999 research outputs found

    Cognitive radio networks : quality of service considerations and enhancements

    Get PDF
    The explosive growth of wireless and mobile networks, such as the Internet of Things and 5G, has led to a massive number of devices that primarily use wireless channels within a limited range of the radio frequency spectrum (RFS). The use of RFS is heavily regulated, both nationally and internationally, and is divided into licensed and unlicensed bands. While many of the licensed wireless bands are underutilised, useable unlicensed bands are usually overcrowded, making the efficient use of RFS one of the critical challenges faced by future wireless communication technologies. The cognitive radio (CR) concept is proposed as a promising solution for the underutilisation of useful RFS bands. Fundamentally, CR technology is based on determining the unoccupied licensed RFS bands, called spectrum white spaces or holes, and accessing them to achieve better RFS utilisation and transmission propagation. The holes are the frequencies unused by the licensed user, or primary user (PU). Based on spectrum sensing, a CR node, or secondary user (SU), senses the surrounding spectrum periodically to detect any potential PU transmission in the current channel and to identify the available spectrum holes. Under current RFS regulations, SUs may use spectrum holes as long as their transmissions do not interfere with those of the PU. However, effective spectrum sensing can introduce overheads to a CR node operation. Such overheads affect the quality of service (QoS) of the running applications. Reducing the sensing impact on the QoS is one of the key challenges to adopting CR technology, and more studies of QoS issues related to implementing CR features are needed. This thesis aims to address these QoS issues in CR while considered the enhancement of RFS utilisation. This study concentrates on the spectrum sensing function, among other CR functions, because of its major impact on QoS and spectrum utilisation. Several spectrum sensing methods are reviewed to identify potential research gaps in analysing and addressing related QoS implications. It has been found that none of the well-known sensing techniques is suitable for all the diverse QoS requirements and RFS conditions: in fact, higher accuracy sensing methods cause a significant QoS degradation, as illustrated by several simulations in this work. For instance, QoS degradation caused by high-accuracy sensing has not yet been addressed in the IEEE 802.11e QoS mechanism used in the proposed CR standard, IEEE 802.11af (or White-Fi). This study finds that most of the strategies proposed to conduct sensing are based on a fixed sensing method that is not adaptable to the changeable nature of QoS requirements. In contrast, this work confirms the necessity of using various sensing techniques and parameters during a CR node operation for better performance

    Autonomous functionalities for cognitive radio

    Get PDF
    This paper provides an overview on the research activities in autonomous functionalities for cognitive radio and networks, carried out in FP7/E3-project. The identified main research areas within this topic include opportunistic spectrum access and autonomous self-x functionalities for communication nodes. Opportunistic spectrum access delineates innovative topics concerning distributed cooperative spectrum sensing, collaborative MAC algorithms, distributed radio resource management algorithms, and control mechanisms for the opportunistic spectrum access. In autonomous self-x functionalities the research covers cognitive device management, autonomous RAT and operator selection and self-x features for autonomous elements, including autonomous decision making functionalities for RAT protocol configuration, negotiation on missing RAT protocol components, and functionality for dynamic configuration of RAT protocol components.Postprint (published version

    An agent based architecture for cognitive spectrum management

    Full text link
    In the recent years, wireless technologies and devices have progressed dramatically that has augmented the demand for electromagnetic spectrum. Some research work showed that spectrum access and provision to user is not possible due to shortage of spectrum but federal communication commission refused to accept this theory and indicated that the spectrum is available since most of the frequency bands are underutilized. In order to allow the use of these frequency bands without interference, cognitive radio was proposed that characterizes the growing intelligence of radio systems can adapt to the radio environment, allowing opportunistic usage and sharing with the existing uses of spectrum. To take this concept a step further, we propose to use intelligent agent for spectrum management in the context of cognitive radio in this paper. In our proposed architecture, agents are embedded in the radio devices that coordinate their operations to benefit from network and avoid interference with the primary user. Agents carry a set of modules to gather information about the terminal status and the radio environment and act accordingly to the constraints of the user application
    • …
    corecore