11 research outputs found

    Text-based user-kNN:measuring user similarity based on text reviews

    Get PDF
    This article reports on a modification of the user-kNN algorithm that measures the similarity between users based on the similarity of text reviews, instead of ratings. We investigate the performance of text semantic similarity measures and we evaluate our text-based user-kNN approach by comparing it to a range of ratings-based approaches in a ratings prediction task. We do so by using datasets from two different domains: movies from RottenTomatoes and Audio CDs from Amazon Products. Our results show that the text-based userkNN algorithm performs significantly better than the ratings-based approaches in terms of accuracy measured using RMSE

    Attentive Aspect Modeling for Review-aware Recommendation

    Full text link
    In recent years, many studies extract aspects from user reviews and integrate them with ratings for improving the recommendation performance. The common aspects mentioned in a user's reviews and a product's reviews indicate indirect connections between the user and product. However, these aspect-based methods suffer from two problems. First, the common aspects are usually very sparse, which is caused by the sparsity of user-product interactions and the diversity of individual users' vocabularies. Second, a user's interests on aspects could be different with respect to different products, which are usually assumed to be static in existing methods. In this paper, we propose an Attentive Aspect-based Recommendation Model (AARM) to tackle these challenges. For the first problem, to enrich the aspect connections between user and product, besides common aspects, AARM also models the interactions between synonymous and similar aspects. For the second problem, a neural attention network which simultaneously considers user, product and aspect information is constructed to capture a user's attention towards aspects when examining different products. Extensive quantitative and qualitative experiments show that AARM can effectively alleviate the two aforementioned problems and significantly outperforms several state-of-the-art recommendation methods on top-N recommendation task.Comment: Camera-ready manuscript for TOI

    Aspect-Aware Latent Factor Model: Rating Prediction with Ratings and Reviews

    Full text link
    Although latent factor models (e.g., matrix factorization) achieve good accuracy in rating prediction, they suffer from several problems including cold-start, non-transparency, and suboptimal recommendation for local users or items. In this paper, we employ textual review information with ratings to tackle these limitations. Firstly, we apply a proposed aspect-aware topic model (ATM) on the review text to model user preferences and item features from different aspects, and estimate the aspect importance of a user towards an item. The aspect importance is then integrated into a novel aspect-aware latent factor model (ALFM), which learns user's and item's latent factors based on ratings. In particular, ALFM introduces a weighted matrix to associate those latent factors with the same set of aspects discovered by ATM, such that the latent factors could be used to estimate aspect ratings. Finally, the overall rating is computed via a linear combination of the aspect ratings, which are weighted by the corresponding aspect importance. To this end, our model could alleviate the data sparsity problem and gain good interpretability for recommendation. Besides, an aspect rating is weighted by an aspect importance, which is dependent on the targeted user's preferences and targeted item's features. Therefore, it is expected that the proposed method can model a user's preferences on an item more accurately for each user-item pair locally. Comprehensive experimental studies have been conducted on 19 datasets from Amazon and Yelp 2017 Challenge dataset. Results show that our method achieves significant improvement compared with strong baseline methods, especially for users with only few ratings. Moreover, our model could interpret the recommendation results in depth.Comment: This paper has been accepted by the WWW 2018 Conferenc

    A sentiment-based item description approach for kNN collaborative filtering

    Get PDF
    In this paper, we propose an approach based on sentiment analysis to describe items in a neighborhood-based collaborative filtering model. We use unstructured users' reviews to produce a vector-based representation that considers the overall sentiment of those reviews towards specific features. We propose and compare two different techniques to obtain and score such features from textual content, namely term-based and aspect-based feature extraction. Finally, our proposal is compared against structured metadata under the same recommendation algorithm, whose results show a significant improvement over the baselines.FAPESP (process numbers 2013/10756-5, and 2013/22547-1

    A comparative analysis of recommender systems based on item aspect opinions extracted from user reviews

    Full text link
    In popular applications such as e-commerce sites and social media, users provide online reviews giving personal opinions about a wide array of items, such as products, services and people. These reviews are usually in the form of free text, and represent a rich source of information about the users’ preferences. Among the information elements that can be extracted from reviews, opinions about particular item aspects (i.e., characteristics, attributes or components) have been shown to be effective for user modeling and personalized recommendation. In this paper, we investigate the aspect-based recommendation problem by separately addressing three tasks, namely identifying references to item aspects in user reviews, classifying the sentiment orientation of the opinions about such aspects in the reviews, and exploiting the extracted aspect opinion information to provide enhanced recommendations. Differently to previous work, we integrate and empirically evaluate several state-of-the-art and novel methods for each of the above tasks. We conduct extensive experiments on standard datasets and several domains, analyzing distinct recommendation quality metrics and characteristics of the datasets, domains and extracted aspects. As a result of our investigation, we not only derive conclusions about which combination of methods is most appropriate according to the above issues, but also provide a number of valuable resources for opinion mining and recommendation purposes, such as domain aspect vocabularies and domain-dependent, aspect-level lexiconsThis work was supported by the Spanish Ministry of Economy, Industry and Competitiveness (TIN2016-80630-P)

    Explainable Recommendation: Theory and Applications

    Full text link
    Although personalized recommendation has been investigated for decades, the wide adoption of Latent Factor Models (LFM) has made the explainability of recommendations a critical issue to both the research community and practical application of recommender systems. For example, in many practical systems the algorithm just provides a personalized item recommendation list to the users, without persuasive personalized explanation about why such an item is recommended while another is not. Unexplainable recommendations introduce negative effects to the trustworthiness of recommender systems, and thus affect the effectiveness of recommendation engines. In this work, we investigate explainable recommendation in aspects of data explainability, model explainability, and result explainability, and the main contributions are as follows: 1. Data Explainability: We propose Localized Matrix Factorization (LMF) framework based Bordered Block Diagonal Form (BBDF) matrices, and further applied this technique for parallelized matrix factorization. 2. Model Explainability: We propose Explicit Factor Models (EFM) based on phrase-level sentiment analysis, as well as dynamic user preference modeling based on time series analysis. In this work, we extract product features and user opinions towards different features from large-scale user textual reviews based on phrase-level sentiment analysis techniques, and introduce the EFM approach for explainable model learning and recommendation. 3. Economic Explainability: We propose the Total Surplus Maximization (TSM) framework for personalized recommendation, as well as the model specification in different types of online applications. Based on basic economic concepts, we provide the definitions of utility, cost, and surplus in the application scenario of Web services, and propose the general framework of web total surplus calculation and maximization.Comment: 169 pages, in Chinese, 3 main research chapter
    corecore