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ABSTRACT

Cognitive radio (CR) and device-to-device (D2D) systems are two promising dynamic

spectrum access schemes in wireless communication systems to provide improved

quality-of-service, and efficient spectrum utilization. This dissertation shows that

both CR and D2D systems benefit from properly designed cooperation scheme.

In underlay CR systems, where secondary users (SUs) transmit simultaneously

with primary users (PUs), reliable communication is by all means guaranteed for

PUs, which likely deteriorates SUs performance. To overcome this issue, cooperation

exclusively among SUs is achieved through multi-user diversity (MUD), where each

SU is subject to an instantaneous interference constraint at the primary receiver.

Therefore, the active number of SUs satisfying this constraint is random. Under dif-

ferent user distributions with the same mean number of SUs, the stochastic ordering

of SU performance metrics including bit error rate (BER), outage probability, and

ergodic capacity are made possible even without observing closed form expressions.

Furthermore, a cooperation is assumed between primary and secondary networks,

where those SUs exceeding the interference constraint facilitate PUs transmission

by relaying its signal. A fundamental performance trade-off between primary and

secondary networks is observed, and it is illustrated that the proposed scheme out-

performs non-cooperative underlay CR systems in the sense of system overall BER

and sum achievable rate.

Similar to conventional cellular networks, CR systems suffer from an overloaded

receiver having to manage signals from a large number of users. To address this issue,

D2D communications has been proposed, where direct transmission links are estab-

lished between users in close proximity to offload the system traffic. Several new

cooperative spectrum access policies are proposed allowing coexistence of multiple

D2D pairs in order to improve the spectral efficiency. Despite the additional inter-
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ference, it is shown that both the cellular users (CU) and the individual D2D user’s

achievable rates can be improved simultaneously when the number of D2D pairs is

below a certain threshold, resulting in a significant multiplexing gain in the sense of

D2D sum rate. This threshold is quantified for different policies using second order

approximations for the average achievable rates for both the CU and the individual

D2D user.
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Chapter 1

INTRODUCTION

1.1 Cognitive Radio Systems

As a result of multimedia applications becoming common in wireless networks,

the need for high data rate service has increased dramatically in the past decade.

Due to the nature of the limitation of the spectrum and high price to gain new

spectrum resource, and the fact that spectrum utilization depends strongly on time

and place [1, 2], static spectrum access scheme can not accommodate the rise in

the number of high data rate devices [3]. The concept of cognitive radio (CR) was

first proposed by Joseph Mitola in 1998 [4], and has become very popular since it is

considered as an promising and opportunistic spectrum usage solution to dynamically

utilize the spectrum resources [5]. In CR systems, frequency bands are not used

exclusively by their licensed users (primary users), who own the right to get access

to the channel in an arbitrary time as needed.

Most CR paradigms can be categorized into two kinds: overlay and underlay. In

the overlay paradigm, unlicensed users (secondary users) continuously monitor the

available spectrum holes and the activities of the primary users. Once the primary

user (PU) is silent, the secondary users (SUs) are allowed to transmit [6, 7]. With

perfect sensing from SUs, the spectrum resources can be shared by large number of

clients and PUs do not suffer from cross interference caused by SUs [4]. In the underlay

system, SUs transmit simultaneously with PUs, where interference temperature at the

primary receiver (PR) is kept below a certain threshold to satisfy a strict interference

constraint [8].
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In the overlay CR systems, one of the most important components is the SU’s

sensing ability to be aware of the idleness of the PU so that SUs only transmit during

these idle periods [9,10]. This awareness can be obtained by the local sensing results

at SUs via a number of different methods. Energy detector based approach is the most

common way due to its low computational and implementation complexities, where

the received signal at the SU is detected by comparing the output of the energy detec-

tor with a threshold [11]. The probability of detection averaged over Rayleigh fading

channel is derived in [12]. The performance of energy detector with low signal-to-

noise-ratio (SNR) values and noise estimation errors scenarios are studied in [13,14].

By exploiting the cyclostationary features of the received signal at the SU such as

the mean and autocorrelation, cyclostationarity-based sensing method has been in-

troduced to spectrum sensing in CR systems [2, 15]. Cyclostationarity-based sensing

of orthogonal-frequency-division-multiplexing (OFDM) specific [16,17] as well as gen-

eral types of signals [18] are developed. Assuming that the transmitted signal from

the PU is known at the SU, match-filtering is the optimal approach to detect the PU’s

presence. The complexity and power consumption issues have been discussed in [2]

and compared with other spectrum sensing approaches. Based on the local sensing

results at peer SUs, cooperative sensing scheme is proposed to decrease the miss-

detection, false alarm probabilities, and solve the hidden PU problem issue [19, 20].

A pairwise cooperation scheme is proposed in [21], where a SU far from the PR will

collaborate with a user nearby to utilize the spatial diversity. Recently, consensus is

applied to share messages among all SUs in the decentralized as well as distributed

spectrum sensing [22–29]. Optimal power control and scheduling on the sensing and

throughput trade-off has been studied from the MAC layer perspective [30–34].

In the underlay scheme, since SUs are transmitting over the licensed spectrum

band simultaneously with the PU, managing the interference at the PR is the main

2



goal. Most of the literature impose the interference model into the transmission power

of the SU, so that the interference temperature can be strictly controlled [35]. An

power control strategy is proposed in [36], which enables the SU to maximize its

transmission rate while guaranteeing the outage probability of the PU not degraded.

SU’s rate is maximized with respect to a peak transmitting power and peak interfer-

ence power constraint in [37]. Multiple-input-multiple-output (MIMO) antenna ar-

rays can be exploited to create degrees of freedom to align interference into the PU’s

orthogonal signal spaces [38]. Capacity for Gaussian MIMO channels under received-

power constraints in underlay cognitive radio systems is studied in [39]. Transmitting

beamforming coefficients are optimized in order to maximize the transmit SNR of

the secondary users with respect to the interference to the PUs. In addition, a zero-

forcing beamforming scheme incorporated with a user selection algorithm is proposed

in [40] to maximize the sum rate. In [41], an algorithm which computes the power

control values and the beamforming weights in turn, is proposed to minimize the

total transmission power of the CR system and to satisfy the minimum performance

requirements for both the primary and secondary networks.

A hybrid CR system is proposed in [42], where the SU initially senses the available

spectrum and adjusts its access strategies between overlay and underlay according to

the sensing decision. A power allocation algorithm to maximize the throughput of

the secondary link is studied in [43], where the achievable rates of the secondary

system in underlay, overlay, and hybrid options are compared. The access strategy

of the SU entering the overlay, underlay, and hybrid modes in terms of maximizing

the secondary achievable rates has been studied in [44]. The mode switching rate,

which is the rate that SUs switch between overlay and underlay modes is optimized

in [45, 46]. It is shown that the hybrid CR system with the optimal switching rate

significantly improves the average throughput and also is robust to detection errors

3



[45]. Outage performance of the hybrid CR systems are studied and compared with

the conventional CR system in [45–47].

1.1.1 Underlay Cognitive Radio System with Multi-user Diversity

In the underlay CR systems, the primary network’s performance is guaranteed by

all means, which potentially deteriorates SUs’ performance. To exploit the spatial and

time diversity in order to overcome this issue, multi-user diversity (MUD) has been

considered in underlay CR systems for opportunistic communications with multiple

SUs [48]. Subject to the interference constraint at the PR, the SU with the highest

instantaneous SNR is selected for communication. Under this assumption, statistics

of the SU transmit SNR in the high power region is studied in [48]. When taking into

account the interference introduced by the PU at the secondary receiver, MUD gain

of the signal-to-noise-plus-interference ratio (SINR) under cognitive multiple-access

channel (MAC), broadcast channel (BC), and parallel-access (PAC) are investigated

in [49]. The CDF expressions of the SINR under MAC, BC [50], and PAC [51] are

derived to analyze the bit-error rate (BER) performance. Another common assump-

tion in cognitive MUD systems requires that SUs satisfy an average transmit and

interference power constraint at the PR [52]. In this scheme, secondary link capac-

ity is shown to scale like O(M log logN) as a function of the number of SUs N and

available primary spectra M [53, 54].

In most existing cognitive MUD systems, all secondary transmitters scale down

their transmit power to meet the interference constraint if the instantaneous peak

transmit power causes too much interference. After this potentially continuous power

adjustment, the user with the best instantaneous SNR at the secondary receiver is

chosen [48, 49, 51]. This scheme requires accurate continuous feedback of the inter-

ference channel. In the Chapter 2, we consider an uplink underlay CR system setup
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with a single PU and multiple SUs, each equipped with a single antenna [55]. All sec-

ondary transmissions obey a pre-determined interference constraint at the PR. The

secondary receiver, which is the base station (BS), dynamically updates an index set

which contains a list of SUs that satisfy the interference constraint, which creates a

random number of SUs. This can be realized with the presence of a feedback channel

between PR and BS [56] to inform users whether they are active or passive. For the

first time in the literature, we investigate the effect of having a random number of

active users on the performance analysis of CR system with MUD. In Chapter 2,

we study the asymptotic behavior of ergodic capacity and BER averaged across the

fading and the user distribution with large mean number of SUs. We also derive non-

asymptotic closed form expressions for average BER under several user distributions.

Then we consider the non-homogeneous interference case. Furthermore, a stochastic

ordering approach is adopted to compare the system performances under different

active user distributions.

1.1.2 Cooperative Cognitive Radio Systems

As we illustrated, the overlay scheme relies on the efficient and accurate sensing

ability at the SU. In the underlay scheme, SUs will transmit with limited power in or-

der to satisfy the interference constraint. To overcome this drawback in the underlay

setup, besides MUD, the cooperative spectrum sharing system has been considered

recently. Cooperation within the PU and the SU networks has been studied in an

information theoretic framework in [57, 58]. References [59–61] and the literature

therein focus on the scenario that SUs relay their own signals. Recently, the case that

when SU assist PU’s transmission has been drawn attention to. Physical layer spec-

trum sharing protocols based on amplify-and-forward (AF) and decode-and-forward

(DF) relaying techniques are proposed in [62] and [63] where single transmit/receive
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pair of PUs and SUs are considered with outage probability as a performance metric.

Reference [64] generalizes to the case of multiple SUs for fixed transmission power with

opportunistic SU relays selection [65,66], and studies numerically the choice of num-

ber of potential SU relays. In [67], a dynamic cooperation scheme is proposed where

the SU adjusts its transmission power based on how much bandwidth it can occupy

to relay PU’s signal. This scheme increases the interference tolerance at the PR, and

improves PU’s rate as well as saves PU’s transmission power. In [68], instead of power

adaptation, the SU switches its transmission strategy between relaying and its own

transmission with imperfect channel knowledge based on game theory. Reference [69]

analyzes the stable throughput of the SU from a network layer perspective and shows

that having packets relayed by the SU can empty the queue of the PU quickly, thus

creating transmitting opportunities for the SU. A dynamic spectrum sharing scheme

is proposed in [68] that the SU adjusts between relay and own transmission modes to

achieve the data rate improvements for both PU and SU.

In Chapter 3, we consider a cooperative CR system containing a single PU and

multiple SUs [70–72]. A subset of size M of a total N +M SUs that have interference

less than a certain threshold at the PR will enter the underlay mode, among which

MUD are assumed among to enhance SU network’s performance. The remaining N

SUs whose interference exceed the threshold will amplify and relay the PU’s signal to

mitigate the limited interference caused by the underlay SUs. AF relaying is assumed

due to its practical simplicity and to maintain the PU’s privacy by keeping the SU

from decoding the PU’s signal, and opportunistic relay selection is applied among SU

relays to achieve spatial diversity. Opportunistic relay selection based on the highest

end-to-end relay gain has been recently studied in the cognitive radio setup [73–76],

where the relay cooperation is exclusively among either PU or SU networks. In this

dissertation, we assume that one out of N SUs will relay PU’s signal in exchange
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for the spectrum access, and the average BER and achievable rates of both PU and

SU are studied. Hence, as the ratio t = N/(N +M) varies, a trade-off between the

primary and secondary network performance is observed. Our novel average overall

BER and sum rate metrics capture the combined system performance, and enable

optimizing the ratio t in closed form. The optimal ratio reveals the potential number

of relays N and underlay SUsM as a function of the average SNR on each fading path

and the total number of SUs. Practically, N and M could be random because of the

mobility of the users and non-homogeneous interference environment in the cellular.

Hence, we also consider the same setup with a random number of users denoted as

N and M, where t = E [N ] /E [M+N ] is optimized.

1.2 Device-to-Device Communication Systems

With the rapid increase of multi-media applications, there have been a phenomenal

increase in the high data rate demands and smart devices. Similar to conventional cel-

lular networks, CR systems still suffer from an overloaded receiver having to manage

signals from a large number of users. To address this issue, the concept of Device-to-

Device (D2D) communications underlaying the cellular network has been proposed in

the 3GPP Long Term Evolution (LTE) recently [77,78], and considered as a promising

technique to improve the spectrum utilization towards future 5G networks [79].

One fundamental issue in D2D communications is that how to address the co-

existence of cellular users (CUs) and D2D users. Underlay D2D schemes where the

cellular spectrum is reused by D2D users have been studied intensively in the litera-

ture. The main purpose of these works is to control the mutual interference between

the cellular and D2D networks [77,80–85]. Power control of D2D users can be used to

restrict the interference temperature in the deterministic [80–82], and random (Pois-

son) networks [83]. Precoding techniques [84,85] in a MIMO setup are considered to
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minimize the interference signal aligned with the cellular signal spaces. Reference [86]

extends the study to the massive-MIMO scenario and studies the spectral efficiency

with perfect and imperfect channel state information (CSI) at the cellular BS. Overlay

schemes where a part of the cellular spectrum is dedicated only for D2D communi-

cations have been studied to mitigate the interference between the cellular and the

D2D networks. In [87], an uplink D2D communication system is considered where

the cellular BS is assumed to act as a re-transmitter of the D2D transmitter (DT)

when the CU is idle. Reference [88] allows a DT with a good channel condition to

transmit D2D multi-cast data from the BS directly to those D2D users experiencing

poor channel conditions.

In-band cooperation between the CU and the D2D networks has been considered

to accommodate both CU and D2D users within the same spectrum band. This

can be realized via superposition coding, where the DT broadcasts the CU’s signal

superimposed by its own D2D signal to both the cellular and the D2D receivers.

Superposition coding is a non-orthogonal scheme that achieves the capacity on scalar

Gaussian broadcast channels [89]. A cooperative overlay D2D scheme is proposed

in [90] based on ideas from cognitive radio systems [91,92], where one D2D user acts

as a two-way relay to facilitate the cellular transmission using superposition coding.

The single relay selection case in this setup is also considered in [90] but with a

numerical approach, without analytical results. Reference [93] extends this study to

the full-duplex one-way relay scenario where the power allocation strategy maximizing

the D2D link rate is derived, and the residual self-interference is assumed [94–96].

The above literature all assume up to only one pair of D2D users facilitating CU’s

transmission at the same time, which deteriorates the spectrum utilization for the

D2D network. Intuitively, with maximum ratio combining (MRC) at the CU, by

increasing the number of D2D pairs relaying the CU’s signal, CU’s performance can
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be improved compared with the single D2D pair scenario. However, this creates peer

interference among D2D pairs. For the first time in the literature, we are able to

characterize this performance trade-off and show that both CU and D2D users can

potentially benefit from multiple D2D pairs by properly balancing the amount of

power allocated to relaying the CU’s signal against D2D communications.

In Chapter 4, we propose a new downlink cellular system allowing multiple D2D

pairs, using superposition coding, coexisting with the CU simultaneously [97]. Each

active DT acts as a half-duplex one-way relay to decode and forward the CU’s signal

from the BS with a certain fraction of its transmission power, and communicates with

the D2D receiver using the remaining power to superimpose its own signal. Those DTs

who can not successfully decode the CU’s signal will remain silent during the second

half of the transmission block. Four spectrum access policies for single and multiple

D2D pairs are studied based on different CSI assumptions. Beyond the existing

literature [90, 93] where the CU’s signal is perfectly canceled at the D2D receiver,

we also study the imperfect interference cancellation case. Closed-form second order

approximations of the average achievable rates for both the CU and D2D users in

all spectrum access policies are derived. As the number of D2D pairs increases, the

CU’s achievable rate is improved while causing peer interference to other D2D pairs

concurrently. Through our analysis, this trade-off can be characterized analytically

by balancing between the number of active D2D pairs and the power allocation factor

at each DT. It is shown that, by a proper choice of the number of D2D pairs and

the power allocation factor, both CU and the individual D2D users’ performance

as well as the spectral efficiency can be improved simultaneously up to a maximum

number of D2D pairs. Closed-form expressions are derived for this number of D2D

pairs as a function of the average interference level. We also generalize the study to

random number of DUs case in this setup where the perfect DF scenario at each DT
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is not guaranteed for the first time in literature, and stochastic ordering is applied to

compare the CU’s rates under different DU distributions in the large mean number

of DUs regime.

1.3 Main Contributions of This Dissertation

Here we summarize the main contributions of this dissertation.

• For the first time in the literature, we consider the effect of having a random

number of active users on the performance analysis of CR system with MUD.

• We consider the non-homogeneous interference case where SUs yield different

interference constraints.

• A stochastic ordering approach is adopted to compare the system performances

under different active user distributions.

• Opportunistic relaying and MUD are considered in the primary and the sec-

ondary network respectively in a cooperative CR system with multiple SUs.

• For both PU and the selected underlay SU, closed form expressions of the aver-

age BER and the scaling laws of achievable rate in large number of SUs regime

are derived, going beyond the outage performance in [63, 64].

• Novel overall performance metrics are defined to mathematically quantify the

trade-off between primary and secondary networks in the average BER and

achievable rate sense. We show that our proposed scheme outperforms conven-

tional underlay CR systems.

• Above trade-off studies are generalized to the random number of SUs scenario,

which arises due to heterogeneous and mobile environments.
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• Multiple D2D communications underlaying cellular networks with DF relaying

and superimposition coding at each DT is proposed.

• We show that in the small SNR regime, multiple DUs can be activated simulta-

neously to improve the system performance as well as achieving better spectrum

efficiency.

• Finite order Taylor expansion of the CU and the DU’s achievable rates are

rigorously proved to be tight in small SNR regime.

• We show that both CU and DU’s performance can be improved at the same

time with a proper choice of the spectrum access policy for the DUs.

• The study is generalized to the random number of DUs case where the DF

relaying is not perfect at each DT.

1.4 Outline of This Dissertation

The remainder of this dissertation is organized as follows. Chapter 2 begins with

a system model for a underlay CR system with MUD and random number of SUs.

Later in the chapter, ergodic capacity and average BER metrics are derived and

ordered using stochastic ordering under different user distributions. In Chapter 3, we

focus on a cooperative underlay CR system where SUs relay the PU’s signal in return

for the spectrum access opportunities. This is then followed by optimizing the total

system performance with respect to average channel statistics. Chapter 4 discusses

the cooperative D2D communication underlaying a downlink cellular network, and

addresses the issue on improving the CU and the DU’s performance simultaneously.

Chapter 5 draws the conclusion of this dissertation.
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Chapter 2

COGNITIVE RADIO SYSTEM WITH RANDOM NUMBER OF SECONDARY

USERS

In this chapter, a single primary user (PU) cognitive radio (CR) system with multi-

user diversity (MUD) among the secondary users (SUs) is considered where there is

an instantaneous interference constraint assumed at the primary receiver (PR). The

SU with the highest instantaneous SNR is selected for communication from a set

of active SUs who satisfy the interference constraint. The number of active SUs is

shown to be binomial, negative binomial, or Poisson-binomial distributed depending

on various SU spectrum accessing policies. Outage probability in the slow fading

scenario is also studied. This is then followed by a derivation of the scaling law of

the ergodic capacity and closed form expressions for BER averaged across the fading,

and user distribution in the large mean number of SUs regime. System performance

under different user distributions with the same mean value are order in a stochastic

ordering sense.

2.1 System Model

We consider an uplink CR system with multiple SUs, a single PU, and one base

station (BS) which serves as the receiver to the SUs. Both the BS and users are

assumed to have a single antenna.
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Figure 2.1: System Model of Proposed CR System

As shown in Figure 2.1, we consider a CR system with a total of L SUs where

the MUD scheme is applied to the secondary system. A SU is allowed to share the

spectrum with a primary link as long as the interference power to the primary receiver

is less than a threshold Q for instantaneous interference. The received signal from

the ith SU at the BS can be expressed as,

yi =
√
ρhsixi + wi, i = 1, 2, . . . , L, (2.1)

where hsi denotes the channel coefficient from the ith SU to the BS, xi is the trans-

mitted symbol, wi is white Gaussian noise (AWGN). Variance of hsi, xi, and wi

are normalized. The average received power ρ at the BS is assumed to be identical

across SUs. The channel gain of the ith SU at the secondary BS can be expressed

as γsi = |hsi|2, whereas the interference channel gain of the ith SU at the primary
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receiver is γpi = |hpi |2. The channel gain of the selected user is denoted by

γ∗s = max
{i|i∈S}

{|hsi|2}, (2.2)

where S is a subset of the users that respect the interference constraint. Conse-

quently, SUs either transmit with fixed power ρ, or remain silent, so that a simple

transmitter with a fixed power level and one bit feedback is sufficient. In contrast,

previous work [48,49,51] assumes that secondary transmit power is adjusted to Q/γpi

if interference constraint is violated, which requires feedback of instantaneous channel

state information (CSI) of the interference channel and a sophisticated transmitter

to support infinite power levels.

The distribution of the cardinality of S will be specified when different SU distri-

butions are studied. Since all SUs have i.i.d. fading channels to the secondary BS,

the subscript i will be dropped when deriving the cumulative distribution function of

γsi. Let N be the cardinality of S. Conditioned on N = k, the CDF of the channel

gain of the chosen user can be obtained using order statistics as F k
γs(x). To obtain

the CDF of γ∗s in (2.2) we have

Fγ∗
s
(x) = EN

[

FN
γs (x)

]

=
∞
∑

k=0

Pr [N = k]F k
γs(x) = UN (Fγs(x)) (2.3)

where UN (z) =
∑∞

k=0Pr [N = k] zk, 0 ≤ z ≤ 1, is the probability generating function

(PGF) of N .

2.2 Mathematical Preliminaries

In this section, we introduce some mathematical preliminaries that will be useful

throughout the dissertation.
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2.2.1 Completely Monotonic Functions

A non-negative function τ(x) : R+ → R is completely monotonic (c.m.) if its

derivatives alternate in sign [98], i.e.,

(−1)k
dkτ(x)

dxk
≥ 0, ∀x, k = 1, 2, 3, . . . . (2.4)

We are also interested in positive functions whose first-order derivatives are c.m.,

which are said to have a completely monotonic derivative (c.m.d.). Due to a well-

known theorem by Bernstein [98, pp. 22], an equivalent definition for c.m. function

is that it can be expressed as a positive mixture of decaying exponentials:

τ(x) =

∫ ∞

0

e−sxdψ(s) (2.5)

for some non-decreasing function ψ(s).

2.2.2 Laplace Transform Ordering

In this section we introduce Laplace transform (LT) ordering, a kind of stochastic

ordering, to compare different user distributions. This stochastic ordering will be

useful in comparing error rate and ergodic capacity averaged across user and channel

distributions. LT order is a partial ordering on non-negative random variables [99, pp.

233].

Let X and Y be non-negative random variables. X is said to be less than Y in

the LT order (written X ≤Lt Y), if E[e−sX ] ≥ E[e−sY ] for all s > 0. An important

theorem found in [98], and [100] is given next:

Theorem 1. Let X and Y be two random variables. If X ≤Lt Y, then, E [ψ(X )] ≥

E [ψ(Y)] for all c.m. functions ψ(·), provided the expectation exists. Moreover, when

X ≤Lt Y, E[ψ(X )] ≤ E[ψ(Y)] holds for any c.m.d. function ψ(·), provided the

expectation exists.
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We will use an equivalent representation of LT ordering of discrete random vari-

ables to order the user distribution by the ordering of their PGFs. By defining

z := e−s, one can rewrite E
[

e−sX ] ≥ E
[

e−sY] for z ≥ 0 as E
[

zX
]

≥ E
[

zY
]

for

0 ≤ z ≤ 1, which is the same as UX (z) ≥ UY(z), 0 ≤ z ≤ 1, where we recall that

UX (z) = E[zX ] represents the probability generating function of the discrete random

variable X . This representation will be helpful when we compare two user distribu-

tions in Section 2.6.

2.2.3 Regular Variation

A function ψ(s) is regularly varying with exponent µ 6= 0 at s = ∞ if it can be

expressed as ψ(s) = sµl(s) where l(s) is slowly varying which by definition satisfies

lims→∞ l(κs)/l(s) = 1 for κ > 0. So, intuitively, regular captures the notion of

polynomial-like behavior asymptotically. Regular (slow) variation of ψ(s) at s = 0

is equivalent to regular (slow) variation of ψ(1/s) at ∞. The Tauberian theorem for

Laplace transforms, applies to c.m. functions of the form (2.5) and states that τ(x)

is regularly varying at x = ∞ if and only if ψ(s) is regularly varying at s = 0. The

following theorem is from [101, pp. 73]:

Theorem 2. If a non-decreasing function ψ(s) ≥ 0 defined on R+ has a Laplace

transform τ(x) =
∫∞
0
e−sxdψ(s) for x ≥ 0, then ψ(s) having variation exponent µ at

∞ (or 0) and τ(x) having variation exponent −µ at 0 (or ∞) imply each other.

2.2.4 Schur-Concave Functions and Majorization

In this section we first introduce the notion of majorization and Shur-convex

functions. For any x = (x1, ..., xn) ∈ Rn and y = (y1, ..., yn) ∈ Rn, let x[1] ≥ · · · ≥ x[n]

and y[1] ≥ · · · ≥ y[n] denote the components of x and y in decreasing order. We say

x is majorized by vector y, equivalently x ≺ y to mean
∑k

i=1 x[i] ≤
∑k

i=1 y[i] for all
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k = 1, . . . , n, and
∑n

i=1 x[i] =
∑n

i=1 y[i]. A Schur-concave function g:Rn → R satisfies

g(x) ≥ g(y) whenever x ≺ y. The following theorem is proved in [102]:

Theorem 3. Let g be a continuous non-negative function defined on an interval

I ⊂ R. Then

φ(x) =

n
∏

i=1

g(xi), x ∈ In, (2.6)

is Schur-concave on In if and only if log(g) is concave on I.

2.2.5 Bounds of Probability Generating Function

Following theorem has been proved in [103]:

Theorem 4. Let UN (z) be the PGF of a discrete random variable N with non-

negative integer support. If the mean value λ and variance σ2
N exist, then the following

inequalities hold for all 0 6 z 6 1:

1 + (z − 1)λ 6 UN (z) 6 1 + (z − 1)λ+
(z − 1)2

2
m(z) (2.7)

where m(z)/(σ2
N + λ2 − λ) is another PGF.

2.2.6 Asymptotics

We say τ(x) = O(g(x)) as x→ ∞ if and only if there is a positive constantM and

a real number x0 such that |f(x)| ≤ M |g(x)| for all x > x0. We say τ(x) = o(g(x))

as x → ∞ that for every positive integer ǫ there exists a constant x0 such that

|f(x)| ≤ ǫ|g(x)| for all x > x0 [104].

2.3 Ergodic Capacity

When hsi and hpi both vary rapidly over the duration of a codeword, system is in

the so-called fast fading regime. We consider the ergodic capacity of the secondary
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system averaged over both fading and user distributions. We then study the asymp-

totic behavior of ergodic capacity with large mean number of SUs. The expression

of the ergodic capacity of a multi-user system with deterministic number of users N

and average SNR ρ is given by,

C(ρ,N) =

∫ ∞

0

log (1 + ρx) dFN
γs (x) = ρ

∫ ∞

0

1− FN
γs (x)

1 + ρx
dx. (2.8)

where C(ρ,N) is the ergodic capacity averaged over the fading channel. For the

random number of users case, N is a realization of a random variable N , which is

the number of users respecting the interference constraint. By using (2.3) the ergodic

capacity averaged across the user distribution can be expressed as,

EN
[

C(ρ,N )
]

= Eγ∗
s
[log(1 + ργ∗s )] = ρ

∫ ∞

0

1− UN (Fγs(x))

1 + ρx
dx. (2.9)

It can be shown that C(ρ,N) in (2.8) is a c.m.d. function of N [105]. According to

Theorem 1, if two user distributions are LT ordered, so will their ergodic capacities.

C(ρ,N) is also a concave increasing function of N . Applying the Jensen’s inequality

[106] and defining λ := E[N ], we have

EN
[

C(ρ,N )
]

≤ C(ρ, λ). (2.10)

Therefore, randomization of N will always deteriorate the average ergodic capacity

of a MUD system.

2.3.1 Scaling Laws of Ergodic Capacity

To study how the number of active number of users N affects the average through-

put of the system, we derive the scaling laws of the ergodic capacity for large average

number of users λ. Reference [105] considers the Poisson distribution for N in a

non-cognitive context and derives the scaling laws of ergodic capacity as λ → ∞.
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In this section, we generalize this result to a large family of user distributions and

determine conditions under which similar scaling laws hold. Under a Rayleigh fading

scenario, γs is exponentially distributed [107]. Substituting Fγs(x) = 1−e−x into (2.9)

and assuming that mean value λ and variance σ2
N of N exist, we have the following

theorem:

Theorem 5. The ergodic capacity averaged across the fading and user distribution,

denoted as EN
[

C(ρ,N )
]

, has the following scaling law as λ→ ∞,

EN
[

C(ρ,N )
]

= ρ

∫ ∞

0

1− UN (1− e−x)

1 + ρx
dx

= log (1 + ρ log(λ)) +O(1/
√

log(λ)), (2.11)

provided that (a)Pr [N = 0] = o(1/ log log λ) and (b)σ2
N = o(λ2) as λ→ ∞.

Proof. See Appendix A.

Note that if N is not random (i.e., the number of users is deterministic), then

N = λ with probability one, which satisfies both assumption (a) and (b) in Theorem

5. This implies that C(ρ, L) = O(log logL), as L → ∞, as also observed in [53,

Theorem 5]. Theorem 5 can be viewed as a generalization of this result. From a

practical point of view, Theorem 5 holds for the user distributions are close to the

deterministic case. Conditions (a) and (b) mean that the probability mass function

of N should not spread evenly over its whole support, when mean number of users is

large. Instead, it should be centered around the mean value, so that it is close to the

deterministic SUs case.

In the secondary network, the feedback load between SUs and the BS will be

increased significantly as λ → ∞. One approach to reduce the feedback load is

to replace the conventional MUD scheme with selective MUD (SMUD) proposed

in [108,109], in which only the qualified SUs with channel gain γsi above a threshold
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γth feedback their transmit CSI to BS. At each time slot, BS will select the SU with

highest channel gain among all the qualified users. If there are no qualified users, the

BS will select randomly among all N active SUs. Denote the number of SUs that

satisfy both interference and feedback constraint as NSMUD, the ergodic capacity in

SMUD scheme ENSMUD

[

C(ρ,NSMUD)
]

for a given γth can be expressed as,

ENSMUD

[

C(ρ,NSMUD)
]

= EN
[

C(ρ,N ) · (1− Po(ρ,N )) + C(ρ) · Po(ρ,N )
]

= EN
[

C(ρ,N )
]

− EN
[

C(ρ,N ) · Po(ρ, γth,N )− C(ρ) · Po(ρ, γth,N )
]

(2.12)

where Po(ρ, γth,N ) is the probability that no SU satisfies feedback threshold γth

among N SUs, and C(ρ) =
∫∞
0

log(1 + ρx)fγs(x)dx is the averaged ergodic capacity

of an arbitrary SU across fading. EN
[

C(ρ,N )
]

in (2.12) is the ergodic capacity in

conventional MUD systems and EN
[

C(ρ,N ) · Po(ρ, γth,N )− C(ρ) · Po(ρ, γth,N )
]

in

(2.12) can be shown to be non-negative, which implies that the conventional MUD

scheme outperforms the SMUD scheme. This is reasonable since fewer SUs are in-

volved in the SMUD scheme. In return, the feedback load in SMUD systems is

significantly smaller than conventional MUD systems, so that there is a trade-off be-

tween the ergodic capacity performance and the feedback load. Furthermore, using

equation (2.7) and (2.3), it can be shown that for a given threshold, γth, and aver-

age SNR ρ, ENSMUD

[

C(ρ,NSMUD)
]

scales like log(log(λ)) as λ → ∞. The intuition

is that as the mean number of SUs increases, outage probability Po(ρ, γth,N ) de-

creases since it is more likely that γs∗ is above the feedback threshold. As a result,

EN
[

C(ρ,N ) · Po(ρ, γth,N )− C(ρ) · Po(ρ, γth,N )
]

becomes negligible as λ→ ∞. For

small and moderate λ, we expect that the threshold γth will affect the ergodic capac-

ity ENSMUD

[

C(ρ,NSMUD)
]

significantly and the performance/feedback load trade-off

will be more apparent in this regime. However, since we are mainly concerned about

large λ, we did not pursue the small/moderate λ regime in detail.
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2.3.2 Binomial Distributed N

In our proposed CR system, one possible mode of operation to select a desired

user can be expressed as follows: choose the user set among L total users which satisfy

the interference constraint S = {j ∈ 1, . . . , L : γpj < Q}. Then choose the user index

in S with the best channel gain γsi. In another words, the user with highest γsi which

also satisfies the interference constraint will be selected. Recall that N = |S|, the

cardinality of S, which is the number of users satisfying the interference constraint,

termed as successful users. Users will be said to be failures if they are not successful.

If the interference test of each user is treated as an independent Bernoulli experiment,

N is a binomial random variable. The success probability p of this binomial random

variable can be represented as Fγp(Q), where Fγp(x) is the CDF of |hp|2 which is i.i.d.

across all SUs.

We use Bin(L,p) to denote the binomial distribution with L trials and success

probability p. Since N users are chosen from L total users subject to an interference

threshold Q, the random variable N follows Bin(L,Fγp(Q)). Consequently, using (3)

and substituting Fγs(x) in to the PGF of Bin(L,Fγp(Q)), the CDF of the channel

gain of the selected user can be expressed as,

Fγ∗
s
(x) = [1− Fγp(Q) + Fγp(Q)Fγs(x)]

L = [1 − p+ p(1− e−x)]
λ
p

= (1− pe−x)
λ
p (2.13)

where p := Fγp(Q) and λ := Lp is the mean value of random variable N . It can be

verified that in this case Pr[N = 0] =
(

L
0

)

p0(1−p)λ
p and σ2

N = λ(1−p), which implies

that (a) and (b) in Theorem 5 are satisfied. Therefore, (2.11) holds for the binomial

case.
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2.3.3 Negative Binomial Distributed N

The number of SUs could follow discrete distributions other than binomial if

different modes of operation are adopted. In the binomial case, the primary receiver

performs an exhaustive search to find all active SUs among L total users. When L

is large, this approach might require a long processing time to form the active SUs

set S. We term the processing time as system delay, which is in proportion to the

number of SUs which has been checked for interference constraint. An alternative is

to decrease the system delay by selecting the desired user from a proper subset among

all users whose interference are below the threshold.

For example, the BS can form the set S sequentially as follows. The BS selects

all the active users before a predetermined number r failures occurs. In this case,

N is NB distributed with parameter r and p, which is denoted as NB(r,p). There

exists a trade-off between the time BS takes to form the set S and the secondary link

performance, which can be balanced by the parameter r. In this case, system delay

is a random variable and its mean value is in proportion to r.

CDF of the channel gain of the best user selected from a NB random set of users

can be written as using (2.3) as:

Fγ∗
s
(x) =

1

(1 + e−xu)r
, (2.14)

where u := Fγp(Q)/(1−Fγp(Q)), r := λ/u. Similar to the binomial N , the conditions

of Theorem 5 are satisfied since Pr[N = 0] =
(

r−1
0

)

p0(1 − p)r and σ2
N = λ/(1 − p),

hence (2.11) also holds in the NB case.

2.3.4 Poisson-Binomial Distribution

In practical systems, SUs might not necessarily suffer an interference probability

that is identical across all users. Therefore, the case where SUs have different Fγpi
(Q)
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is of interest. In this case, the number of active SUs follows a PB distribution,

which is mathematically defined as the sum of non identically distributed independent

Bernoulli random variables Xi so that

Pr [Xi = 1] = pi = 1− Pr [Xi = 0] > 0, i = 1, ..., L. (2.15)

Let W =
∑L

i=1Xi be the number of the active users among total SUs, then W will

have a PB distribution. It is verified in Appendix C that condition (a) and (b) are

also satisfied in this case, so that (2.11) holds. Furthermore, this user distribution

will be studied in Section 2.5 and approximated by the Poisson distribution when

Fγpi
(Q) is small and all Xi are independent.

2.4 Outage Probability and Average Bit Error Rate

2.4.1 Outage Probability

The randomness of the number of active SUs arise from the selection of a desired

SU according to their interference temperature at the primary receiver. Hence, how

rapidly N varies with time depends on the rapidity fading hpi over the interference

channel. When hsi and hpi both remain constant over the transmission duration of a

codeword, the system is experiencing slow fading. Outage probability is an appropri-

ate metric for slowly varying channels. The expression of the outage probability at

average SNR ρ, and a desired transmit rate R is defined as:

Pout(ρ, R) := Pr [log(1 + ργ∗s ) < R] , (2.16)

where γ∗s is defined in (2.2). Recalling that N = |S|, the cardinality of the active set

S, we can express (2.16) as:

Pout(ρ, R) = Pr

[

γ∗s <
2R − 1

ρ

]

= UN

(

Fγs

(

2R − 1

ρ

))

(2.17)
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using (2.3). It is clear that by comparing (2.17) for different user distributions, outage

probability Pout(ρ, R) can be ordered at every value of ρ and R based on comparing

their PGFs, also known as Laplace transform ordering. A similar property will be

observed for the average BER metrics in Sections 2.3 and 2.4.2, by using this LT

ordering approach introduced in Section 2.2.2.

2.4.2 Average Bit Error Rate

Average bit error rate is another key performance metric. The error rate at average

SNR ρ averaged over the fading and users distribution is given by

EN
[

Pe(ρ,N )
]

= EN

[∫ ∞

0

Pe(ρx)dF
N
γs (x)

]

(2.18)

where Pe(ρx) is the instantaneous error rate over an AWGN channel for an instanta-

neous SNR ρx. Pe(ρx) is often approximated to have the form of Pe(ρx) = αe−ηρx,

where α and η can be chosen to capture different modulation schemes. Other varia-

tions such as Pe(ρx) = αQ(
√
ηρx) is also adopted in literature [110].

To see that Pe(ρ,N) is a c.m. function in N , consider the kth derivative

∂kPe(ρ,N)

∂Nk
= ρ

∫ ∞

0

B(ρx)FN
γs (x) [log (Fγs(x))]

k dx, (2.19)

where we define B(x) = −dPe(x)/dx. Since Pe(ρx) is decreasing in x for any ρ > 0

and log (Fγs(x)) ≤ 0, the derivative in (2.19) alternates in sign as k incremented

and satisfies the definition in (2.4). Consequently, Pe(ρ,N) is a c.m. function of N .

In Section 2.6, this c.m. property along with Theorem 1 will be used to show that

stochastic order on a pair of user distributions can be shown to order the average

bit error rate under those user distributions. In particular, Pe(ρ,N) being a c.m.

function of N means that (2.19) is negative for k = 1 and positive for k = 2, and

consequently Pe(ρ,N) is a convex decreasing function of N . For the case that the
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number of users in the system is random, by applying Jensen’s inequality, we have,

EN
[

Pe(ρ,N )
]

≥ Pe(ρ, λ), (2.20)

where λ := E[N ]. Therefore, randomization of the number of users always deterio-

rates the average error rate performance of a multiple SUs CR systems. In Section

2.5.2 we will show that the Jensen’s inequality in (2.20) is tight for large λ and Poisson

N .

2.4.3 Binomial Distributed N

In Section 2.3.2, we derived the CDF of the channel gain of the best user chosen

from a binomial distributed random set of users. Here we take derivative of (2.3)

with respect to x so that the PDF of the channel gain of the best user in the binomial

case can be expressed as:

fγ∗
s
(x) =

dFγ∗
s
(x)

dx
= λe−x(1− e−xp)

λ
p
−1, x > 0. (2.21)

where we recall that p := Fγp(Q). Assuming the instantaneous error rate has the

form Pe(ρx) = αe−ηρx , substituting (2.21) into (2.18) we get:

EN
[

Pe(ρ,N )
]

=

∫ ∞

0

αe−ηρxe−x(1− e−xp)
λ
p
−1dx = αp−1−ηρλβ

(

p, 1 + ηρ,
λ

p

)

(2.22)

where the incomplete beta function is defined as β (x, a, b) =
∫ x

0
ya−1(1 − y)b−1dy.

Note that when p = 1 in (2.22), every SU satisfies the interference constraints, in

which case N is deterministic. In this specific case, (2.22) equals αλB(1 + ηρ, λ),

which can be shown as the average BER under deterministic number of active users.

Here B(1 + ηρ, λ) = β (1, 1 + ηρ, λ) is the beta function.
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2.4.4 Negative Binomial Distributed N

In Section 2.3.3, we derived the CDF of the channel gain of the best user chosen

from a NB distributed set of users. The PDF of the channel gain of the best user in

the NB case can be expressed as:

fγ∗
s
(x) =

dFγ∗
s
(x)

dx
= rue−x(1 + ue−x)−1−r, x > 0. (2.23)

where r is the parameter of the NB distribution and u = p/(1 − p). Assuming that

the instantaneous error rate has the form Pe(ρx) = αe−ηρx, substituting (2.23) into

(2.18) we can get:

EN
[

Pe(ρ,N )
]

=

∫ ∞

0

αe−ηρxrue−x(1 + ue−x)−1−rdx

=
ruα

1 + ηρ
2F1 (1 + r, 1 + ηρ, 2 + ηρ,−u) (2.24)

where 2F1 (a, b, c, z) is Gauss’s hyper geometric function. As number of failures r is

incremented, average BER performance improves. However, for increased r, the time

BS takes to form set S will also be increased, so that one can balance the performance

and delay trade off by adjusting the r parameter.

2.5 Non-homogeneous Interference Probability and Poisson Approximation

We have introduced in Section 2.1 that the interference test of each SU is treated

as an independent Bernoulli experiment with success probability Fγp(Q). In this

section, the interference model will be generalized to the non-i.i.d case, in which the

number of active SUs results in a PB distribution following the definition in Section

2.3.4. Since it is mathematically complicated to calculate the ergodic capacity and

average BER of the SU system in this case, a Poisson approximation will be utilized

to approximate PB distribution.
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2.5.1 Poisson Approximation

In this section, we will bound the error between the ergodic capacity under Poisson

and PB N to show that as the PB distribution converges to Poisson distribution, the

ergodic capacity EN
[

C(ρ,N )
]

under PB N also converges to the ergodic capacity at

the Poisson case.

Following the definition in Section 2.3.4 then W will have a distribution that

is approximately Poisson with mean λ =
∑L

i=1 pi. This approximation will hold if

Fγpi
(Q) is small and all Xi are independent. We will now make this rigorous and

bound the error between the ergodic capacity under a PB user distribution W and its

corresponding Poisson approximated N [111]. First, consider the following theorem

by Le Cam [111]:

Theorem 6. X1, . . . , Xi are independent random variables, each with a Bernoulli

distribution of parameter pi. Pr [Xi = 1] = pi for all i = 1, . . . , L, i.e. W =
∑∞

i=0Xi

approximately follows a PB distribution. We have

∞
∑

k=0

∣

∣

∣

∣

Pr [W = i]− e−λλi

i!

∣

∣

∣

∣

≤ 2

L
∑

i=1

pi
2, i = 1, 2, . . . , L (2.25)

where λ =
∑L

i=1 pi.

Using Theorem 6, we will bound the gap between the ergodic capacity under PB

and Poisson distributions, which is denoted as ∆C . We have:

∆C =
∣

∣EW
[

C(ρ,W)
]

− EN
[

C(ρ,N )
]∣

∣ =

∣

∣

∣

∣

∣

L
∑

i=1

C(ρ, i)

(

Pr [W = i]− e−λλi

i!

)

∣

∣

∣

∣

∣

≤
L
∑

i=1

C(ρ, i)

∣

∣

∣

∣

(

Pr [W = i]− e−λλi

i!

)∣

∣

∣

∣

(2.26)
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Since C(ρ, i) is increasing in i, and C(ρ, L) = O (log logL) as we mentioned in Section

2.3.1, applying (2.25) we have:

∆C = O

(

log logL
L
∑

i=1

p2i

)

(2.27)

where i = 1, 2, . . . , L. As long as
∑L

i=1 p
2
i = o(1/(log logL)), the error between the

capacity under PB and Poisson distributions goes to zero as L → ∞.

For a special case consider pi = λ/L for i = 1, 2, . . . , L, in which all the SUs have

i.i.d. interference channels, W follows a binomial distribution. In this case, we have

∆C = O

(

λ2

L
log logL

)

(2.28)

Obviously, as L→ ∞ and p→ 0, ∆C approaches zero. Consequently, the gap between

the binomial and the approximated Poisson capacity is shown to be negligible as total

number of users grows large and the interference probability is sufficiently small. This

will be illustrated numerically in Section 2.7.

2.5.2 Tightness in the Jensen’s Inequality in the Average BER

Since in Section 2.5 we proved that Poisson distribution can be utilized to pre-

cisely approximate PB distribution, it is of interest to study the average BER under

Poisson N . In Section 2.4.2, we proved that the average BER Pe(ρ,N) is a com-

pletely monotonic function of N , which implies the convexity. Applying the Jensen’s

inequality, we have (2.20).

We now provide sufficient conditions for Jensen’s inequality involving Pe(ρ,N) to

be asymptotically tight for large λ. Recall that Pe(ρ,N) is the error rate averaged

over the channel distribution for deterministic number of users N . To this end, we

use [112, Theorem 2.2] which were derived in a networking context for arbitrary c.m.

functions.
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Theorem 7. Let Pe(ρ,N) be c.m. and regularly varying at N = ∞ and consider the

error rate averaged across the channel and the users EN
[

Pe(ρ,N )
]

, where N is a

Poisson distributed random variable with mean λ. Then,

EN
[

Pe(ρ,N )
]

= Pe(ρ, λ) +O
(

Pe(ρ, λ)/λ
)

(2.29)

as λ→ ∞.

Equation (2.29) shows that as λ → ∞, the difference between the error rate

averaged across the user distribution and the error rate evaluated at the average

number of users vanishes as λ tends to ∞. This implies that for sufficiently large λ

the performance of the MUD systems with random number of users will be almost

equal to the performance of the MUD systems with a deterministic number of users

with the number of users equal to λ.

To apply Theorem 7 we require Pe(ρ,N) to be c.m. and regularly varying. We

have already shown in Section 2.4.2 that Pe(ρ,N) is always completely monotonic

in N . Next, we provide the conditions under which Pe(ρ,N) is a regularly varying

function of N . Consider

Pe(ρ,N) = ρ

∫ ∞

0

B(ρx)eN logFγs (x)dx (2.30)

where B(·) is defined as B(x) = −dPe(x)/dx. Now, setting u := − log(Fγs(x)), and

integrating by substitution we have,

Pe(ρ,N) = ρ

∫ ∞

0

B(ρF−1
γs (e−u))e−ue−uNdu

fγs(F
−1
γs (e−u))

, (2.31)

where F−1
γs (x) is the inverse CDF and fγs(x) is the PDF of γs. We now establish the

sufficient conditions for Pe(ρ,N) to be a regularly varying function of N :

Theorem 8. If Pe(ρ,N) is c.m. in N , a sufficient condition for it to be regularly

varying at N = ∞ is that, t(u) := ρ(B(ρF−1
γs (e−u))e−u)/(fγs

(

F−1
γs (e−u)

)

) is regularly

varying at u = 0.
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Proof. By comparing the representation of Pe(ρ,N) in (2.31) with the Bernstein’s

representation of c.m. functions discussed after (2.4), it can be seen that (2.31)

can be represented as the Laplace transform of t(u). Using Theorem 2, the proof

follows.

Theorem 8 shows that for the conclusions of Theorem 7 to hold (i.e., Jensen’s

inequality to be asymptotically tight), the CDF of the single-user channel Fγs(x), and

the error rate expression Pe(ρx) have to jointly satisfy the regular variation condition

given in Theorem 8. Next, we examine whether this condition holds for commonly

assumed instantaneous error rates Pe(ρx) with γs being exponentially distributed.

For the case of Pe(ρx) = αe−ηρx, we have t(u) = αρ(1 − e−u)ηρ−1e−u, which satis-

fies limu→0 t(κu)/t(u) = κηρ−1, therefore proving the regular variation of t(u) at 0.

By using Theorem 2 this in turn proves regular variation of Pe(ρ,N) at N = ∞.

Therefore Pe(ρ,N) is both a c.m. and a regularly varying function of N for this

case. Consequently, when Pe(ρx) = αe−ηρx and the fading is Rayleigh (i.e. channel

gain is exponential), the difference in error rate performance of a MUD system with

a random number of users averaged over the number of users distribution and of a

deterministic number users approaches zero for sufficiently large λ, as in Theorem 7.

Consider now Pe(ρx) = αQ(
√
ηρx), with γs being exponentially distributed. The

error rate can be expressed as,

Pe(ρ,N) = α

∫ ∞

0

Q (
√
ηρx) dFN

γs (x)

= α Q(
√
ηρx)FN

γs (x)
∣

∣

∞
0
− α

∫ ∞

0

FN
γs (x)dQ(

√
ηρx)

= 0− α

∫ ∞

0

FN
γs (x)dQ(

√
ηρx) =

α
√
ηρ

2
√
2π

∫ ∞

0

eN log(1−e−x)e−ηρx/2

√
x

dx, (2.32)
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where the second equality is obtained by integration by parts. Once again, by setting

u = − log(1− e−x) we can rewrite (2.32) as,

Pe(ρ,N) =
α
√
ηρ

2
√
2π

∫ ∞

0

exp (−Nu) (1− e−u)ηρ/2−1 e−u

√

− log(1− e−u)
du. (2.33)

Thus we have t(u) = α
√
ηρ(1 − e−u)ηρ/2−1e−u/(2

√

−2π log(1− e−u)) and it can be

shown that limu→0 t(κu)/t(u) = κηρ/2−1, therefore once again proving that Pe(ρ,N)

is both a c.m. and a regularly varying function of N . Having verified the conditions

of Theorem 8 for Pe(ρx) = αQ(
√
ηρx) with γs being exponentially distributed, we

conclude the tightness of Jensen’s inequality as suggested by Theorem 7.

2.6 Laplace Transform Ordering of User Distributions

We know from Jensen’s inequality that a deterministic number of SUs will always

outperform a random number of SUs both for average BER and ergodic capacity.

Moreover, different random SU distributions can also be ordered among themselves.

In this section, we introduce Laplace transform (LT) ordering, a method to compare

the effect that different user distributions has on the average error rate, ergodic ca-

pacity, or other metrics that are either c.m. or c.m.d. in the number of active users.

From [105] we know that ergodic capacity is c.m.d. and averaged BER is c.m.. Con-

sequently, Theorem 1 implies that if the number of users is from a distribution that

can be ordered in the LT sense, then both the average error rate and capacity can be

ordered at every value of SNR ρ.

Theorem 9. Let X denote a Poisson random variable with parameter λ, Y denotes

a binomial random variable with mean value Lp, and Z denote a NB random variable

with mean value rp/(1−p), and W denote a PB random variable defined in Theorem 6.

By assuming equal mean for all distributions, that is Lp = λ = rp/(1− p) =
∑L

i=1 pi,
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we have UZ(z) ≥ UX (z) ≥ UY(z) ≥ UW(z), for 0 ≤ z ≤ 1. In other words

Z ≤Lt X ≤Lt Y ≤Lt W. (2.34)

Proof. See Appendix B.

It can be observed that for the extreme case that when parameter p = 1, binomial

user distribution converges to the deterministic number of users, which dominates any

kind of random distributions with the same mean value under LT ordering sense. PB

user distribution also subsumes deterministic case when pi are either 1 or 0. Moreover,

due to Theorem 1, if the SU distributions are ordered in LT sence, any c.m. (c.m.d.)

performance metric of N will also be ordered. Hence, without calculating or deriving

the closed form expression, system performance can be compared after knowing the

corresponding user distributions.

2.7 Simulations

An uplink CR system with multiple SUs where both SUs and BS having a single

antenna is considered. In this section, using Monte-Carlo simulations, ergodic capac-

ity and averaged BER are simulated to corroborate our analytical results. For all

simulations, Rayleigh fading channels are assumed.
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Figure 2.2: Ergodic Capacity Under Different User Distributions.

In Section 2.3.2 and 2.3.3, ergodic capacity performances under binomial and NB

user distributions are established. In Figure 2.2, ergodic capacity is plotted versus λ =

E[N ] for different user distributions. It can be seen that for a given user distribution,

the ergodic capacity improves with average number of users. Also, in Section 2.6,

these two distributions are compared with the Poisson distribution in LT ordering

sense. In Figure 2.2, for a given λ, binomial user distribution yields better ergodic

capacity performance than Poisson, followed by NB user distribution. Furthermore,

NB distribution converges to the Poisson distribution as the trial probability p →

0 and stopping parameter r → ∞, and the binomial distribution also converges

towards the Poisson distribution as the number of trials goes to infinity and the

product Lp remains fixed. It can be seen from Figure 2.2 that for a fixed λ, when the

trial probability p varies from 0.5 to 0.2, ergodic capacity of binomial and NB cases

converge to the Poisson case.
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Figure 2.3: Average BER Under Different User Distributions.

In Section 2.4.3 and 2.4.4, we derived closed form expressions for averaged BER

under binomial and NB user distributions. It can be observed that any kind of random

user distribution will deteriorate the average BER performance compared with the

fixed number of users case. As we introduced in Section 2.2.2, Pe(ρ,N) is c.m. in

N and if Z ≤Lt X ≤Lt Y , we have EZ
[

Pe(ρ,Z)
]

≥ EX
[

Pe(ρ,X )
]

≥ EY
[

Pe(ρ,Y)
]

,

∀ρ. As shown in Figure 2.3, average BER performances under are plotted against

λ = E[Z] = E[X ] = E[Y ]. Here, Z is NB, X is Poisson, and Y is binomial distributed.

With same mean number of users, average BER under binomial Y always outperforms

Poisson X and NB Z. Additionally, when λ is fixed, BER performance under binomial

and NB cases converge to Poisson case as p is decreased from 0.5 to 0.2. Moreover,

BER performance under geometric and uniform N are simulated to show that more

discrete distributions can be ordered in LT ordered sense.
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Figure 2.4: Ergodic Capacity of NB N with Different r.

In Section 2.3.3, we mentioned that in NB case, the trade-off between performance

and system delay can be balanced by a choice of the parameter r. As shown in Figure

2.4, for a given average SNR, ergodic capacity under different values of parameter r

are simulated. It can be observed that as r increases from 8 to 32, the ergodic capacity

performance is increased only approximately 20%. However, the average system delay

when r = 32 is four times as much as r = 8. Hence there are diminishing returns in

capacity as the delay parameter is increased.

In Section 2.5, we discussed a non-homogeneous interference setup, which results

in a Poisson-binomial N . In Figure 2.5, the average BER of Poisson-binomial N

with different L are plotted versus the mean number of SUs λ, and compared with

the average BER of Poisson N . It can be observed that the average BER of Poisson-

binomial case is always better than that of the Poisson case, which has been proved

mathematically in Section 2.6 in Laplace transform ordering sense. Practically, when

N is PB distributed, interference probability pi of each SU is no longer identical. One
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extreme situation of this PB case is when some SUs violate interference constraint

with pi = 1, and the rest of the SUs always satisfy the interference constraint, which

is equivalent to the deterministic N case. Another extreme situation is when pi is

identical to each SU, this PB is equivalent to binomial case. Hence, PB case should

outperform Poisson case as we observed from the figure. Moreover, we suggested in

Section 2.5.1 that PB is a good approximation of Poisson N for a fixed mean value

λ, as L → ∞. It can been seen that as L increases from 20 to 60, the average BER

of Poisson-binomial curve approaches the Poisson curve.
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Figure 2.5: Average BER Under PB and Poisson User Distributions.
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Chapter 3

FUNDAMENTAL PERFORMANCE TRADE-OFF BETWEEN PU AND SU IN

COOPERATIVE COGNITIVE RADIO SYSTEMS

In this chapter, a relay-aided cooperative underlay CR system with an instantaneous

interference constraint at the PR is considered. When the PU is active, those SUs

whose interference at the PR is above a threshold will amplify-and-forward (AF) PU’s

signal to enhance its performance, while those SUs below this threshold will proceed

with their own transmission in an underlay fashion. Opportunistic relay selection and

underlay MUD are applied in the primary and secondary networks respectively. As

the number of relay SUs increases, the PU’s performance is improved which causes

degradation of SU’s performance concurrently. With our novel overall average BER

and the sum achievable rate metrics, we quantify this fundamental performance trade-

off mathematically in the large number of SUs regime. This is then followed by a

derivation of the optimal ratio in closed form between the number of relaying and

underlay SUs to optimize the overall system performance as a function of statistics

of the fading links.

3.1 System Model

3.1.1 Access Strategy

As shown in Figure 3.1, we consider an uplink CR system with L = M + N

SUs, a single PU, a primary receiver (PR), and one secondary receiver (SR). The

transmitters and receivers are assumed to be equipped with a single antenna.
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Figure 3.1: System Model of Proposed Cooperative CR System

We assume that at the beginning of each transmission block, SUs will decide their

access mode in the transmission phase by estimating their interference temperature

at the PR with the knowledge of the interference channel through feedback [113],

and comparing with a threshold. M SUs below the threshold will enter the underlay

mode and transmit to the SR in a MUD fashion, where only a single SU with the

highest transmission SNR will be selected to communicate. N SUs above the inter-

ference threshold will serve as relays to the PU in order to compensate for the limited

interference caused by the selected underlay SU at the PR. An opportunistic relay

technique is applied among N SUs where only the best relay path is selected to relay

at each time slot.

Due to the MUD scheme among M underlay SUs and the independence between

the SU-SR channel and the SU-PR interference channel, only a single underlay SU

will be selected to transmit whose interference temperature satisfies the threshold at

the PR. This scheme enables the system to trade off between primary and secondary

network performance with flexibility by adjusting the values of N and M . Our novel

combined metrics enable us to mathematically quantify the performance trade-off
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between the PU and SU networks for the first time in the literature. More specifically,

we will show that if the average SNR of the PU to PR channel is poor, large number

of relays is preferred to enhance the PU network quality; and when the underlay SUs

experience deep fading, more SUs should be included in the MUD.

3.1.2 Description of the Relay Selection

The opportunistic relay selection is implemented at the primary network. A single

SU out of theN SUs will be selected, depending on which SU relay provides the largest

end-to-end path gain between the PU and the PR. We adopt the cooperative diversity

model in [114] so that during the first half of the transmission block, PU broadcasts

its signal, and SUs and the PR receive it. In the second half, the selected SU relay

the received signal to the PR, and the PR combines two copies using maximum ratio

combining (MRC). Similar to [115, 116], we assume that the knowledge of the relay

and directed channels have been acquired by the PR.

The received signal at the PR and the ith SU in the first half of the block can be

expressed as,

y1PR =
√

β1hPU,PRxPU + n1
PR, (3.1)

ySUi
=
√

β2hPU,SUi
xPU + nSUi

, i = 1, 2, . . . , N, (3.2)

where hPU,PR and hPU,SUi
denote the channel coefficients from the PU to the PR and

PU to the ith SU, xPU is the transmitted symbol from PU, n1
PR and nSUi

are the

additive white Gaussian noise (AWGN) at the PR and ith SU relay in the first half

of the block respectively. In the second half of the transmission block, we model the

received signal at the PR as:

y2PR =
√

β3AhSUi,PRxSUi
+ n2

PR, (3.3)
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where hSUi,PR denotes the channel coefficient from the ith SU relay to the PR, xSUi

is the transmitted signal from the ith relay. n2
PR is the AWGN at the PR. In this

chapter, all the links are assumed to be Rayleigh fading. hPU,PR, hPU,SUi
, and hSUi,PR

are complex Gaussian random variables with zero mean and unit variance. The

variances of xPU, xSUi
, n1

PR, n
2
PR and nSUi

are normalized to 1. βi are the average

SNR on each fading link. The received SNR of the direct link is γD = β1|hPU,PR|2, and

the received SNR on the ith SU relay path can be expressed as γP,Si = β2|hPU,SUi
|2

and γSi,P = β3|hSUi,PR|2. A =
√

1/(β2γP,Si + 1) is the amplification factor at the ith

SU, which maintains constant average power output [114]. By using equation (6)

in [116], the received SNR of the opportunistic relay is derived as

γ∗R = max
1≤i≤N

γP,SiγSi,P
1 + γP,Si + γSi,P

. (3.4)

3.1.3 SU’s Underlay Transmission

According to the access strategy described in 3.1.1, when M SUs satisfy the inter-

ference constraint at the PR, only one SU among allM SUs with the highest received

SNR at the SR will be selected to transmit. The received signal at the SR from the

jth SU can be expressed as:

ySR =
√

β4hSUj ,SRxSUj
+ nSR, j = 1, 2, . . . ,M, (3.5)

where hSUj ,SR denotes the channel coefficient from the jth SU to the SR, xSUj
is the

transmitted symbol, nSR is the AWGN at the SR. hSUj ,SR and nSR have the same

distribution as hPU,PR and n1
PR in the primary network. The channel gain of the

selected SU is denoted by

γ∗S = β4 max
1≤j≤M

|hSUj ,SR|2. (3.6)
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3.2 Average Bit Error Rate

Average bit error rate (BER) is a key performance metric. In this section, we

will derive the average BER of both the PU and SU in closed form respectively. In

the primary network, opportunistic relay selection among N SUs is assumed. In the

secondary network, MUD is applied where the SU with the highest transmission SNR

will be selected to communicate at each time instance. At last, we will define a new

metric to capture the overall BER performance of the whole system, and derive the

optimal choice of t to minimize the overall system BER.

3.2.1 Average BER of the Primary System

Denoting the received SNR at the PR as γP, the error rate averaged over the

fading with relay selection among N SUs is given by

PeP(N) =

∫ ∞

0

Pe(ρx)fγP(x)dx. (3.7)

where Pe(ρx) is the instantaneous error rate over an AWGN channel for an instan-

taneous SNR x. Pe(ρx) is often approximated to have the form of Pe(ρx) = αe−ηx,

where α and η can be chosen to capture different modulation schemes. For exam-

ple, for binary differential phase-shift-keying (DPSK) this is exact with α = 0.5 and

η = 1. fγP(x) is the PDF of the received SNR γP using MRC at the PR. Since a closed

form expression for fγP(x) is unavailable, we adopt the moment generating function

(MGF) approach to study PeP(N) [117]. The MGF-based approach for the average

BER performance of digital modulations over fading channels allows us to obtain the

closed form expression for BER of variety of M-ary modulations such as M-DPSK.

Due to the MRC scheme at the PR and the independence between the direct link and
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the relay link, we have γP = γD + γ∗R. This implies that

PeP(N) = PeD · PeR(N), (3.8)

where PeD is the average BER of the direct link at the average SNR β1, and the PeR(N)

is the average BER on the opportunistic relay path among N relays. Equation (3.8)

is due to the property of MGF that the MGF of γP equals to the product of two

individual MGFs of γD and γ∗R.

Direct Link From PU to PR

For the direct link, it is simply the average BER over a Rayleigh fading channel with

average SNR β1, which can be obtained as

PeD =

∫ ∞

0

exp(−ηx) 1
β1

exp(− x

β1
)dx =

α

1 + ηβ1
. (3.9)

Opportunistic Relay Selection

As shown in Section 3.1.2, applying the opportunistic relay amongN SUs, the received

SNR at the PR can be expressed as (3.4). To derive PeR(N), the PDF of γ∗R is needed.

Due to its intractability, common upper bounds on γ∗R, which are harmonic mean and

min-max bounds, are studied.

Harmonic Mean Upper Bound The harmonic mean of γP,Si and γSi,P

γHM =
γP,SiγSi,P
γP,Si + γSi,P

, (3.10)

can be used to tightly upper bound γ∗R in (3.4) by simply removing the 1 on the

denominator as

γ∗R = max
1≤i≤N

γP,SiγSi,P
1 + γP,Si + γSi,P

≤ max
1≤i≤N

γHM = γ∗HM. (3.11)

42



The right hand side of the inequality in (3.11) is the maximum among all the harmonic

means of the SNRs on the two hops of a relay path. the left hand side is the maximum

of the end-to-end SNR gains among all possible relay paths. This upper bound is a

widely adopted approximation where the PDF and CDF of the individual relay path

SNR γHM has been derived in [118]. After the best relay selection, γ∗HM is the received

SNR of the opportunistic relay path, which is mathematically intractable. However,

using asymptotic extreme value theory, the maximum of N i.i.d. random variables

whose complementary CDF has an exponential tail, can be shown to be Gumbel

distributed as N → ∞ [119]. Hence, the CDF and PDF of γ∗HM can be captured in

the large N regime as [66]:

Fγ∗
HM

(x) ≈ exp

(

− exp

(

−x− αN

c

))

, (3.12)

and

fγ∗
HM

(x) ≈ 1

c
exp

(

−x− αN

c
+ exp

(

−x− αN

c

))

. (3.13)

where

c =
β2β3

(
√
β2 +

√
β3)2

(3.14)

αN =
log(N) +O(log(

√

log(N)))

c
(3.15)

Assuming that the instantaneous error rate has the form Pe(ρx) = αe−ηx , sub-

stituting Pe(ρx) and (3.13) into (3.7) and obtain the average BER of the PU with

harmonic mean upper bound as:

P
HM

eP
(N) = PeD · PHM

eR
(N)

=
1

1 + ηβ1
α

∫ ∞

0

1

c
exp

(

−x− αN

c
+ exp−

(

x− αN

c

))

Pe(ρx)dx. (3.16)
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After a change of variables, the average BER of the relay assisted PU with MRC at

the PR is derived by carrying out the integral in (3.16) [120, eqn. (13)]

P
HM

eP
(N) = α2 exp(−ηαNc)

1

1 + ηβ1
γ(ηc+ 1, exp(αN)), (3.17)

where γ(·, ·) is the lower incomplete gamma function defined as γ(x, y) =
∫ x

0
ty−1e−tdt

[121]. Equation (3.17) provides a tight upper bound on the average BER perfor-

mance. It shows that as long as the individual links in the proposed system experience

Rayleigh fading, the average BER is in the form of (3.17) with different parameters.

Min-Max Upper Bound An alternative upper bound on γ∗R is the min-max upper

bound introduced in [122] that maximize the minimum SNR on the relay path

γ∗R ≤ max
1≤i≤N

min{γP,Si, γSi,P} = γ∗MM. (3.18)

In this bound, the minimum of the link qualities of both relay hops are obtained, and

then the maximum among these N minimum values is the desired opportunistic relay

path SNR. This method captures each of the two relay hops as a bottle neck.

The random variable min{γP,Si, γSi,P} is shown to be exponentially distributed

with ρ = β2β3

β2+β3
. Hence, the CDF and the PDF of γ∗MM can be expressed as:

Fγ∗
MM

(x) = (1− exp(−ρx))N , (3.19)

and

fγ∗
MM

(x) = Nρ exp(−ρx)(1 − exp(−ρx))N−1. (3.20)

Assuming that the instantaneous error rate has the form Pe(ρx) = αe−ηx , substituting

Pe(ρx) and (3.20) into (3.7) and obtain the average BER of the PU with min-max

upper bound as:

P
MM

eP
(N) = PeD · PMM

eR
(N) =

α2

1 + ηβ1
NB(N, 1 + ηρ) (3.21)
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where B(·, ·) is the beta function defined as B(x, y) =
∫ 1

0
tx−1(1 − t)y−1dt. It can

be shown that γ∗HM ≤ γ∗MM which implies that the harmonic mean upper bound is

always tighter than the min-max upper bound at every value of β2 and β3, and will

converge to each other as β2 ≫ β3 or β2 ≪ β3. In Section 3.2.3, we will minimize

the BER performance of the overall system analytically for both harmonic mean and

min-max cases with respect to N/(N +M), and verify that the solutions in two cases

will coincide when β2 ≫ β3 or β2 ≪ β3, corresponding to that one of the relay hop is

much stronger than another on the path. For example, the relay SU is close to either

PU or the PR.

3.2.2 Average BER of the Underlay SU Transmission

As we described in the system model, when N SUs relay the PU’s signal, M SUs

above the interference constraint will operate in the underlay transmission mode in

a MUD fashion. The CDF and PDF of the channel gain of the selected underlay SU

with average SNR β4 can be obtained as

Fγ∗
S
(x) =

(

1− exp

(

− x

β4

))M

(3.22)

and

fγ∗
S
(x) =

M

β4
exp

(

− x

β4

)(

1− exp

(

− x

β4

))M−1

. (3.23)

Assuming that the instantaneous error rate has the form Pe(ρx) = αe−ηx, average

BER performance of the selected underlay SU can be obtained as

PeS(M) = αMB(M, 1 + ηβ4) (3.24)

3.2.3 Optimal Ratio of t for Average BER

In our proposed cooperative CR system, when N SUs are above the interference

constraint, opportunistic relay over N SUs is utilized to improve the PU’s BER per-
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formance. On the other hand, MUD scheme is applied amongM underlay SUs. Con-

sequently, the PU and SU’s average BER performance can be balanced by adjusting

the value of N and M . To recall that we defined a ratio parameter t , N/(N +M),

and we will show that there exists an optimal value of t to maximize the overall

average BER performance of both PU and SU.

The overall average BER Peall(N,M) is defined as the product of PU’s average

BER PeP(N) and SU’s average BER PeS(M). Assuming that the instantaneous error

rate has the form Pe(ρx) = αe−ηx, Peall(N,M) is equivalent to the average BER of the

summed SNR γP + γ∗S, which characterizes the overall performance of the proposed

system. In this section, we study the trade-off between the PU and SU’s average BER

performance in closed form, and obtain the overall BER expressions P
HM

eall
(N,M) and

P
MM

eall
(N,M) for both harmonic mean and min-max upper bounds respectively as

P
HM

eall
(N,M) = P

HM

eP
(N) · PeS(M)

= α3 exp(−ηαNc)γ(ηc+ 1, exp(αN))MB(M, 1 + ηβ4)

1 + ηβ1
, (3.25)

and

P
MM

eall
(N,M) = P

MM

eP
(N) · PeS(M) = α3NB(N, 1 + ηρ)MB(M, 1 + ηβ4)

1 + ηβ1
. (3.26)

When the PU is active, an increase in N , or equivalently t, will result in a decrease

of P
HM

eP
(N) and P

MM

eP
(N), and increase of PeS(M). The behavior of P

HM

eall
(N,M) and

P
MM

eall
(N,M) in terms of t can be studied in the high M and N regime, and we have

the following theorem:

Theorem 10. The overall BER performance of the proposed system applying the

harmonic mean upper bound denoted as P
HM

eall
(N,M), and the min-max upper bound

denoted as P
MM

eall
(N,M) can be minimized at

t∗HM =
c

c+ β4
(3.27)
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and

t∗MM =
ρ

ρ+ β4
, (3.28)

when M and N are large, ρ = β2β3

β2+β3
is the average end to end SNR of the relay path,

and c = β2β3

(
√
β2+

√
β3)2

.

Proof. See Appendix D.

Recalling that t = N/(N +M) is the fraction of SUs acting as relays to the total

number SUs. Theorem 10 provides the optimal relationship between N and M as a

function of the average SNR on each fading link. By knowing the statistics of each

fading link, we can derive how far the system average BER performance is away from

the optimal scenario. t∗HM and t∗MM are monotonically increasing functions of c and ρ,

and decreasing functions of β4. This means that when c and ρ are small and β4 is large,

SUs tend to proceed with their own transmission since the underlay SUs experience

high quality channels. On the other hand, more SUs will relay PU’s signal when c

and ρ are large and β4 is small. In Appendix D, it has been shown that P
HM

eall
(N,M)

and P
MM

eall
(N,M) are positive logarithmically convex functions of t, which implies that

P
HM

eall
(N,M) and P

MM

eall
(N,M) are convex of t over 0 ≤ t ≤ 1. Moreover, it can be

shown that P
HM

eall
(N,M) and P

MM

eall
(N,M) are decreasing when t < t∗HM and t < t∗MM,

and increasing when t > t∗HM and t > t∗MM. Hence, the maximal value of P
HM

eall
(N,M)

and P
MM

eall
(N,M) can only be achieved either at t = 0 or t = 1. When t = 1, all

L SUs will relay the PU’s transmission and the proposed cooperative underlay CR

system is equivalent to the cooperative CR system introduced in [67]. When t = 0,

all L SUs will operate in the underlay mode, so that the proposed system reduces to

a conventional underlay CR system. Consequently, our CR system outperforms both

the existing cooperative CR system and the underlay CR system in the average BER

sense when N and M are large.
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It can be derived that c ≈ ρ when β2 ≫ β3 or β2 ≪ β3. This indicates that

P
HM

eall
(N,M) and P

MM

eall
(N,M) can be minimized at the same value of t, which coincide

with the fact that γ∗HM ≈ γ∗MM when β2 ≫ β3 or β2 ≪ β3 as we described in Section

3.2.1. Also, when βi = β for i = 1, . . . , 4, which corresponds to homogeneous fading

links, t∗MM = 1/3. This means that the optimal number SU relays is one third of the

total number SUs given the average SNR values β2, β3 and β4. We will see in the next

section that the sum achievable rate criterion will also yield a similar result. Another

interpretation of the min-max upper bound is that if the decode-and-forward scheme

is applied among SU relays, γ∗MM is the equivalent SNR value of the relay path if both

hops are not in outage. Hence the min-max case is of interest.

3.3 Achievable Rate

3.3.1 Scaling Laws for Achievable rates of the PU and Underlay SU

When hPU,PR, hPU,SUi
, hSUi,PR and hSUj ,SR vary rapidly over the duration of a

codeword, the system is in the so-called fast fading regime. We consider the achievable

rate of both PU and the selected SU averaged over channel fading. When the PU’s

transmission exists, N SUs serve as relays to the PU and M SUs communicate with

the SR using MUD. In the primary network, it has been shown in [114] that the

achievable rate of the relay assisted PU can be expressed as

CP(N) =
1

2

∫ ∞

0

log (1 + x) fγP(x)dx, (3.29)

where CP(N) is the achievable rate of the PU and γP = γD+γ
∗
R. The factor 1/2 is due

to the fact that PU only transmit at the first half of the transmission phase. When

the number of SU relays N is large, we show in Appendix E that for both harmonic
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mean and min-max cases,

CP(N) =
1

2
log(log(N)) + o(log(log(N))). (3.30)

In the secondary network, the achievable rate of the selected SU with MUD can

be expressed as

CS(M) =

∫ ∞

0

log (1 + x) fγ∗
S
(x)dx. (3.31)

Similar to (3.30), the scaling laws for CS(M) as M → ∞ can be obtained using

previously derived expressions for non-cooperative point-to-point systems [55] as

CS(M) = log(log(M)) +O

(

1
√

log(M)

)

. (3.32)

3.3.2 Optimal Ratio of t for Achievable Rate

As we described in Section 3.2.3, the trade-off between the PU and the selected

underlay SU performance also exists when the metric of interest is the achievable

rate. We define t = N/(N +M) and

Call(N,M) = CP(N) + CS(M) (3.33)

as the sum rate of the proposed system to capture the overall rate performance of

the whole system. Call(N,M) characterizes the total rate that the whole network can

support at a certain time instance. In this section, we will adjust the value of t to

balance between the primary and secondary network performance in the achievable

rate sense, and then aim to maximize the sum rate Call(N,M) as a function of t in

the large number of SUs regime. Combining (3.30) with (3.32) we have

Call(N,M) =
1

2
log(log(N)) + log(log(M)) + o(log(log(N))) +O

(

1
√

log(M)

)

,

(3.34)

and obtain the following theorem:

49



Theorem 11. When the number of SUs N and M are large, the sum rate of the

proposed system Call(N,M) is concave in t over 0 ≤ t ≤ 1, and can be maximized at

t∗ = 1/3.

Proof. See Appendix E.

The optimal ratio t∗ = 1/3 coincides with the results in Theorem 10 based on

the error probability when we have homogeneous fading links in the network. This

implies that both total average BER and sum achievable rate can be jointly optimized

at the same time. Call(N,M) can be shown to increase when t < t∗ and decrease

t > t∗, hence the maximum value of Call(N,M) can only be achieved either at t =

0 or t = 1. t = 0 and t = 1 stand for conventional cooperative and underlay

CR systems respectively. Consequently, our proposed system outperforms both the

existing cooperative CR system and the underlay CR system in the achievable rate

sense when N and M are large. Moreover, we can generalize Call(N,M) to any

weighted linear combinations of CP(N) and CS(M), which can be maximized using

the same method as Theorem 11 applying harmonic mean or min-max upper bound

on the opportunistic relay selection.

3.4 Cooperative Underlay CR Systems with Random Number of SUs

In Section 3.2 and 3.3, the average BER and achievable rate of the relay-aided

cooperative underlay CR system is investigated for fixed number of SUs N and M .

Practically, due to the mobility of the users and interference heterogeneity in different

parts of the environment, the number of SUs need not to be deterministic. We now

assume that L SUs are located randomly but uniformly inside the cell. The number

of SUs N and M are a pair of i.i.d. random variables with mean value λt and λ(1−t).

In this case, the overall BER and sum achievable rate defined in (3.25) and (3.33) are
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averaged over the user distributions, and can be expressed as

EN ,M[Peall(N ,M)] = EN [PeP(N )] · EM[PeS(M)] (3.35)

and

EN ,M[Call(N ,M)] = EN [CP(N )] + EM[CS(M)] (3.36)

respectively, where N +M = L. In this section, we will show that as λ→ ∞, both

EN ,M[Peall(N ,M)] and EN ,M[Call(N ,M)] can be optimized at the same value of t as

their deterministic counterparts derived in Theorems 10 and 11.

3.4.1 Overall BER in Poisson User Distribution

Whether a SU is under or above the interference constraint at the PR can be

modeled as a Bernoulli random variable. When the number of SUs is large and each

user is active (interference at the PR is below the threshold) with small and mutually

independent probability, the number of active users is well approximated as Poisson

distribution [105]. For the overall average BER case, when the harmonic mean and

min-max upper bounds are applied in the high λ regime, EN ,M[Peall(N ,M)] can be

lower bounded and denoted as EHM
N ,M[Peall(N ,M)] and EMM

N ,M[Peall(N ,M)]. Similar

to Theorem 10, EHM
N ,M[Peall(N ,M)] and EMM

N ,M[Peall(N ,M)] can be minimized over

0 ≤ t ≤ 1 and the following Theorem can be obtained:

Theorem 12. When M and N are Poisson distributed with mean value λ(1− t) and

λt, the overall BER of the proposed CR system EHM
N ,M[Peall(N ,M)] and

EMM
N ,M[Peall(N ,M)] averaged across both fading and user distributions can be mini-

mized at

t∗HM =
c

c+ β4
(3.37)
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and

t∗MM =
ρ

ρ+ β4
(3.38)

when λ → ∞, and ρ = β2β3

β2+β3
is the average end to end SNR on the relay path, and

c = β2β3

(
√
β2+

√
β3)2

.

Proof. Due to Jensen’s inequality,

EMM
N ,M[Peall(N ,M)] = EN [P

MM

eP
(N )] · EM[PeS(M)]

≥ P
MM

eP
(E[N ]) · PeS(E[M]) (3.39)

It has been proved in (D.2) that,

P
MM

eP
(N) = αB(N, 1 + ηρ) → αΓ(1 + ηρ)N−ηρ, (3.40)

as N → ∞, which can be verified to be regularly varying at N → ∞ with parameter

ηρ. It has been shown in equation (19) in [55] that P
MM

eP
(N) is a completely monotonic

function of N . Similarly, PeS(M) is also regularly varying atM → ∞ with parameter

ηβ4, and completely monotonic of M . Using the result of equation (29) in [55], the

equality in (3.39) is achieved as λ → ∞ when N and M are Poisson distribution.

Hence, minimizing EMM
N ,M[Peall(N ,M)] with E[L] = λ is equivalent to minimizing

P
MM

eall
(N,M) with M = λ(1− t) and N = λt. The rest of the proof follows Appendix

D, that EMM
N ,M[Peall(N ,M)] is convex on t and can be minimized at t = t∗MM. Similarly,

EHM
N ,M[Peall(N ,M)] can be shown to be minimized at t = t∗HM following the same

procedure, which completes the proof.

3.4.2 Sum Achievable Rate in General User Distributions

In this section, we extend Poisson M and N to a large class of user distribution

C and show that as λ→ ∞, EN ,M[Call(N ,M)] can be maximized over 0 ≤ t ≤ 1.
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Theorem 13. Assuming that M and N are positive random variables with mean val-

ues λ(1− t) and λt, and variances σ2
M and σ2

N , the sum achievable rate of the PU and

the selected underlay SU EN ,M[Call(N ,M)] averaged across fading and user distribu-

tions can be maximized at t = t∗, provided that: (a)Pr [M = 0] = o(1/ log log λ(1−t)),

Pr [N = 0] = o(1/ log log λt); (b)σ2
M = o(λ(1− t)2), σ2

N = o(λt2) as λ → ∞. And

t∗ → 1/3 as λ→ ∞.

Proof. See Appendix F.

This theorem implies that the random SUs case has the same optimal t∗ solution

as its deterministic counterpart when λ→ ∞ proved in Theorem 11. Moreover, it is

shown in Appendix F that EN ,M[Call(N ,M)] is concave in t, hence EN ,M[Call(N ,M)]

≤ Call(N,M) due to the Jensen’s inequality.

3.5 Simulations

In this section, we generate i.i.d. fading coefficients as random variables and use

Monte-Carlo simulations to plot averaged BER derived in (3.25) and (3.26), and

achievable rate derived in (3.34) to corroborate our analytical results. For all simu-

lations, Rayleigh fading channels are assumed.

In Section 3.1.1, the access strategy of the proposed underlay cooperative CR

system is illustrated. By adjusting the value ofN , the performance of PU and selected

underlay SU can be balanced. In Figure 3.2, the average BER performance of the PU

and the selected SU in cooperative and conventional underlay scheme are simulated

versus the user ratio t. It can be observed that in the cooperative scheme, as the ratio

t increases, the BER performance of the PU improves due to increasing number of SU

relays. The BER performance of the underlay SU will deteriorate in this case since the

number of potential SUs in the MUD scheme is decreased in the secondary network.
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The trade-off between the PU and the selected SU’s average BER performance is

therefore illustrated in Figure 2.
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Figure 3.2: Average BER of the Proposed and Conventional Underlay CR Systems.

In Section 3.2.3, we define the overall average BER metric Peall(N,M) to capture

the system performance of both PU and selected underlay SU when M and N are

deterministic, and EN ,M[Peall(N ,M)] whenM and N are random. It has been shown

in Theorem 10 that P
HM

eall
(N,M) and P

MM

eall
(N,M) are both convex functions of t, and

can be minimized at t = c/(c+β4) and t = ρ/(ρ+β4) respectively. In Figure 3.3, the

overall average BER expressions P
HM

eall
(N,M) and P

MM

eall
(N,M) as well as their random

counterparts EHM
N ,M[Peall(N ,M)] and EMM

N ,M[Peall(N ,M)] are plotted versus t. In the

deterministic case, the total number of SUs L = 100, and average SNR of each fading

link is normalized to 1. In the random case, N and M are assumed to be Poisson

distributed with mean value 100t and 100(1−t). For the harmonic mean upper bound

case, according to equation (3.27) and (3.37), P
HM

eall
(N,M) and EHM

N ,M[Peall(N ,M)]

should be both minimized at c/(c+β4) = (1/4)/(1/4+1) = 1/5, which can be verified

from our numerical results. Similarly, for the min-max upper bound case, P
MM

eall
(N,M)
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and EMM
N ,M[Peall(N ,M)] should be minimized at ρ/(ρ+ β4) = (1/2)/(1/2 + 1) = 1/3,

which can be verified by our simulations either. Moreover, the random SUs curves

are slightly above the deterministic case, which is due to the fact that by Jensen’s

inequality, any kind of randomization of the number of SUs will deteriorate the average

BER performance.
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Figure 3.3: Minimize the Overall Average BER.

In Section 3.2.3, we showed that P
HM

eall
(N,M) and P

MM

eall
(N,M) can be minimized

at the same value of t when β2 ≫ β3 or β2 ≪ β3. In Figure 3.4, P
HM

eall
(N,M) and

P
MM

eall
(N,M) are simulated with different values of β3 where β2 = 1. It can be observed

that as β3 increases, P
HM

eall
(N,M) approaches P

MM

eall
(N,M) due to the fact that γ∗HM →

γ∗MM. Moreover, when β3 = 50, P
HM

eall
(N,M) and P

MM

eall
(N,M) are both minimized at

t ≈ 1/2 since c→ ρ ≈ β2 when β2 ≪ β3.

In Section 3.4.2, we derive the scaling laws for the achievable rate of the PU

EN [CP(N )] as λ → ∞ in (F.3). We provide an upper bound and a lower bound

on EN [CP(N )], and show that both bounds will converge as E[N ] = λt → ∞. In

Figure 3.5, CP(N) are simulated and compared with both bounds as λ→ ∞. It can
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be shown that the upper bound and lower bound will converge to each other as λ

increases, and that the upper bound is tighter.
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Figure 3.4: Minimize the Overall Average BER when β3 ≫ β2.

Similar to the overall BER case, we define sum rate of the proposed system

Call(N,M) in Section 3.3 as a metric to study the sum achievable rate of the PU

and the selected underlay SU. In Theorem 11 we show that Call(N,M) is a concave

function of t and can be maximized at some t∗ when N and M are large. We show

in Theorem 13 that when N and M are random, similar optimal t∗ can be obtained.

In Figure 3.6, sum rates Call(N,M) and EN ,M[Call(N ,M)] of both deterministic and

random number of SUs are simulated, and compared with the scaling law specified

in (F.5). In the simulation, L = E[L] = λ = 100, and the average SNR of all the

fading links are normalized to 1. N and M are assumed to be Poisson distributed.

It can be observed that when λ is large, sum rates in both random and deterministic

cases can be maximized simultaneously at the same t∗. We have solved t∗ = 0.3444

numerically which is very close to 1/3 as we derived in Theorem 10 and 11 when the
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min-max upper bound is applied. The minor difference between 0.3444 and 1/3 is

due to the insufficiently large L and λ.
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Figure 3.5: Convergence of Upper and Lower Bounds on EN
[

C(ρ,N )
]

as λ→ ∞.
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Chapter 4

MULTIPLE D2D USERS UNDERLAYING CELLULAR NETWORKS WITH

SUPERPOSITION CODING

In this chapter, a cooperative D2D communication system underlaying a downlink

cellular network with multiple D2D pairs is considered. Each individual DT allocates

its transmission power to decode-and-forward (DF) CU’s traffic while superimposing

its own D2D signal. In the small SNR regime, various spectrum accessing policies

involving one or multiple DUs are proposed depending on different CSI assumptions

at the cellular BS. We provide accurate second order approximations for the average

achievable rates of both the CU and the in individual DU for various spectrum access-

ing policies. We show that by adding multiple DUs, both the CU’s and the individual

DU’s rates can be improved simultaneously. Here are some remarks on notations and

definitions. τ(x) = o(g(x)) as x→ 0 means that lim supx→0 |τ(x)/g(x)| = 0. Notation

:= means by definition. Throughout the dissertation, two D2D users in communica-

tions act as a DT and a DR, and form a D2D pair. D2D users’ average achievable

rate means the achievable rate averaged over fading on the channel between the DT

and its corresponding DR.

4.1 System Model

In Fig. 4.1, we illustrate cooperative D2D users underlaying a downlink cellular

user. The system consists of a BS, a CU, and D2D transmitter DTi and receiver DRi

pairs, i = 1, . . . ,M . Only two pairs of D2D users are shown here. Since the cellular

system operates in a frequency division multiple access (FDMA) mode in which each

sub-band contains one CU, we focus on the case of a single CU, following the existing
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literature [90, 93]. When the direct link between the BS and CU is too weak for the

CU to decode the cellular signal, D2D pairs are activated as relays to facilitate the

BS’s transmission to the CU over the CU’s sub-band. Due to the proximity between

the DTi and the DRi, direct transmissions between M D2D pairs will be established

to transmit with their own traffic. Receiving CSI is assumed at the CU and D2D

users. Each active DTi will decode the CU’s signal in the first transmission phase

and forward it to both the CU and the DRi by superimposing with its own D2D

signal xDi
. All links experience Rayleigh fading, and the channel coefficients over

BS → DTi, BS → DRi, DTi → CU, DTi → DRi, and DTj → DRi are denoted by

hBTi
, hBRi

, hTCi
and hTRi

, and hintij which are complex Gaussian random variables

with zero mean (please see also Fig. 4.1). The direct link channels hTCi
and hTRi

have variance µ, and the interference channels hintij have variance β. We also denote

γ = |h|2 with the associated subscripts for the channel gain. The transmitted signal

at the BS, and DTi are denoted as xC and xDi
. DTi → DRi is the ith D2D pair of

interest when studying the D2D users’ performance.

Figure 4.1: System Model of Cooperative D2D Communications withM D2D pairs.
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In the first transmission phase, the BS broadcasts its signal xC. The received

signal at the DTi and DRi are denoted by yBTi
and yBRi

respectively as follows:

yBTi
=
√

PB hBTi
xC + nBTi

,

yBRi
=
√

PB hBRi
xC + nBRi

, i = 1, 2, . . . ,M, (4.1)

where PB is the transmit power from the BS, nBTi
and nBRi

are additive white com-

plex Gaussian noise samples with zero mean and unit variance, and the transmitted

symbols are normalized to satisfy E[|xC|2] = E[|xDi
|2] = 1. After reception in the

first transmission phase, xC is decoded at the DTi for further transmission and also

decoded at the DRi for interference cancellation purposes. At the CU, a global power

allocation factor α will be calculated considering the average rate requirement for the

CU and D2D users, and shared among all DTi through feedback from the CU. This

value of α only depends on the channel statistics, and not the channel realizations.

If the decoding of xC at the DTi is successful, DTi will forward xC with power αPD

and embed its own D2D signal xDi
with power (1− α)PD, where α is the power allo-

cation factor and PD is the transmitting power at each DTi. Hence the signal to be

transmitted at each DTi is given as
(√

αPDxC +
√

(1− α)PDxDi

)

.

In the second phase, the received signal at the CU, and the DRi without interfer-

ence cancellation are given by

yCU =
M
∑

i=1

(

√

αPDxC +
√

(1− α)PDxDi

)

hTCi
+ nTCi

, (4.2)

yTRi
=
(

√

αPDxC +
√

(1− α)PDxDi

)

hTRi

+
M
∑

j=1,j 6=i

(

√

αPDxC +
√

(1− α)PDxDj

)

hintij + nTRi
. (4.3)

After reception in the second phase at the CU, the desired signal xC will be decoded

from yCU. Moreover, when hBRi
is good enough in (4.1), DRi can decode xC success-

fully at the end of the first phase, and remove the interference terms containing xC
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from yTRi
in order to decode xDi

in (4.4) correctly. This is referred as the perfect

interference cancellation scenario, in which the received signal yTRi
in (4.3) is reduced

to

yTRi
=
√

(1− α)PDxDi
hTRi

+

M
∑

j=1,j 6=i

√

(1− α)PDxDj
hintij + nTRi

. (4.4)

All existing cooperative D2D literature assumes perfect interference cancellation at

the DRi and does the performance analysis of the CU based on (4.4). However this

requires that both γBTi
and γBRi

should be sufficiently large for each active D2D

pair, which potentially reduces the total number of active D2D pairs. In this chapter,

we consider both perfect and imperfect interference cancellation scenarios, and show

that the CU and the D2D users’ performance can be improved simultaneously in both

cases.

4.1.1 Access Policy of D2D Users

In this section, four different D2D spectrum access policies which differ in the CSI

knowledge they require are discussed. The corresponding received SNR expressions

at the CU and the DRi are provided. Following the existing literature [90, 93], each

DTi transmits if xC can be decoded successfully, and remains silent otherwise.

Cooperative D2D communications with a single pair of D2D users and perfect

interference cancellation at the DRi has been studied in the existing literature [90,93],

and is considered in this chapter as a performance benchmark, and referred as Policy-

I.

Policy-I: Single D2D Pair

In Policy-I, an arbitrary pair of D2D users will be included in the cellular network.

This scheme will be compared with more advanced spectrum sharing schemes. In (4.2)
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with M = 1,
√
αPDxC is the desired signal and

√

(1− α)PDxDj
is the interference

term in the superimposed signal xDi
. The equivalent received SNR for Policy-I at the

CU can be derived as

γIC =
PDα

PD(1− α) + 1
γTCi

. (4.5)

When DRi is able to cancel xC perfectly in the second transmission phase, the received

SNR at DRi can be derived from (4.4) with M = 1 where
√

(1− α)PDxDi
is the

desired signal and we have

γIDi
= (1− α)PDγTRi

, perfect cancellation. (4.6)

When DRi can not cancel xC perfectly, it can be observed from (4.3) that DRi suffers

from interference signal
√
αPDxC from the CU, and we obtain the received SNR at

DRi in this case as

γIDi
=

(1− α)PDγTRi

αPDγTRi
+ 1

, imperfect cancellation. (4.7)

Since CU’s received SNR γIC is increasing in the D2D relay channel gain γTCi
, small

γTCi
results in a significant degradation of the CU’s performance. An intuitive ex-

tension of Policy-I without requiring extra transmit channel knowledge is to involve

multiple D2D pairs without specific selection, and use MRC at the CU in order to

improve CU’s achievable rate. This spectrum access scheme leads to the Policy-II.

Policy-II: M D2D Pairs

When the DTi-CU channel is weak, a single D2D pair assisted cellular network might

not be sufficient to decode xC reliably. To address this issue, we propose Policy-II

in which multiple D2D pairs are involved in relaying CU’s signal, and will show in

the following sections that it is possible to improve both the CU and the individual
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D2D users’ performance, hence the spectral efficiency simultaneously. Assuming that

the transmitting CSI are not available at the BS, all M D2D pairs will be activated

to underlay the cellular network. It can be observed from (4.2) that the CU obtains

M relayed copies containing
√
αPDxC using MRC. Therefore the received SNR for

Policy-II at the CU can be derived from (4.2)

γIIC =
PDα

PD(1− α) + 1
∑M

i=1 γTCi

, (4.8)

where we notice that
∑M

i=1 γTCi
is the D2D relay SNR. Analogous to Policy-I, the D2D

users’ received SNR can be derived from (4.4) and (4.3) for the perfect interference

and imperfect interference cancellation scenarios, respectively. Additionally, each

DTj creates peer interference at the DRi for i 6= j, which results in the interference

term
∑M

j=1,j 6=i hintij
√

(1− α)PDxDj
in (4.3). Therefore, D2D users’ received SNR for

Policy-II is given by

γIIDi
=























(1− α)PDγTRi
∑M

j=1,j 6=i(1− α)PDγintij + 1
perfect cancellation

(1− α)PDγTRi

αPDγTRi
+
∑M

j=1,j 6=i PDγintij + 1
imperfect cancellation.

(4.9)

In Policy-II, we include allM D2D pairs to improve the D2D relay SNR. When the

BS has instantaneous CSI of relay channels γTCi
, selection diversity can be exploited

where a subset of D2D pairs with better relay channels can be selected out of the

whole set of D2D users. This leads to Policy-III and IV as follows.

Policy-III: Selection of the Best D2D Pair

In Policy-II, the received signal at the DRi containsM−1 peer interference terms from

the DTj . To avoid the peer interference, only a single D2D pair that maximizes the

CU’s performance can be selected to relay and transmit if BS has the transmitting CSI

of γTCi
. Let γTC(i)

denotes the kth greatest order statistics among γTCi
. Compared
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with Policy-I, the relay SNR is increased due to the multi-user diversity scheme,

therefore the received SNR at the CU can be expressed as

γIIIC =
PDα

PD(1− α) + 1
γTC(M)

(4.10)

where γTC(M)
:= max1≤i≤M γTCi

. Since only a single pair of D2D users is selected,

there exists no peer interference at the DRi. Hence the D2D users’ received SNR is

equivalent to Policy-I and we obtain as

γIIIDi
= γIDi

. (4.11)

Policy-IV: Best r D2D Pairs

Analogous to Policy-II and III, instead of only a single pair of D2D users, best r

D2D pairs can be activated to transmit in order to improve the CU’s performance

compared with Policy-III. The CU’s received SNR in this case can be expressed as

γIVC =
PDα

PD(1− α) + 1
∑M

k=M−r+1 γTC(i)

, (4.12)

where
∑M

k=M−r+1 γTC(i)
is the sum of the r largest order statistics among all γTCi

.

Since multiple D2D pairs are involved, each DRi suffers from peer interference which

can be controlled by the value of r. Therefore, the D2D users’ received SNR can be

obtained by replacing M with r in (4.9) as

γIVDi
=



















(1− α)PDγTRi
∑r

j=1,j 6=i(1− α)PDγintij + 1
, perfect cancellation

(1− α)PDγTRi

αPDγTRi
+
∑r

j=1,j 6=i PDγintij + 1
, imperfect cancellation.

(4.13)

4.2 Average Achievable Rates and the Rate Trade-off

In this section, the achievable rates of both the CU and the individual D2D users

for all four policies are investigated. It will be observed that CU’s performance is
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improved as more D2D pairs are involved in the system. However, this deteriorates

the individual D2D users’ achievable rate simultaneously due to the coexistence of

peer interference sources. This achievable rate trade-off can be balanced with the

judicious choice of the power allocation factor α. To compare the average achievable

rates across all policies, both the CU and the individual D2D users’ performance

have to be jointly considered. In Section 4.2.1 and 4.2.2, a tight approximation of

the CU and D2D users’ rates are provided. In Section 4.2.3, we adjust α to ensure

that the CU’s average achievable rates are the same over all policies, and to get

a fair comparison of the individual D2D achievable rates for the different policies.

Both perfect and imperfect interference cancellation scenarios at the DRi are studied.

We show in Section 4.2.3 that there is a maximum number of D2D users that can

be accommodated for policies with multiple D2D users (Policy-II and IV), while

maintaining the same average CU rate as Policy-I.

4.2.1 Average Achievable Rate of the Cellular User

Each individual relay channel instantaneous SNR γTCi
is assumed to be expo-

nentially distributed with mean µ due to the Rayleigh fading model. The average

achievable rate of the CU in Policy-I is defined as

R
I

C(µ) := E
[

log(1 + γIC)
]

= E

[

log

(

1 +
PDα

PD(1− α) + 1
γTCi

)]

. (4.14)

In the existing literature [123, 124], expectations of the form E[log(1 + X )] are ex-

panded using Taylor series at the mean value of X with the N th order Taylor series,

where the remainder is simply ignored to obtain an approximation. For the computa-

tion of (4.14) this presents challenges. Firstly, this approach requires the moments of

γIC in (4.5) which are hard to compute and work with. Moreover the Taylor expansion
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of log(1 + x) does not converge for all x, and the remainder goes to infinity faster

than all its lower order terms at the high SNR regime.

In contrast, in this chapter, we expand R
I

C(µ) using Taylor series at the mean

value of γTCi
, and show that the series is tight at the small µ regime. This involves

working with the function log(1 + 1
1+ 1

x

) rather than log(1 + x). Later in this section,

the study is generalized to CU’s achievable rates in other policies, which are compared

with the Policy-I as a benchmark. The reason that small µ is of interest is that this

is the regime where improvements over Policy-I are most possible. For example,

instead of small µ, if µ is large, then CU’s achievable rates for all four policies achieve

their common upper-bound log(1+α/(1−α)), which results in no improvement over

Policy-I as µ → ∞.

Expanding the average achievable rate of the cellular link in Policy-I at the mean

value of γTCi
using Taylor series with remainder and taking expectation we have

R
I

C(µ) = log

(

1 +
PDα

PD(1− α) + 1
µ

)

+
N
∑

n=1

E [(γTCi
− µ)n]

1

n!

∂n log

(

1 + PDα
PD(1−α)+ 1

µ

)

∂µn
+ E[RN (γTCi

)], (4.15)

which can be further simplified as seen next:

Theorem 14. CU’s average achievable rate R
I

C(µ) in Policy-I can be expressed as

R
I

C(µ) = log

(

1 +
PDα

PD(1− α) + 1
µ

)

−
N
∑

n=2

(−µ)n(n− 1)!

(

P n
D

(1 + PDµ)n
− P n

D(1− α)n

(1 + PD(1− α)µ)n

) n
∑

i=0

1

i!
+ o(µN),

(4.16)

as µ→ 0.

Proof. See Appendix G.
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Theorem 14 shows that the remainder can be neglected as µ → 0 as long as

E[γN+1
TCi

] = o(µN), which indicates that the Taylor series of R
I

C(µ) in (4.15) can be

truncated at any finite order N , and remains tight for sufficiently small µ. Since

E[γTCi
− µ] = 0, the first order term with n = 1 in (4.15) is guaranteed to be 0

regardless of the distribution of γTCi
and the value of µ. Furthermore, it implies that

the higher order terms in (4.16) with N > 1 can be neglected at the small µ regime.

Notice that the first term in (4.16) is what is obtained by Jensen’s inequality by using

the convexity of log
(

1 + 1
1+ 1

x

)

, with respect to x.

For simplicity, we retain the second order term in (4.16) with N = 2 in order to

tightly approximate R
I

C(µ) for small values of µ as follows:

R
I

C(µ) = log

(

1 +
PDα

PD(1− α) + 1
µ

)

− αP 2
D(2 + 2(1− α)PDµ− α)µ2

(PDµ+ 1)2((1− α)PDµ+ 1)2
+ o(µ2).

(4.17)

Using the second order approximation, we can express the average achievable rate in

terms of the first and second order moments of the relay channel gains γTCi
at the

CU regardless of its distribution, for small SNRs µ. It will be seen in the simulations

(Section 4.4) that the second order approximation is quite accurate not just for small

µ, but for all values of µ. This approximation is useful when we study the system

performance in various access policies where the mean and variance of the equivalent

relay gains at the CU are available.

In Policy-II,
∑M

i=1 γTCi
∼ µχ2(2M) is distributed as chi-square with 2M degrees of

freedom with mean value Mµ. Since the nth order moment of
∑M

i=1 γTCi
is equivalent

to the nth order derivative of its moment generating function (MGF) M(t) with

respect to t at t = 0, we have

E

[(

M
∑

i=1

γTCi

)n]

=
∂nM(t)

∂tn

∣

∣

∣

∣

t=0

=
∂n(1− µt)−M

∂tn

∣

∣

∣

∣

t=0

= µn
n−1
∏

k=0

(M + k), (4.18)
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which satisfies the condition E

[

(

∑M
i=1 γTCi

)N+1
]

= o(µN). Hence similar to Theo-

rem 14, the CU’s achievable rate can be expanded around E

[

∑M
i=1 γTCi

]

tightly using

finite order Taylor series.

Notice that

E

[

M
∑

i=1

γTCi

]

=Mµ (4.19)

var

[

M
∑

i=1

γTCi

]

=Mµ2, (4.20)

and substituting into (4.17), the second order approximation of the achievable rate

for the CU in Policy-II can be expressed as

R
II

C(µ,M) := E



log



1 +
PDα

PD(1− α) + 1
∑M

i=1 γTCi









= log

(

1 +
PDα

PD(1− α) + 1
Mµ

)

− αP 2
D(2 + 2(1− α)PDMµ − α)Mµ2

(PDMµ + 1)2((1− α)PDMµ + 1)2
+ o(µ2).

(4.21)

It can be observed from (4.21) that the CU’s achievable rate in Policy-II outperforms

that of Policy-I since Mµ > µ. However the D2D users have more interference in

Policy-II. This trade-off is controlled by α, and the selection of which will be discussed

in Section 4.2.3 to fairly compare both policies.

Theorem 14 can be adapted to Policy-III and IV as well. For the sake of simplicity,

we focus on the second order approximation. In Policy-III, with selection diversity,

the relay channel gain γTC(M)
yields the largest order statistic amongM i.i.d. random

variables γTCi
, and it can be shown in [125] that

E[γTC(M)
] = µ

M
∑

i=1

1

i
(4.22)

var[γTC(M)
] = µ2

M
∑

i=1

1

i2
. (4.23)
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Substituting the mean and variance into (4.17), we obtain the second order approxi-

mation of the achievable rate for the CU in Policy-III

R
III

C (µ,M) := E



log



1 +
PDα

PD(1− α) + 1
γTC(M)







 = log



1 +
PDα

PD(1− α) + 1
µ
∑M

i=1
1
i





− αP 2
D(2 + 2(1− α)PDµ

∑M
i=1

1
i
− α)(µ2

∑M
i=1

1
i2
)

(PDµ
∑M

i=1
1
i
+ 1)2((1− α)PDµ

∑M
i=1

1
i
+ 1)2

+ o(µ2). (4.24)

In contrast to Policy-II, CU’s achievable rate in Policy-III is less sinceM as µ
∑M

i=1
1
i
<

µM . However, the D2D user performance is improved due to no peer interference at

the DRi.

In Policy-IV,
∑M

k=M−r+1 γTC(i)
is the sum of the largest k order statistics drawn

fromM i.i.d. exponential parent random variables γTCi
. The kth order statistic, γTC(i)

,

can be expressed as a linear function of independent exponential random variables

{Yi} each with mean value µ [125, 126] as

γTC(i)
=

k
∑

i=1

Yi

M − i+ 1
, (4.25)

so that

E

[

M
∑

k=M−r+1

γTC(i)

]

= E

[

M
∑

k=M−r+1

k
∑

i=1

Yi

M − i+ 1

]

= E

[

r
∑

i=1

Yi + r

M
∑

i=r+1

Yi

i

]

(4.26)

= rµ

(

1 +
M
∑

i=r+1

1

i

)

. (4.27)

Analogously the variance of
∑M

k=M−r+1 γTC(i)
can be obtained as

var

[

M
∑

k=M−r+1

γTC(i)

]

= var

[

r
∑

i=1

Yi + r
M
∑

i=r+1

Yi

i

]

= rµ2 + r2µ2
M
∑

i=r+1

1

i2
. (4.28)

69



Substituting the mean and variance of
∑M

k=M−r+1 γTC(i)
into (4.17), we obtain the

second order approximation of the achievable rate for the CU in Policy-IV

R
IV

C (µ, r,M) := E



log



1 +
PDα

PD(1− α) + 1
∑M

k=M−r+1 γTC(i)









= log



1 +
PDα

PD(1− α) + 1

rµ+rµ
∑M

i=r+1
1
i





−
αP 2

D

(

2 + 2(1− α)PDrµ
(

1 +
∑M

i=r+1
1
i

)

− α
)

rµ2
(

1 +
∑M

i=r+1
1
i2

)

(

PDrµ
(

1 +
∑M

i=r+1
1
i

)

+ 1
)2 (

(1− α)PDrµ
(

1 +
∑M

i=r+1
1
i

)

+ 1
)2 + o(µ2)

(4.29)

In equation (4.29) when r = 1, only the single best D2D pair is selected and

Policy-IV is equivalent to Policy-III. When r = M , all M D2D pairs are involved

and Policy-IV is equivalent to Policy-II. This implies that CU’s achievable rate in

Policy-IV is traded off against the D2D users’ performance by the value of r.

As already mentioned, the second order approximation overlaps with true value of

the achievable rate not just in the small µ regime. When µ is large, the CU’s average

achievable rate converges to log(1 + α/(1− α)) and our approximations still remain

tight since the average achievable rate is bounded.

4.2.2 Average Achievable Rate for D2D Links

The average achievable rate for an individual D2D pair can be categorized into

two scenarios: single and multiple D2D pairs. In Policy-I and III, where there is

only a single D2D pair is involved and no peer interference at the DRi, the average

achievable rate of an individual D2D user can be obtained as

R
I

D(µ) = R
III

D (µ) := E [log (1 + PD(1− α)γTRi
)] = PD(1− α)

e
1
µΓ(0, 1

µ
)

µ
, (4.30)

where Γ(a, z) =
∫∞
z
ta−1e−tdt is the upper incomplete gamma function, which is

difficult to work with. To get a second-order approximation, observe that the second
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term in (4.30) can be expanded around the mean value of γTRi
to obtain

R
I

D(µ) = R
III

D (µ) = log(1 + PD(1− α)µ)− µ2P 2
D(1− α)2

(1 + (1− α)PDµ)
2 + o(µ2), (4.31)

for small µ, in which the Taylor series remainder is quantified as o(µ2) similar to The-

orem 14. We will use the second order approximation when studying the performance

trade-off between the cellular and D2D networks.

In Policy-II, the desired D2D pair coexists with M − 1 peer interference compo-

nents. The received SNR at DRi is given by

γIIDi
=

PD(1− α)γTRi

PD(1− α)Z + 1
, (4.32)

where γTRi
is exponentially distributed with mean value µ, and Z :=

∑M
j=1,j 6=i γintij

is chi-squared with 2M − 2 degrees of freedom with mean value β(M − 1). Similar

to (4.31), we can expand R
II

D(µ,M) at the mean values of γTRi
and Z to study the

asymptotic behavior of R
II

D(µ,M) as a function ofM for small µ and β. The following

theorem address this multi-variate scenario.

Theorem 15. D2D users’ average achievable rate R
II

D(µ,M) in Policy-II can be ex-

panded using finite N-order Taylor series at E[γTRi
] = µ and E[Z] = (M−1)β. When

N = 2, the second order approximation of R
II

D(µ,M) is expressed as

R
II

D(µ,M) := E

[

log

(

1 +
PD(1− α)γTRi

PD(1− α)Z + 1

)]

= log

(

1 +
PD(1− α)µ

PD(1− α)(M − 1)β + 1

)

+
P 2
D(1− α)2µ2

(1 + PD(1− α)((M − 1)β + µ))2

+
(M − 1)P 3

D(1− α)3β2µ(2 + P (1− α)(2(M − 1)β + µ))

(1 + PD(M − 1)(1− α)β)2(1 + PD(1− α)((M − 1)β + µ))2
+ o(µ2).

(4.33)

where µ, β → 0, and β is related to µ through a proportionality constant.

Proof. The proof involves expanding log
(

1 +
PD(1−α)γTRi

PD(1−α)Z+1

)

using a multivariate Taylor

series around the mean values of γTRi
and Z. Please see Appendix H for details.
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In Policy-IV, the second order approximation of individual D2D users’ rates

R
IV

D (µ, r) can be derived similar to Theorem 15 by substituting M with r in (4.33).

4.2.3 Average Achievable Rate Trade-off between the CU and the D2D User

Due to the superposition coding scheme, CU and D2D users transmit simultane-

ously, hence their performance have to be jointly considered. In this section, we aim

to show that Policy-II, III and IV all potentially outperform the existing benchmark

Policy-I in the sense of both CU’s and individual D2D users’ performance.

To achieve a fair comparison between the different policies, we adjust the power

allocation factor α in order to maintain the CU’s performance the same for all policies

and compare the D2D users’ performance. CU’s performance is improved due to

multiple active D2D relays in Policy-II and IV, and the selection diversity in the

Policy-III. Hence, each DTi can reduce its α in forwarding xC, and allocate the saved

power to transmit its own signal xDi
in order to compensate for the interference

caused by the peer DTj . We are able to show that both the CU and the D2D users’

achievable rate performance has large potential to improve simultaneously compared

to Policy-I, whether the CU’s interference can be canceled by DRi perfectly or not.

Perfect Interference Cancellation

In this section, we assume that xC received from the CU is successfully decoded by

DRi at the end of the first transmission phase, hence gets canceled when decoding

xDi
. Assuming that µ is small, ignoring the high order terms and solving R

I

C(µ) =

R
II

C(µ,M) from equations (4.17) and (4.21), the relationship between power allocation

factors αI and αII in two policies can be characterized as

αII =
PD + 1

Mµ

PD + 1
µ

αI. (4.34)
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Since R
II

D(µ,M) is decreasing in αII and αII ≤ αI, to maintain the same achievable

rate for the CU, the relay power on xDi
in Policy-II can be increased to overcome the

cumulative peer interference at each DRi.

When the DTi transmits with power allocation factor αII in (4.34), the achievable

rate R
II

C(µ,M) is maintained the same as R
I

C(µ), and we can obtain the maximum

number of D2D pairs M numerically that Policy-II outperforms Policy-I by substi-

tuting (4.34) into (4.33) and solving R
II

D(µ,M) ≥ R
I

D(µ). Assuming that µ is small

and β is related to µ through a proportionality constant, the maximum M can be

expressed in closed form as

M ≤ −B ±
√
B2 − 4AC

2A
(4.35)

where

A = 2Pβ(αI − 1), (4.36)

B = αI + α2
IµPD − αIβPD − 2αIµPD + βPD, (4.37)

C = −2αI + α2
I . (4.38)

Further assuming that µ≪ 1/PD, (4.35) can be reduced to

M ≤ 1 or M ≤ αI(βPD − αIβPD + 1)

(1− αI)βPD

. (4.39)

We can conclude from (4.39) that as long as αI(βPD−αIβPD+1)
(1−αI)βPD

≥ 2, referred as the power

dominant region, the interference at DRi caused by other peer DTs can be compen-

sated by allocating more power on its desired signal xDi
, equivalently decreasing the

power allocation factor αII according to (4.34). In contrast, when αI(βPD−αIβPD+1)
(1−αI)βPD

< 2,

referred as the interference dominant region, the CU and the individual D2D users’

performance can not be improved at the same time due to the large number of peer

interference sources. This will be verified in Section 4.4 numerically. In (4.39), M
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can be shown to be decreasing in β, which implies that when the peer interference

channel γintij is strong comparing with the D2D channel γTRi
, few D2D pairs are

preferred from the individual D2D users’ rates perspective, and vice versa. On the

other hand, when the equality in (4.39) holds, the sum rate of all active D2D users

has a multiplexing gain of M compared with the single active D2D pair case, hence

improves the spectral efficiency significantly.

Similarly, in Policy-III and IV, substituting mean values of γTC(M)
and γTCr:M

into

(4.34), we obtain

αIII =
PD + 1

µ
∑M

i=1
1
i

PD + 1
µ

αI (4.40)

and

αIV =
PD + 1

rµ+rµ
∑M

i=r+1
1
i

PD + 1
µ

αI (4.41)

respectively to ensure that the CU performance for all policies are the same so that

we can focus on the D2D user performance. Since there is no peer interference in

Policy-III, R
III

D (µ) is always increasing in M , which is preferred when the average

interference channel gain β is large. However, since only a single D2D pair is selected,

the spectrum is not utilized efficiently, and it may cause fairness issues among the

D2D users. For Policy-IV, the maximum r on R
IV

D (µ, r) ≥ R
I

D(µ) can be derived

analogously to (4.39) by substituting (4.41) into (4.33).

Imperfect Interference Cancellation

When xC can not be perfectly decoded and removed from the DRi’s received sig-

nal, the DRi suffers not only the possible peer interference from the DTj as well as

the interference while decoding xDi
. In this scenario, we will show that the similar

achievable rate trade-off can also be observed and the maximum value of M will be

derived.
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In Policy-II, when both peer interference and CU’s interference exist, the received

SNR at the DRi is given by

γIIDi
=

(1− α)PDγTRi

αPDγTRi
+ PDZ + 1

. (4.42)

Similar to Theorem 15, we obtain the second order approximation of R
II

D(µ,M) as

R
II

D(µ,M) = log

(

1 +
(1− α)PDµ

αPDµ+ PDβ(M − 1) + 1

)

− PD(1− α)(1 + PD(M − 1)β)µ2(1 + α+ PD(M − 1)β + PD(M − 1) + 2PDαµ)

(1 + PD(M − 1)β + PDµ)2(1 + PD(M − 1)β + PDαµ)2

+
P 3
D(1− α)(M − 1)β2(2 + PD(2(M − 1)β(1 + α)µ))

(1 + PD(M − 1)β + PDµ)2(1 + PD(M − 1)β + PDαµ)2
+ o(µ2). (4.43)

Due to the fact that the CU’s achievable rate is not affected by introducing this

interference, (4.34) still holds in this case. We can substitute (4.34) into (4.43) and

solve R
II

D(µ,M) ≥ R
I

D(µ) numerically to observe the maximum M that Policy-II

outperforms Policy-I. Further assuming that µ is small and β is related to µ through

a proportionality constant, the maximum M can be obtained in closed form as

M ≤ max

{−B +
√
B2 − 4AC

2A
,
−B −

√
B2 − 4AC

2A

}

=
−B −

√
B2 − 4AC

2A
(4.44)

where

A = 2Pβ(αI − 1) < 0, (4.45)

B = αI + βPD − αIβPD > 0, (4.46)

C = −αI − αIµ+ α2
Iµ < 0. (4.47)

For Policy-IV, the maximum r that enables R
IV

D (µ, r) outperforming R
I

D(µ) can be de-

rived analogously to (4.44) by substituting (4.41) into (4.43) and solving R
IV

D (µ, r) ≥

R
I

D(µ) numerically. These maximum values on M and r under both perfect and

imperfect interference cancellation scenarios will be verified numerically in Section
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4.4. It can be observed that the perfect interference cancellation does not necessarily

accommodate more D2D pairs than the imperfect case, since unlike the peer inter-

ference terms, this interference of the CU deteriorates the D2D users’ performance in

all policies.

Notice that this performance trade-off can be studied for general fading distri-

butions other than Rayleigh fading [127, 128], and a general SNR expression. For

instance, with the assumption of proximity between D2D pairs, the DTi-DRi channel

can yield Rician fading. Analogously to Theorem 14 and 15, we can expand R
I

D(µ)

and R
II

D(µ,M) where γTRi
is non-central gamma distribution with two degrees of free-

dom and the non-central parameter depending the power of the line of sight (LoS)

component. We do not pursue this here due to space limitations.

4.3 Cooperative D2D System with Random Number of D2D Pairs

Practically, the DUs could be on and off with a certain probability, or moving

in and out the cellular network coverage randomly. Hence at each time instant, the

active number of DUs is usually a random number characterized by a certain positive

discrete distribution. In this section, we start with deriving the scaling laws of the

CU’s rate in Policy-III, following by comparing the system performance in different

DU distributions through stochastic ordering.

4.3.1 Scaling Laws of the CU’s Average Achievable Rates in Policy-III

Theorem 16. In Policy-III, the number of D2D pairs is a Poisson random variable

M with mean value λ, the achievable rate of the CU averaged across fading and user

distribution has the following scaling laws as λ→ ∞:

EM[R
III

C (µ,M)] = log(1 +
PDα

PD(1− α) + 1
µ log(λ)

) +O

(

α

PD(1− α)2 log(λ)

)

.
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Proof. Defining y := e−x/µ and integrating by substitution,

EM[R
III

C (µ,M)] =

∫ ∞

0

log(1 +
PDα

PD(1− α) + 1
x

)d(1− exp(−λe− x
µ ))

= PDα

∫ 1

0

1− e−λy

(1− µPD(1− α) log(y))2(1 + PDα
PD(1−α)− 1

µ log(y)

)

(

µ

y

)

dy

= PDα

∫ logλ

λ

0

1− e−λy

h(y)g(y)

(

µ

y

)

dy + PDα

∫ 1

log λ

λ

1− e−λy

h(y)g(y)

(

µ

y

)

dy (4.48)

where g(y) = 1 + PDα
PD(1−α)− 1

µ log(y)

and h(x) = (1 − µPD(1 − α) log(y))2. For the first

term after the third equality in (4.48), we have the following inequalities:

0 < PDα

∫ log λ
λ

0

1− e−λy

h(y)g(y)

(

µ

y

)

dy

< PDα

∫
log λ

λ

0

λy

h(log(λ)/λ)g(log(λ)/λ)

(

µ

y

)

dy (4.49)

=
PDαµ log(λ)

(1 + µPD(1− α)(log(y)− log(log(λ))))2(1 + PDα
PD(1−α)+ µ

log(y)−log(log(y))
)

(4.50)

The right hand side in (4.49) holds because the denominator of the integrand is

replaced with its lower limit. It can be seen that the upper bound after the equality

in (4.50) yields O
(

α
PD(1−α)2 log(λ)

)

and has limit 0 as λ → ∞. This implies that the

first term in (4.48) should have limit 0. The second term in (4.48) has the upper and

lower bounds given by,

PDα

∫ 1

log λ

λ

1− 1
λ

h(y)g(y)

(

ρ

y

)

dy < PDα

∫ 1

log λ

λ

1− exp(e−λy)

h(x)g(x)

(

µ

y

)

dy

< PDα

∫ 1

log λ

λ

1− e−λ

h(y)g(y)

(

µ

y

)

dy (4.51)

in which the lower and upper bounds are obtained by bounding the numerator. Car-

rying out the integral, the upper and lower bounds in (4.51) turn out to be

(1− 1/λ) log

(

1 +
PDα

PD(1− α) + 1
log(λ)−log(log(λ))

)

(4.52)
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and

(

1− e−λ
)

log

(

1 +
PDα

PD(1− α) + 1
log(λ)−log(log(λ))

)

(4.53)

respectively. In (4.52),

lim
λ→∞

1

λ
log

(

1 +
PDα

PD(1− α) + 1
log(λ)−log(log(λ))

)

= 0 (4.54)

and in (4.53),

lim
λ→∞

e−λ log

(

1 +
PDα

PD(1− α) + 1
log(λ)−log(log(λ))

)

= 0. (4.55)

Hence, both (4.52) and (4.53) converge to log

(

1 + PDα
PD(1−α)+ 1

log(λ)

)

. Considering (4.50)

and (4.51), and we complete the proof.

4.3.2 Laplace Transform Ordering of the Average Achievable Rates

Theorem 17. In the Policy-II, III, assuming that the number of D2D pairs are pos-

itive discrete random variables M and N with same mean value λ, by assuming

M ≥LT N , we have EM[R
II

C(µ,M)] ≥ EN [E[RII
C(µ,N )]], and EM[R

III

C (µ,M)] ≥

EN [E[RIII
C (µ,N )]] at all SNR values.

Proof. 1
x
and 1

1+x
are c.m. in x, so that their compound function 1

1+ 1
x

is c.m.d. in

x [129, P20]. Since log(1 + x) is c.m.d. in x, hence log(1 + 1
1+ 1

x

) is c.m.d. in x.

Assuming that M ≥LT N , in Policy-II it can be shown that [129, P273]

M
∑

i=1

γTCi
≥LT

N
∑

i=1

γTCi
(4.56)

and

γ3(M)
≥LT γ3(N )

. (4.57)

Using Theorem 1 we have EM[R
II

C(µ,M)] ≥ EN [E[RII
C(µ,N )]], and

EM[R
III

C (µ,M)] ≥ EN [E[RIII
C (µ,N )]], which complete the proof.
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The achievable rates averaged acrossM andN following their corresponding order

in the Laplace transform ordering sense. With the same average total transmission

power consumed at all DTi over the same fading channels, the order of achievable

rates of the CU will be determined by the DU distributions. For example, when N

is geometric distributed in Policy-II, the PDF of
∑N

i=1 γTCi
can be obtain as

f(y) =
∞
∑

n=1

yn−1

µn(n− 1)!
e−

y

µ (1− 1

λ
)n−1 1

λ
=

1

µλ
e−

y

µ e
(1− 1

λ
y)

µ =
1

µλ
e−

y

µλ , (4.58)

which implies that
∑N

i=1 γTCi
is an exponential random variable with parameter µλ.

Hence EN [E[RII
C(µ,N )]] can be considered as the achievable rate of a single pair of

DTi-DRi averaged over a Rayleigh fading channel with parameter λµ. When M = λ,

EM[R
II

C(µ,M)] is equivalent to the achievable rates average over a Nakagami-m fading

channel with parameter (λ, µ). From Theorem 17 we obtain that EM[R
II

C(µ,M)] ≥

EN [E[RII
C(µ,N )]]. Moreover, since the deterministic number is greater than any of its

random counterpart in the Laplace transform ordering sense [105], among all fading

channels with the same diversity order, the achievable rate of CU averaged over fading

and user distributions is upper bounded by that of the Nakagami-m fading channel.

4.4 Simulations

In this section, we generate i.i.d. fading coefficients as random variables and use

Monte-carlo simulations to plot average achievable rates derived in Section 4.2 and

4.3 to corroborate our analytical results. For all simulations, Rayleigh fading channels

are assumed.

In Section 4.2.1, we provide the second order approximation of the average achiev-

able rates of the CU in Policies-II,III, and IV, and showed that these approximations

are tight in the small µ regime. In Fig. 4.2 and 4.3, (4.17), (4.21), (4.24) and (4.29)

are depicted versus the total number of D2D parisM when µ = −10dB, and µ = 5dB,
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respectively, and α = 0.8 is the same for all policies. It can be observed that the ap-

proximate rates completely overlap with the Monte Carlo simulation results of when

µ = −10dB, and are tight even when µ = 5 dB. In Policy-IV, the number of active

D2D pairs is always r = 2. Multiple D2D pairs are selected in Policy-II, while only

a single D2D pair without selection is involved in Policy-I. Notice that all policies in

Fig. 4.2 and 4.3 use the same α to illustrate the accuracy of our approximations.
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Figure 4.2: CU’s Approximated Rates in All Policies with µ = −10dB.
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The sum rate gains are simulated versus the active number of DUs in Figure 4.4.

Comparing with the single D2D pair scheme, by a proper choice of the active DUs,

the sum rates of the system can be improved significantly.
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Figure 4.4: Sum Rate Gain of Different Policies with µ = −10dB.

In Section 4.2.3, we observe the rate trade-off between cellular and D2D networks

by balancing the number of D2D pairs and power allocation factors under both perfect

and imperfect interference cancellation scenarios. In Fig. 4.5 and 4.6, the achievable

rates of an individual D2D user in the four policies are compared, where perfect

interference cancellation is assumed at each DRi. α value is adjusted to maintain the

same CU’s performance over all policies, to make the D2D performance comparison

fair. In Fig. 4.5, we assume that µ = 0.3 and β = 0.1, which is corresponding to the

weak peer interference scenario. In Fig. 4.5, we set µ = β = 0.3 and αI = 0.8 which

corresponds to the moderate peer interference scenario since usually the D2D link

should be stronger than the interference channel due to the proximity. In Fig. 4.5

and 4.6, the total number of D2D pairs M = 50 is fixed, and the number of selected

D2D pairs r = 2 in Policy-IV. Our formula in (4.39) predicts maximum values of
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M in two scenarios to be 40 and 14, which can be verified by Fig. 4.5 and 4.6.

When M is large, Policy-III is preferred, however it requires perfect instantaneous

channel knowledge at the BS. Comparing with the single D2D pair case, Policies-

II,III,IV have large potential to improve both the CU and the D2D performance

simultaneously. Moreover, it can be observed that D2D users’ rates in Policy-II is

not necessarily monotonic in M . As M increases, more power is allocated on the

D2D signal in order to compensate the peer interference from the other M − 1 D2D

transmitters. When M grows larger, the peer interference becomes dominant, hence

the D2D users’ rates then decreases with M .
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Figure 4.5: D2D Rates with Perfect Interference Cancellation at DRi and Small
Peer Interference at DTi.
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Figure 4.6: D2D Rates with Perfect Interference Cancellation at DRi and Moderate
Peer Interference at DTi.

Similar achievable rate trade-off and the maximum M are also observed with

imperfect interference cancellation, which are depicted numerically in Fig. 4.7 and

4.8. α value is adjusted to maintain the same CU’s performance over all policies, to

make the D2D performance comparison fair. Comparing with Fig. 4.5 and 4.6, it can

be observed that D2D rates in all policies deteriorate due to the interference from the

CU. However, the maximum values of M are not necessarily smaller than the perfect

interference scenario.
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Figure 4.7: D2D Rates with Imperfect Interference Cancellation at DRi and Small
Peer Interference at DTi.
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Figure 4.8: D2D Rates with Imperfect Interference Cancellation at DRi and Mod-
erate Peer Interference at DTi.

In Fig. 4.9 and 4.10, D2D users’ rates in Policy-IV are plotted versus the number

of selected D2D pairs r, where M = 50 is fixed. α value is adjusted to maintain the

same CU’s performance for both policies. It can be seen that D2D users’ rates is
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decreasing in r due to the increasing of the peer interference at DRi from other r− 1

D2D transmitters. Similar to other policies, D2D users’ rates is deteriorated by the

imperfect interference cancellation of xC at the DRi.
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Figure 4.9: D2D Users’ Rates in Policy-IV with Perfect Interference Cancellation
at DTi.
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Figure 4.10: D2D Users’ Rates in Policy-IV with Imperfect Interference Cancellation
at DTi.
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In Section 4.3.1, the scaling laws of EM[R
III

C (µ,M)] is derived as λ→ ∞. Monte-

carlo simulation and log(1 + PDα
PD(1−α)+ 1

µ log(λ)

) are plotted versus λ when M is Poisson

distributed. It can be seen from Figure 4.11 that the gap between random number of

DUs and the corresponding deterministic counterpart vanishes as λ→ ∞.
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Figure 4.11: Scaling Laws of CU’s Rate in Policy-III.

EM[R
II

C(µ,M)] and EM[R
III

C (µ,M)] are depicted in Figure 4.12 and 4.13 under

several positive discrete user distributions. The Laplace transform order of Poisson,

negative binomial and geometric distributions has been shown in [55]. For a given user

distribution, EM[R
II

C(µ,M)] and EM[R
III

C (µ,M)] improve as λ increases. It can be

observed that EM[R
II

C(µ,M)] and EM[R
III

C (µ,M)] follow the Laplace transform order

of their corresponding user distributions, which collaborate our analysis in Theorem

17.
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Figure 4.12: CU Rates Averaged Across Fading and Different User Distributions in
Policy-II.
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Policy-III.
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Chapter 5

CONCLUSIONS

In this dissertation, we study the system performance in the underlay CR systems, and

the cooperative D2D communications underlaying a downlink cellular network. The

aim is to investigate how overall system performance benefits from the cooperation.

An underlay CR system with single PU and multiple SUs is analyzed when the

number of active SUs is random. Three performance metrics are considered: outage

probability, ergodic capacity, and average BER. Stochastic ordering approach is ap-

plied in this topic. The scaling laws of the ergodic capacity for large mean number of

users are studied in Theorem 5. The closed form expression of outage probability is

related directly to the probability generating function of the number of active users

(2.17). The closed form non-asymptotic expressions for the averaged BER under bino-

mial, and NB active users are also derived using equation (2.18). A non-homogeneous

interference scenario is also considered where the number of active SUs follows PB

distribution. In this case, Poisson approximation is applied to study the ergodic ca-

pacity performance. Furthermore, all three metrics are proved to be ordered when

their corresponding user distributions are Laplace transform ordered in Theorem 9.

A relay-aided cooperative underlay CR system with a single PU and multiple SUs

is studied where opportunistic relay and MUD are applied in primary and secondary

networks respectively. The closed form expressions for the average BER and scaling

laws for achievable rates of both the PU and the selected SU are derived. A perfor-

mance trade-off between the PU and the selected SU is observed for large number

of SUs. The novel combined average BER and sum rate of the system are defined

to capture the performance trade-off between PU and the underlay SU analytically.
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Both metrics are optimized with respect to the ratio t = N/(N +M) in Theorems 10

and 11 when the number of SUs is deterministic. It can be observed that when the

system has homogeneous fading links, the optimal ratio in the BER and achievable

rate yield the same result for the optimal ratio t∗ = 1/3. Similar results when the

number of users are random are derived in Theorem 12 and 13.

A cooperative system allowing multiple D2D pairs underlaying a downlink cel-

lular network is considered. Each DT decodes and forwards the BS’s information

by superimposing its own D2D signal. Second order approximation of the CU as

well as the D2D users’ achievable rates are derived using Taylor series expansions.

In Section 4.2.3 we illustrate the achievable rate trade-off between the CU and the

D2D networks. We show that by a proper choice of the active D2D pairs and power

allocation factor α, both the CU and the individual D2D users’ achievable rate can

be improved simultaneously, compared with the single D2D relay assisted scheme.

The maximum number of D2D pairs allowed simultaneously in Policy-II and IV are

derived in terms of the channel statistics and the power allocation factor. We also

generalize the study to random number of DUs scenario where the DF is not perfect

at each DT, by deriving the scaling laws of CU’s rate in Policy-III in Theorem 16 for

large mean number of DUs. Later in Section 4.3.2, CU’s achievable rates averaged

over fading and different user distributions are compared using stochastic ordering

tool.
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Defining y := e−x and integrating by substitution,
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dx
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log λ
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(A.1)

For the first term after the third equality in (A.1), we have the following inequalities
according to the lower bound in (2.7):

0 <
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√
log λ

λ

0
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dy (A.2)

=
ρ
√

log(λ)

1 + ρ log(λ)− (ρ/2) log(log(λ))
(A.3)

The right hand side in (A.2) holds because the denominator of the integrand is re-
placed with its lower limit. It can be seen that the upper bound after the equality in

(A.3) yields O
(

1/
√

log(λ)
)

and has limit 0 as λ → ∞. This implies that the first

term in (A.1) should have limit 0. The second term in (A.1) has the upper and lower
bounds given by,
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logλ
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dy (A.4)

in which the lower and upper bounds are obtained by bounding the numerator since
UN (1−y) is a monotonically decreasing function of y. Defining a normalized random
variable N ′ = N /λ which has mean value 1 and variance σ2

N ′ = o(1) as λ→ ∞, using
the upper bound in (2.7) we have:

UN ′(s) 6 1− (1− s) +
σ2
N ′

2
(1− s)2

= s+
σ2
N ′

2
(1− s)2 (A.5)
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and

UN (s) = UN ′(sλ) 6 sλ +
σ2
N ′

2
(1− sλ)2. (A.6)

Moreover, the numerator of the lower bound in (A.4) can be further lower bounded
as following:

1− UN
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
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2

(A.7)

Therefore, the upper and lower bounds in (A.4) turn out to be

(

1− g(λ)− σ2
N ′

2
(1− g(λ))2

)

log
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1 + ρ log(λ)− ρ

2
log(log(λ))
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(A.8)

and

(1− UN (0)) log
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1 + ρ log(λ)− ρ

2
log(log(λ))

)

(A.9)

respectively, where g(λ) =

(

1−
√

log(λ)

λ

)λ

. In (A.8), when condition (b) holds,

lim
λ→∞

(

g(λ) +
σ2
N ′

2
(1− g(λ))2

)

log(1 + log(λ)) = 0 (A.10)

and in (A.9), when condition (a) holds

lim
λ→∞

UN (0) log(1 + ρ log(λ)) = 0. (A.11)

Hence, both (A.8) and (A.9) converge to log (1 + ρ log(λ)− (ρ/2) log(log(λ))) as λ→
∞. Moreover,

log
(

1 + ρ log(λ)− ρ

2
log(log(λ))

)

= log

(

(1 + ρ log(λ))

(

1−
ρ log(log(λ))

2

log(1 + ρ log(λ))
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= log(1 + ρ log(λ)) + log

(

1−
ρ log(log(λ))

2

log(1 + ρ log(λ))

)

= log(1 + ρ log(λ)) +O (log(log(λ))/ log(λ))
(A.12)

as λ→ ∞. Therefore, considering the fact that log(log(λ))/ log(λ) decays faster that

1/
√

log(λ), (A.3) and (A.12) complete the proof.

102



APPENDIX B

THEOREM 5 HOLDS FOR PB SU DISTRIBUTION

103



Following the definition in Section 2.3.4, we have
∑L

i=1 pi = λ and σ2
W =

∑L
i=1 pi(1−

pi). Since Pr [W = 0] =
∏L

i=1(1− pi) = UW(0) and log(1− pi) < −pi, we have

log

(

L
∏

i=1

(1− pi)

)

=

L
∑

i=1

log(1− pi) <

L
∑

i=1

(−pi) = −λ, (B.1)

equivalently, 0 < Pr [W = 0] < e−λ, which implies that condition a is satisfied. Fur-

thermore, it is obvious that σ2
W <

∑L
i=1 pi = λ, hence condition (b) holds.
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Z ≤Lt X : to show UZ(z) ≤ UY(z) first we take logarithm to UZ(z) and UY(z) and
we get

log(UZ(z))− log(UY(z)) =
pr

1− p
(z − 1)− r log

(

1− p

1− pz

)

. (C.1)

By shuffling the terms we rewrite the problem as comparing p
1−p

−log(1−p)+log(1−pz)
with 0. Taking the first derivative with respect to z we get

∂
(

p
1−p

− log(1− p) + log(1− pz)
)

∂z
=

p

1− p
− p

1− pz
≥ 0 (C.2)

for all 0 ≤ z ≤ 1. This implies that (C.1) is an monotonically increasing function of
z with the maximum value 0 at z = 1.

X ≤Lt Y : to show UX (z) ≥ UY(z) first we take logarithm to UX (z) and UY(z) and
we get

log(UX (z))− log(UY(z)) = Lp(z − 1)− L log (1− p+ pz) . (C.3)

By rearranging the terms we rewrite the problem as comparing s− log(1+ s) with 0,
where s = p(z − 1). Taking the first derivative with respect to s we get

∂ (s− log(1 + s))

∂s
= 1− 1

s+ 1

=
s

1 + s
≤ 0 (C.4)

for all 0 ≤ z ≤ 1. This implies that (C.3) is an monotonically decreasing function of
z with the minimum value 0 at z = 1.

Y ≤Lt W: First we express all success probabilities of W, denoted as pi, in vector
form so that p = [p1 p2 . . . pi]. To show that UY(z) ≥ UW(z) we notice that the
equality is achieved when p = [λ/L λ/L . . . λ/L] which is denoted as pbin. By

applying Theorem 3 it can be seen that UW(z) =
∏L

i=1(1−pi+piz) is a Shur-concave
function of p since log(1−pi+piz) is concave of pi. Second, we assume there exists at
least one probability vector of W, denoted as w = [w1 w2 . . . wi], and w ≺ pbin.
Then we have

w1 = max
i
wi ≤ λ/L, (C.5)

so that

L
∑

i=1

wi ≤
L
∑

i=1

w1 ≤ λ (C.6)

which will violate the condition
∑L

i=1wi = λ unless w = p. This indicates that
pbin is majorized by any other arbitrary probability vector w of W, and UY(z,p) =
UW(pz,bin) ≥ UW(z,w) at every value of z.

Hence, we have UZ(z) ≥ UX (z) ≥ UY(z) ≥ UW(z), equivalently it can be con-
cluded that Z ≤Lt X ≤Lt Y ≤Lt W, which completes the proof.
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Before proving Theorem 10, we first show the asymptotic behavior of the beta
function B(x, y) and lower incomplete gamma function γ(x, y) in the high y regime.

For the beta function we have

B(x, y) =
Γ(x)Γ(y)

Γ(x+ y)

= Γ(y)

√

2π(x− 1)
(

x−1
e

)x−1

√
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e
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= Γ(y)

√

x− 1

x+ y − 1

(

x− 1

x+ y − 1

)x−1(
1

x+ y − 1

)y

ey. (D.1)

By Stirling’s formula [101, pp. 50-53] on the gamma function, Γ(x) = x! ≈
√
2πx

(

x
e

)x

when x is large, we obtain that

B(x, y) = Γ(y)

√

x− 1

x+ y − 1

(

x− 1

x+ y − 1

)x−1(
1

x+ y − 1

)y

ey

= Γ(y)

√

x− 1
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(

1− y
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)x−1

(x+ y − 1)−yey

= Γ(y)e−yx−yey + o(x−y)

= Γ(y)x−y + o(x−y). (D.2)

where Γ(·) is Gamma function defined as Γ(t) =
∫∞
0
xt−1e−xdx.

For the lower incomplete gamma function, we have the following approximation

γ(x, y) = Γ(x)− Γ(x, y) = Γ(x) + o(1) (D.3)

as y → ∞, where Γ(x, y) =
∫∞
y
tx−1e−tdt is the upper incomplete gamma function.

Substituting (D.2) and (D.3) into (3.25) and we obtain

P
HM

eall
(N,M) =

α3

1 + ηβ1
exp(−ηαNc)γ(ηc+ 1, exp(αN))MB(M, 1 + ηβ4)

≈ KΓ(1 + ηc)N−ηcMΓ(1 + ηβ4)M
−1−ηρ

= KΓ(1 + ηc)Γ(1 + ηβ4)N
−ηcM−ηβ4 (D.4)

and

P
MM

eall
(N,M) =

α3

1 + ηβ1
NB(N, 1 + ηρ)MB(M, 1 + ηβ4)

≈ KNΓ(1 + ηρ)N−1−ηρMΓ(1 + ηβ4)M
−1−ηρ

= KΓ(1 + ηρ)Γ(1 + ηβ4)N
−ηρM−ηβ4 (D.5)

where K = α3

1+ηβ1
. Let t = N

N+M
, for the harmonic mean upper bound case, the

optimization problem in Theorem 10 can be reduced to

maximize f(t) = t−ηc(1− t)−ηβ4

s.t. 0 ≤ t ≤ 1. (D.6)
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We define g(t) = log(f(t)) = log(t−ηc(1 − t)−ηβ4), and take the second derivative of
g(t) with respect to t and obtain

d2g(t)

t2
=

ηβ4
1− t

+
ηc

t2
≥ 0. (D.7)

Consequently, g(t) is convex over 0 ≤ t ≤ 1 and has a unique minimum. Solving

dg(t)/dt = 0, we conclude that P
HM

eall
(N,M) can be minimized at t∗HM = c/(c + β4).

Similarly, P
MM

eall
(N,M) can be proved to be minimized at t∗MM = ρ/(ρ + β4), which

completes the proof.
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The sum rate of the proposed CR system can be expressed as

Call(N,M) = CP(N) + CS(M) (E.1)

It has been shown in [55] that

CS(M) = log(log(M)) +O

(

1
√

log(M)

)

. (E.2)

It has been proved in [130] that if a family of positive i.i.d. random variables {Xn}
with finite mean νn and variance σ2

n satisfy νn → ∞ and
σ2
N

νn
→ 0 as n→ ∞, then we

have

E[log(1 + Xn)] = log(1 + νn) + o(log(1 + νn)). (E.3)

When N is large, either the harmonic mean or the min-max upper bound is applied,
from equation (3.4) it can be seen that the family of i.i.d. random variables γP have
finite mean E[γP] = E[γD] + E[γ∗R] = β1 + ρ log(N) or E[γP] = β1 + c log(N), and

variance var[γP] = β1
2 + π2/6 [120]. Then, E[γP] → ∞ and var[γP]

E[γP]
→ 0 as N → ∞.

Hence we apply (E.3) and obtain that

CP(N) =
1

2
log(log(N)) + o(log(log(N))). (E.4)

Hence,

Call(N,M) =
1

2
log(log(N)) + log(log(M)) +O

(

1
√

log(M)

)

+ o(log(log(N))). (E.5)

Let t = N
N+M

, the optimization problem is equivalent to

maximize h(t) =
1

2
log(log(Lt)) + log(log(L(1 − t)))

s.t. 0 ≤ t ≤ 1. (E.6)

Since log(N) is a non-decreasing concave function of t, h(t) is also concave in t.
Taking the first order derivative of h(t) with respect to t and set it to zero, we have
the following equation of the optimal ratio t∗ as

3t∗ − 1

2t log(t)− (1− t∗) log(1− t∗)
=

1

log(L)
. (E.7)

It is easily seen that as L→ ∞, t∗ → 1/3, which completes the proof.
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For the PU, due to the Jensen’s inequality, any randomization of the number of
SUs always deteriorates the achievable rate performance of the selected user [55].
Hence the achievable rate of the PU EN [CP(N )] can be upper bounded as:

EN [CP(N )] ≤ CP(E[N ]), (F.1)

which scales like 1
2
log(log(λt)) as λ → ∞ from (3.30). EN [CP(N )] is also lower

bounded by removing the direct link from PU to the PR, and we have

EN [CP(N )] ≥ E[log(1 + γ∗R)]. (F.2)

Using Theorem 5 in [55], the E[log(1+γ∗R)] can be shown to scale like 1
2
log(log(λt))+

O(1/
√

log(λ)) as λ→ ∞. Consequently, both the upper bound and lower bound on

EN [CP(N )] converge to each other, and applying the squeeze theorem we have

EN [CP(N )] =
1

2
log(log(λt)) +O

(

1
√

log(λ)

)

+ o(log(log(λ))) (F.3)

as λ→ ∞. For the selected SU, from Theorem 5 in [55] we have

EM[CS(M)] → log(log(λ(1− t))) +O

(

1
√

log(λ(1− t))

)

. (F.4)

Hence, combining (F.3) and (F.4), we have for large λ,

EN ,M[Call(N ,M)] =
1

2
log(log(λt)) + log(log(λ(1− t))) +O

(

1
√

log(λ(1− t))

)

+ o(log(log(λ))). (F.5)

The rest of the proof is very similar to the proof of Theorem 11 that minimizing
EN ,M[Call(N ,M)] is equivalent to minimizing Call(N,M) by replacing L with λ.
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RN (γTCi
) in (4.15) is the remainder of the N th order Taylor series, whose absolute

value can be upper-bounded by [131, p. 654]

|RN(γTCi
)| ≤ U

N !

∣

∣(γTCi
− µ)N

∣

∣ , (G.1)

where U satisfies
∣

∣

∣

∣

∣

∣

∂N+1 log
(

1 + PDα
PD(1−α)+ 1

x

)

∂xN+1

∣

∣

∣

∣

∣

∣

≤ U, ∀ x. (G.2)

The upper-bound U in (G.2) can be derived as

∣

∣

∣

∣

∣

∣

∣

∣

∂n log

(

1 + PDα
PD(1−α)+ 1

γTCi

)

∂γnTCi

∣

∣

∣

∣

∣

∣

∣

∣

= (n− 1)!

(

P n
D

(1 + PDγTCi
)n

− P n
D(1− α)n

(1 + PD(1− α)γTCi
)n

)

≤ (n− 1)!P n
D = U. (G.3)

Therefore, substituting (G.3) into (G.1), the remainder E [RN (γTCi
)] averaged over

γTCi
in (4.15) can be upper-bounded by

|E [RN(γTCi
)]| ≤ E [|RN(γTCi

)|] = PN+1
D E

[∣

∣(γTCi
− µ)N+1

∣

∣

]

N + 1
, (G.4)

where the inequality in (G.4) is due to the convexity of the absolute value function.
From the binomial theorem, the nth order central moment of exponentially dis-

tributed γTCi
can be expressed as

E[|(γTCi
− µ)n|] ≤ E[(γTCi

+ µ)n] = E

[

n
∑

i=0

(

n

i

)

γn−i
TCi

µi

]

(G.5)

=

n
∑

i=0

(

n

i

)

E
[

γn−i
TCi

]

µi =

n
∑

i=0

n!

i!
µn−iµi = n!µn

n
∑

i=0

1

i!
(G.6)

≤ n!µn
∞
∑

i=0

1

i!
= n!µne, (G.7)

where the inequality in (G.5) holds since γTCi
is a positive random variable. E

[

γiTCi

]

=

i!µi in (G.6) is the ith order moment of the exponentially distributed γTCi
with pa-

rameter µ. The equality in (G.7) holds since
∑∞

i=0
1
i!
= e.

Substituting (G.7) into (G.4), the upper-bound on the average remainder is de-
rived as

E [|RN(γTCi
)|] ≤ eN !PN+1

D µN+1. (G.8)
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It can be seen that for any finite number N , the right hand side of the inequality in
(G.8) scales like µN+1 as µ→ 0. Let E[TN(γTCi

)] denote the N th term in the sum in
(4.15), then its absolute value |E[TN (γTCi

)]| is upper-bounded as

|E[TN (γTCi
)]| ≤ E[|TN (γTCi

)|]

= µN(N − 1)!

(

PN
D

(1 + PN
D µ

N
− PN

D (1− α)N

(1 + PD(1− α)µ)N

) n
∑

i=0

1

i!

≤ µN(N − 1)!PN
D e, (G.9)

which scales as µN as µ → 0. Hence, the remainder term approaches 0 faster than
the N th order term as µ → 0. This indicates that the Taylor series in (4.15) can be
truncated at any finite order N , and remain tight when µ is small, which completes
the proof.
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The expectation in Theorem 15 is with respect to γTCi
and Z. Therefore the

approximation will require a multivariate Taylor series expansion around the mean
values of these random variables:

E

[

log

(

1 +
PD(1− α)γTRi

PD(1− α)Z + 1

)]

= log

(

1 +
PD(1− α)µ

PD(1− α)(M − 1)β + 1

)

+
N
∑

n=1

n
∑

k=0

(

n

k

)

Dn
k log

(

1 +
PD(1− α)µ

PD(1− α)(M − 1)β + 1

)

E
[

(γTRi
− µ)n−k

]

E
[

(Z − (M − 1)β)k
]

+ E [RN (γTRi
,Z)] , (H.1)

where Dn
kf(x, y) denotes the nth order mixed derivative of function f(x, y) with re-

spect to x and y, and is defined as

Dn
kf(x, y) =

∂nf(x, y)

∂xk∂yn−k
for k = 0, 1, ...n. (H.2)

It can be shown from the Taylor’s Theorem [131, Theorem 9.19] that the the absolute
value of the N th order Taylor series remainder in (H.1) is upper-bounded by

|RN(γTRi
,Z)| ≤ U

∣

∣

∣

∑N+1
k=0

(

N+1
k

)

(γTRi
− µ)N+1−k(Z − (M − 1)β)k

∣

∣

∣

(N + 1)!
, (H.3)

where U satisfies
∣

∣

∣

∣

∣

N+1
∑

k=0

(

N + 1

k

)

DN+1
k log

(

1 +
PD(1− α)x

PD(1− α)y + 1

)

∣

∣

∣

∣

∣

≤ U, ∀ x and y. (H.4)

Substituting (H.2) into (H.4), the upper-bound U can be derived as

∣

∣

∣

∣

∣

N+1
∑

k=0

(

N + 1

k

)

DN+1
k log

(

1 +
PD(1− α)γTRi

PD(1− α)Z + 1

)

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

N+1
∑

k=0

(

N + 1

k

)

E − F

∣

∣

∣

∣

∣

≤
N+1
∑

k=0

(

N + 1

k

)

|E|+ |F |

=
(

2N+1 + 1
)

N !PN+1
D (1− α)N+1

= U, (H.5)

where

E = (−1)N
N !PN+1

D (1− α)N+1

(1 + PD(1− α)(γTRi
+ Z))N+1

, (H.6)

F = (−1)N
N !PN+1

D (1− α)N+1

(1 + PD(1− α)Z)N+1
. (H.7)
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Equation (H.5) holds since
∑N+1

k=0

(

N+1
k

)

= 2N+1, and |E| and |F | are both upper-

bounded by N !PN+1
D (1− α)N+1.

Therefore, the absolute value of the remainder in (H.3) averaged over γTRi
and Z

can be upper-bounded by

|E [RN(γTRi
,Z)]| ≤ E [|RN (γTRi

,Z)|]

≤ U

(N + 1)!

N+1
∑

k=0

(

N + 1

k

)

E
[∣

∣(γTRi
− µ)N+1−k

∣

∣

]

E
[∣

∣(Z − (M − 1)β)k
∣

∣

]

(H.8)

≤ Ue

N+1
∑

k=0

(N + 1− k)!µN+1−kβk

k
∑

l=0

(

k

l

)

Mk−l

l−1
∏

n=0

(M + n), (H.9)

which goes to 0 for any finite N + 1 as µ, β → 0. Especially when β is related
to µ through a proportionality constant, |E [RN(γTRi

,Z)]| scales like µN+1. Let
E[TN (γTRi

,Z)] denote the N th term in the sum in (H.1), then its absolute value
|E[TN (γTRi

,Z)]| is upper-bounded as

|E[TN (γTRi
,Z)]| ≤ E[|TN(γTRi

,Z)|] (H.10)

≤ µN(2N + 1)(N − 1)!PN
D (1− α)Ne

N
∑

k=0

(N − k)!

k
∑

l=0

(

k

l

)

Mk−l

l−1
∏

n=0

(M + n), (H.11)

which scales as µN . Hence, the remainder term approaches 0 faster than the N th

order term as µ→ 0. This indicates that the Taylor series in (H.1) can be truncated
at any finite order N and remain tight when µ and β are small. Let N = 2, and we

have the second order approximation of R
II

D(µ,M) in (4.33) at small µ and β, which
completes the proof.
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