8 research outputs found

    Opportunistic Relay Selection with Limited Feedback

    Full text link
    It has been shown that a decentralized relay selection protocol based on opportunistic feedback from the relays yields good throughput performance in dense wireless networks. This selection strategy supports a hybrid-ARQ transmission approach where relays forward parity information to the destination in the event of a decoding error. Such an approach, however, suffers a loss compared to centralized strategies that select relays with the best channel gain to the destination. This paper closes the performance gap by adding another level of channel feedback to the decentralized relay selection problem. It is demonstrated that only one additional bit of feedback is necessary for good throughput performance. The performance impact of varying key parameters such as the number of relays and the channel feedback threshold is discussed. An accompanying bit error rate analysis demonstrates the importance of relay selection.Comment: 5 pages, 6 figures, to appear in Proceedings of 2007 IEEE Vehicular Technology Conference-Spring in Dublin, Irelan

    The Impact of Channel Feedback on Opportunistic Relay Selection for Hybrid-ARQ in Wireless Networks

    Full text link
    This paper presents a decentralized relay selection protocol for a dense wireless network and describes channel feedback strategies that improve its performance. The proposed selection protocol supports hybrid automatic-repeat-request transmission where relays forward parity information to the destination in the event of a decoding error. Channel feedback is employed for refining the relay selection process and for selecting an appropriate transmission mode in a proposed adaptive modulation transmission framework. An approximation of the throughput of the proposed adaptive modulation strategy is presented, and the dependence of the throughput on system parameters such as the relay contention probability and the adaptive modulation switching point is illustrated via maximization of this approximation. Simulations show that the throughput of the proposed selection strategy is comparable to that yielded by a centralized selection approach that relies on geographic information.Comment: 30 pages, 9 figures, submitted to the IEEE Transactions on Vehicular Technology, revised March 200

    An Efficient Adaptive Distributed Space-Time Coding Scheme for Cooperative Relaying

    Full text link
    A non-regenerative dual-hop wireless system based on a distributed space-time coding strategy is considered. It is assumed that each relay retransmits an appropriately scaled space-time coded version of its received signal. The main goal of this paper is to investigate a power allocation strategy in relay stations, which is based on minimizing the outage probability. In the high signal-to-noise ratio regime for the relay-destination link, it is shown that a threshold-based power allocation scheme (i.e., the relay remains silent if its channel gain with the source is less than a prespecified threshold) is optimum. Monte-Carlo simulations show that the derived on-off power allocation scheme performs close to optimum for finite signal-to-noise ratio values. Numerical results demonstrate a dramatic improvement in system performance as compared to the case that the relay stations forward their received signals with full power. In addition, a hybrid amplify-and-forward/detect-and-forward scheme is proposed for the case that the quality of the source-relay link is good. Finally, the robustness of the proposed scheme in the presence of channel estimation errors is numerically evaluated.Comment: submitted to IEEE Transactions on Wireless Communications (24 pages

    Relay Selection Based Full-Duplex Cooperative Systems under Adaptive Transmission

    Get PDF
    The present work analyzes multi-relay full-duplex systems with relay selection under multipath fading conditions in the context of channel capacity under: i) optimum power and rate adaptation; ii) truncated channel inversion with fixed rate. Useful analytic expressions are derived for these measures as well as for the associated optimum cut-off level. The offered results are then employed in the analysis of the corresponding end-to-end performance by also quantifying the effects of the involved relay self-interference. It is shown that high capacity levels are achieved even for a moderate number of relays and self-interference levels, at no considerably added system complexity. This is particularly useful in demanding emerging applications that are subject to transmit power constraints or fixed rate requirements

    Dynamic Spectrum Sharing in Cognitive Radio and Device-to-Device Systems

    Get PDF
    abstract: Cognitive radio (CR) and device-to-device (D2D) systems are two promising dynamic spectrum access schemes in wireless communication systems to provide improved quality-of-service, and efficient spectrum utilization. This dissertation shows that both CR and D2D systems benefit from properly designed cooperation scheme. In underlay CR systems, where secondary users (SUs) transmit simultaneously with primary users (PUs), reliable communication is by all means guaranteed for PUs, which likely deteriorates SUs’ performance. To overcome this issue, cooperation exclusively among SUs is achieved through multi-user diversity (MUD), where each SU is subject to an instantaneous interference constraint at the primary receiver. Therefore, the active number of SUs satisfying this constraint is random. Under different user distributions with the same mean number of SUs, the stochastic ordering of SU performance metrics including bit error rate (BER), outage probability, and ergodic capacity are made possible even without observing closed form expressions. Furthermore, a cooperation is assumed between primary and secondary networks, where those SUs exceeding the interference constraint facilitate PU’s transmission by relaying its signal. A fundamental performance trade-off between primary and secondary networks is observed, and it is illustrated that the proposed scheme outperforms non-cooperative underlay CR systems in the sense of system overall BER and sum achievable rate. Similar to conventional cellular networks, CR systems suffer from an overloaded receiver having to manage signals from a large number of users. To address this issue, D2D communications has been proposed, where direct transmission links are established between users in close proximity to offload the system traffic. Several new cooperative spectrum access policies are proposed allowing coexistence of multiple D2D pairs in order to improve the spectral efficiency. Despite the additional interference, it is shown that both the cellular user’s (CU) and the individual D2D user's achievable rates can be improved simultaneously when the number of D2D pairs is below a certain threshold, resulting in a significant multiplexing gain in the sense of D2D sum rate. This threshold is quantified for different policies using second order approximations for the average achievable rates for both the CU and the individual D2D user.Dissertation/ThesisDoctoral Dissertation Electrical Engineering 201
    corecore