈
A|F} to denote the probability that X ∈ A when {X } =1

have the c.d.f.’s in F and Pr{X ∈ A|F̂} to denote this
probability when {X } =1 all have the c.d.f. F̂ . Let X(1) ≤
X(2)... ≤ X( ) denote the n order statistics corresponding to
{X } =1. The following result relates the distribution of these
order statistics under F with that under F̂ .

Theorem 1 ( [12]): For r = 2, 3, ..., n − 1 and all x ≤
F̂−1( −1 ) < F̂−1( ) ≤ y,

Pr{x < X( ) ≤ y|F} ≥ Pr{x < X( ) ≤ y|F̂},
where equality holds only if F1(u) = F2(u) = ... = F (u) at
both u = x and u = y. Also, for all x,

Pr{X(1) ≤ x|F} ≥ Pr{X(1) ≤ x|F̂},
and

Pr{X( ) ≤ x|F} ≤ Pr{X( ) ≤ x|F̂},
with strict inequalities unless F1(x) = F2(x) = ... = F (x)
at x.

Let x = F̂−1( 1 ),

P = Pr{exactly m X ’s satisfy X < x|F},
and let,

P ′ = Pr{exactly m X ’s satisfy X < x|F̂}.
Using these quantities, we then have the following corollary:

1Here, when v = 0 we are not assuming that all users have identically
distributed channel gains as in [7]. However, the Xi random variable will be
identically distributed in both cases. More precisely, Algorithm 1 is equivalent
to the algorithm in [7] when the later algorithm is given in terms of these
random variables.
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Fig. 2. The average number of mini-slots required for Algorithm 1 for a
one-class (homogeneous) system and a two class (heterogeneous) system as
a function of the total number of users in the system.

Corollary 1: For r = 2, 3, .., n − 1,
∑

= P ≤ ∑
= P ′,

P0 ≤ P ′
0, and P ≤ P ′ .

The proof is given in Appendix I.
In terms of the splitting algorithm, one can view P as

the probability that m users in a heterogeneous network will
transmit when the splitting range is [0, x], and P ′ is the
corresponding probability for a homogeneous network. With
the aid of this corollary, we prove the following proposition:

Proposition 1: For 0 ≤ v ≤ 1, and all n1 and n2,

E(v, n1, n2) ≤ E(0, n1, n2).

The proof is given in Appendix II.
A simulation result illustrating this proposition is shown

in Figure 2. This shows E(0.1, 2 , 2 ) and E(0, 2 , 2 ) as a
function of the total number of users in the system, n. It can
be seen that the average number of mini-slots required in the
heterogeneous case is slightly less than in the homogeneous
case, and both are less than the bound of 2.509. The difference
between the homogeneous case and the heterogeneous case
appears to be fairly constant as the number of users in the
system varies.

Though we presented this algorithm for the case where there
are K = 2 classes of users, the algorithm and our analysis
can easily be extended to an arbitrary number of classes. We
briefly sketch how this can be done. Consider a system with
K classes and, without loss of generality, assume that p1 ≥
p2 ≥ · · · ≥ p

c
, so that the parameters {v } satisfy 0 = v1 ≤

v2 ≤ · · · ≤ v
c
. In this case, at a given mini-slot, based on

the feedback, we will know that for each class i, there are m
users with X values in the interval [a , b ], where

a1 ≤ a2 · · · ≤ a
c
≤ b1 ≤ b2 · · · ≤ b

c
.

Each of the m class i users will have a uniform conditional
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c.d.f. F (x|a , b ) on the interval [a , b ]. Using these, we define

F̂m(x|a,b) =
c∑

=1

m∑
c

=1 m
F (x|a , b ),

where a = (a1, . . . , a c
), b = (b1, . . . , b c

) and m =
(m1, . . . ,m c

). The splitting function for this case is then
given by

split(a,b,m) = F̂−1
m

(
1∑
c

=1 m

∣∣∣∣a,b

)
.

Using this function, Algorithm 1 can be generalized to allow
for more than two classes. Note the arguments of the split
function will also need to be modified to take into account
the different parameters v for each class. Theorem 1 and
Corollary I hold for any number of classes. Proposition 1 can
be easily generalized to an arbitrary number of classes as well.

B. Number in collision not known

In the previous section, we assumed that after a collision
occurs, the number of users of each class involved in the
collision is fed back to all the users. This may be hard
to realize in practice. Therefore, we next consider the case
where the numbers of users involved in a collision (and their
respective classes) is unknown. However, we emphasize that
the initial number of users in each class is still known. Again
this is reasonable if the number of active users changes on a
much slower time-scale. It follows that until the first collision
occurs, the same procedure as in Algorithm 1 can be used.
However, once a collision occurs it is no longer known how
many users of each class were involved. We note that when
a collision occurs, assuming that each user transmits with a
probability less than 3

+1 (where n is the total number of
users), then the highest probability event is that only two users
were involved in this collision. Accordingly, we modify the
splitting algorithm to use the function split2(X ,X ) defined
by

split2(X ,X ) = X + (X + X )/2. (4)

Suppose that there are two users with channel gains in the
interval [X ,X ] and conditioned on being in this interval,
their X values are uniformly distributed. In this case, the
function in (4) results in a new interval that maximizes the
probability of success in the next time-slot. However, note
that with fairness constraints, depending on the class of the
users involved in a collision, each user may not have a X
value that is uniformly distributed on the entire interval. The
resulting splitting algorithm is given in Algorithm 2. Again, we
state this algorithm for the case where there are only K = 2
classes; using similar ideas as in the previous section this can
be directly extended to more than two classes.

Until the first collision, this algorithm follows the same
procedure as Algorithm 1. Thus, each user will transmit if
their X value is less than

x = F̌−1
1 2

(
1

n1, n2

∣∣∣∣X ,X ∨ v, 1, 1 + v

)
.

Algorithm 2 Generalized Splitting Algorithm II:
initialize X = 0, X = 1, X = split(0, v, 1, 1 +
v, n1, n2);
while m �= 1 and k ≤ K do

if X ≤ X ≤ X then
Transmit;

end if
Receive feedback m = (0, 1, e);
if m = e then

X = X , X = split2(X ,X );
else if m = 0 then

if X �= 1 then
X ′ = split2(X ,X );

else
X ′ = split(X ,X ∨ v, 1, 1 + v, n1, n2);

end if
X = X ; X = X ′ ;

end if
k = k + 1;

end while
if Transmitted in the last mini-slot and m = 1 then

Continue transmitting until k = K.
end if

In this case, Corollary 1 applies so that P0 ≤ P ′
0 and P1 ≥

P ′1. Therefore, we have:
Lemma 1: For Algorithm 2, the average number of mini-

slots until a non-idle response is received in a heterogeneous
system is smaller than in a homogeneous system with the same
number of users. Likewise, the probability that the first non-
idle response is a success is larger in a heterogeneous system
than in a homogeneous system with the same number of users.

For a single class of users, this algorithm also reduces to one
given in [7], where the number of user involved in a collision is
not known. In that case, it was shown that without knowledge
of the number involved in a collision, the average number of
mini-slots is still upper-bounded by 2.509 for any number of
users and fading distribution. Next we present some simulation
results of this algorithm for both a one class and two class
system with the same total number of users. These show
that, with multiple classes, the average number of mini-slots
required can be smaller or larger than in the corresponding
homogeneous case. In these simulations, the lower priority
users have an offset of v = 0.1. As shown in Figure 3, with
an equal number of users in both classes, the average number
of mini-slots required is again generally smaller than in the
homogeneous case. Here, in both cases, the average number
is less the bound of 2.509 for the homogeneous case.

In Figure 4, we fix the number of class one users to be
n1 = 5, and vary the number of class two users. In this case,
the average number of mini-slots required is larger than in the
homogeneous case with n1 + n2 users, and with sufficiently
many users it exceeds the bound of 2.509. However, it can be
seen that still only a small number (less than 2.7) of mini-slots
are required for both cases. From Lemma 1, we see that until
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Fig. 3. Average number of mini-slots required by Algorithm 2 as a function
of the total number of users with an equal number of users for each class.
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Fig. 4. Number of mini-slots required by Algorithm 2 as a function of the
number of users in class two with the number of class one users equal to 5.

the first collision occurs, the algorithm for the two class system
is performing on average no worse than in a one class system.
However, once a collision occurs, the algorithm may perform
worse than in the homogeneous case. The reason for this is that
the new splitting function in (4) is based on the assumption
that the users involved in a collision all have channel gains
uniformly distributed on [X ,X ]. As noted above, due to
fairness constraints this may not be the case. In particular, for
this two class example whenever there is a class two user in
this interval and X1 < v, the class 2 user will transmit with a
probability smaller than 1/2 in the next mini-slot. In Figure 4,
as the number of class 2 users increases, the likelihood that one
or more users in a collision is class 2 increases, and we see that
the average number of mini-slots also increases. Nevertheless,
when a collision happens, with high probability there will still
be only a small number of users involved in the collision. So
the average number of mini-slots required in total is still small.

One possibility to improve on the performance in a case
such as that shown in Figure 4 is to use a splitting function
that takes into account the initial distribution of users in
each class. For example, one possibility would be to replace
split2(X ,X ) with

ŝplit2(X ,X ) = F̂−1
1 2

(
1
2

∣∣∣∣X ,X ∨ v,X ,X

)
,

where F̂ 1 2(·) is the average c.d.f. of all the users as defined
in (3). Characterizing the performance of such an algorithm is
a topic of current work. Finally we note that this modification
can also be directly extended to more than two classes using
the same approach as in the previous section.

IV. CONCLUSIONS

In this paper, we considered opportunistic splitting algo-
rithms for distributively scheduling users in a heterogeneous
wireless network, where users have independent but non-
identical channel statistics. Our algorithms also take into
account temporal fairness constraints across the users. For
a system where the number of users in each fairness class
involved in each collision is known, we given a splitting
algorithm that performs better in a heterogeneous system than
in a corresponding homogeneous one, and requires on average
no more than 2.509 mini-slots to schedule the right user. When
the number of users involved in a collision is not known, we
give an algorithm that may perform worse in a heterogeneous
environment, but still appears to require only a small amount
of overhead on average.

Here we focused on a back-logged model and assumed that
the fading was slow enough for many mini-slots/coherence
time. Relaxing these assumptions are possible directions for
future work.

APPENDIX I
PROOF OF THE COROLLARY 1

Proof: For r = 2, 3, ..., n−1, x = F̂−1( 1 ) ≤ F̂−1( −1 ),
and so, using Theorem 1 with y = ∞, we have

Pr{X( ) > x|F} ≥ Pr{X( ) > x|F̂}.
Therefore,

Pr{X( ) ≤ x|F} ≤ Pr{X( ) ≤ x|F̂}.
If X( ) < x, then at least r users must have X < x. Hence,

Pr{X( ) < x|F} =
∑
=

P ,

and

Pr{X( ) < x|F̂} =
∑
=

P ′.

Therefore, for r = 2, 3, .., n − 1, we have∑
=

P ≤
∑
=

P ′.
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Likewise, from Theorem 1,

Pr{X(1) ≤ x|F} ≥ Pr{X(1) ≤ x|F̂},
and so ∑

=1

P ≥
∑
=1

P ′.

Therefore P0 ≤ P ′
0.

Finally, for r = n, Theorem 1 states that

Pr{X( ) ≤ x|F} ≥ Pr{X( ) ≤ x|F̂},
and so P ≤ P ′ .

APPENDIX II
PROOF OF THE PROPOSITION 1

Proof: In each iteration of the splitting algorithm, when
we call the function split(a1, b1, a2, b2,m1,m2), there are m1

class one users in range [a1, b1] and m2 class two users in
range [a2, b2]. Without loss of generality, we can normalize
the range [a1, b1] to be [0, 1] and define two offsets v1 and v2,
where v1 = 2− 1

1− 1
and v2 = 2− 1

1− 1
so that the class two users

have a normalized range of [v1, 1 + v2]. The average number
of mini-slots, given that the users have these normalized
ranges, will be the same as with their original ranges. Given
this normalization, let E(v1, v2,m1,m2) denote the average
number of mini-slots required for the algorithm to find the
best user starting with m1 users in range [0, 1], and m2 users
in [v1, 1 + v2]. Note that E(v, n1, n2) in the statement of the
theorem is equivalent to E(v, v, n1, n2) using this notation;
i.e. initially v1 = v2 = v; the subsequent choice of these will
depend on the algorithm’s progression.

Let

E (m1,m2) = max
0≤ 1≤1 0≤ 2≤1

E(v1, v2,m1,m2),

i.e., E (m1,m2) is the maximum average number of mini-
slots needed by the splitting algorithm over all choices of v1

and v2 starting with the given number of users in each class.
Also, let E(0, n) be the average number of mini-slots needed
for a homogeneous system starting with n users. To prove this
proposition, we prove the slightly stronger statement that for
all n1, n2,

E (n1, n2) ≤ E(0, n).

The desired results then directly follows from the definition of
these quantities. We prove this by induction. First, we prove
it is true for n1 = 1 and n2 = 1 (Note it is trivially true for
(n1 = 1, n2 = 0) and (n1 = 0, n2 = 1)). In this case, after
one iteration of the splitting algorithm, either a success occurs
or both users are above or below the threshold X = x =
F̂−1

1 1 ( 1
2 ). Hence,

E (1, 1) ≤ 1 + E (1, 1)P2 + E (1, 1)P0,

where P is the probability defined before Corollary 1 (For
some cases, it may be that P2 = 0). Simplifying we have,

E (1, 1) ≤ 1
1 − P2 − P0

.

Using the same argument for the homogeneous case,

E(0, 2) = 1 + P ′
0E(0, 2) + P ′

2E(0, 2),

and so
E(0, 2) =

1
1 − P ′

0 − P ′
2

.

Hence, using Corollary 1, E (1, 1) ≤ E(0, 2) .
For the induction step, now assume for all k1 ≤ n1 and

k2 ≤ n2 − 1 that E (k1, k2) ≤ E(0, k1 + k2); we then prove
that this must hold for E (n1, n2) (note the same argument
applies if we instead increase the number of class 1 users).2

Let

E (k) = max{E (k1, k2)|k1 + k2 = k}.
It follows from the induction hypothesis that

E (k) ≤ E(0, k),

for all k < n := n1 + n2.
Again considering all possibilities after one iteration, we

have

E (n1, n2) ≤ 1 +
−1∑
=2

E (i)P + E (n1, n2)(P + P0)

≤ 1 +
−1∑
=2

E(0, i)P + E (n1, n2)(P + P0).

Thus,

E (n1, n2) ≤ 1 +
∑ −1

=2 E(0, i)P
1 − P − P0

. (5)

Likewise, for a homogeneous system with n = n1 +n2 users,

E(0, n) =
1 +

∑
=2 E(0, i)P ′

1 − P ′
0

. (6)

From Corollary 1,
∑

=2 P ′ ≥ ∑
=2 P . Next, we use this

to show that ∑
=2

E(0, i)P ′ ≥
∑
=2

E(0, i)P .

To do this, we create new p.m.f.’s {P̃ ′} =0 and {P̃ } =0 so
that for i = 2, . . . , n, P̃ ′ = P ′ and P̃ = P and so that
{P̃ ′} is stochastically larger than {P̃ }. Note this stochastic
ordering is not true for the original p.m.f.’s since we only
have

∑
= P ′ <

∑
= P , for r = 2, 3, ..., n, but we can

easily find new choices of P̃0, P̃ ′
0, P̃1, and P̃ ′

1 so that this is
true.

Next, consider the function f(i), given by:

f(i) =

{
0, i = 0, 1,
E(0, i), i = 2, . . . , n.

This will be a non-decreasing function of i, and so we can
apply the following stochastic ordering result [13]: for two
random variables, X and Y , if F̄ (a) ≥ F̄ (a) for all a,

2More precisely, we are doing a double induction on the number of class
one users and class two users.
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then E[g(X)] ≥ E[g(Y )] for all non-decreasing functions g.
It follows that ∑

=0

f(i)P̃ ′ >
∑
=0

f(i)P̃ .

From their definitions, this is equivalent to∑
=2

E(0, i)P ′ ≥
∑
=2

E(0, i)P ,

as desired. Using this in (6), along with the fact that P ′
0 ≥ P0,

we have

E(0, n) ≥ 1 +
∑

=2 E(0, i)P
1 − P0

.

Re-arranging terms, this is equivalent to

E(0, n) ≥ 1 +
∑ −1

=2 E(0, i)P
1 − P0 − P

.

Combining this with (5), we have E (n1, n2) ≤ E(0, n),
which completes the induction step.
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