9,156 research outputs found

    CHORUS Deliverable 2.2: Second report - identification of multi-disciplinary key issues for gap analysis toward EU multimedia search engines roadmap

    Get PDF
    After addressing the state-of-the-art during the first year of Chorus and establishing the existing landscape in multimedia search engines, we have identified and analyzed gaps within European research effort during our second year. In this period we focused on three directions, notably technological issues, user-centred issues and use-cases and socio- economic and legal aspects. These were assessed by two central studies: firstly, a concerted vision of functional breakdown of generic multimedia search engine, and secondly, a representative use-cases descriptions with the related discussion on requirement for technological challenges. Both studies have been carried out in cooperation and consultation with the community at large through EC concertation meetings (multimedia search engines cluster), several meetings with our Think-Tank, presentations in international conferences, and surveys addressed to EU projects coordinators as well as National initiatives coordinators. Based on the obtained feedback we identified two types of gaps, namely core technological gaps that involve research challenges, and “enablers”, which are not necessarily technical research challenges, but have impact on innovation progress. New socio-economic trends are presented as well as emerging legal challenges

    XML Matchers: approaches and challenges

    Full text link
    Schema Matching, i.e. the process of discovering semantic correspondences between concepts adopted in different data source schemas, has been a key topic in Database and Artificial Intelligence research areas for many years. In the past, it was largely investigated especially for classical database models (e.g., E/R schemas, relational databases, etc.). However, in the latest years, the widespread adoption of XML in the most disparate application fields pushed a growing number of researchers to design XML-specific Schema Matching approaches, called XML Matchers, aiming at finding semantic matchings between concepts defined in DTDs and XSDs. XML Matchers do not just take well-known techniques originally designed for other data models and apply them on DTDs/XSDs, but they exploit specific XML features (e.g., the hierarchical structure of a DTD/XSD) to improve the performance of the Schema Matching process. The design of XML Matchers is currently a well-established research area. The main goal of this paper is to provide a detailed description and classification of XML Matchers. We first describe to what extent the specificities of DTDs/XSDs impact on the Schema Matching task. Then we introduce a template, called XML Matcher Template, that describes the main components of an XML Matcher, their role and behavior. We illustrate how each of these components has been implemented in some popular XML Matchers. We consider our XML Matcher Template as the baseline for objectively comparing approaches that, at first glance, might appear as unrelated. The introduction of this template can be useful in the design of future XML Matchers. Finally, we analyze commercial tools implementing XML Matchers and introduce two challenging issues strictly related to this topic, namely XML source clustering and uncertainty management in XML Matchers.Comment: 34 pages, 8 tables, 7 figure

    CHORUS Deliverable 2.1: State of the Art on Multimedia Search Engines

    Get PDF
    Based on the information provided by European projects and national initiatives related to multimedia search as well as domains experts that participated in the CHORUS Think-thanks and workshops, this document reports on the state of the art related to multimedia content search from, a technical, and socio-economic perspective. The technical perspective includes an up to date view on content based indexing and retrieval technologies, multimedia search in the context of mobile devices and peer-to-peer networks, and an overview of current evaluation and benchmark inititiatives to measure the performance of multimedia search engines. From a socio-economic perspective we inventorize the impact and legal consequences of these technical advances and point out future directions of research

    Sensor Search Techniques for Sensing as a Service Architecture for The Internet of Things

    Get PDF
    The Internet of Things (IoT) is part of the Internet of the future and will comprise billions of intelligent communicating "things" or Internet Connected Objects (ICO) which will have sensing, actuating, and data processing capabilities. Each ICO will have one or more embedded sensors that will capture potentially enormous amounts of data. The sensors and related data streams can be clustered physically or virtually, which raises the challenge of searching and selecting the right sensors for a query in an efficient and effective way. This paper proposes a context-aware sensor search, selection and ranking model, called CASSARAM, to address the challenge of efficiently selecting a subset of relevant sensors out of a large set of sensors with similar functionality and capabilities. CASSARAM takes into account user preferences and considers a broad range of sensor characteristics, such as reliability, accuracy, location, battery life, and many more. The paper highlights the importance of sensor search, selection and ranking for the IoT, identifies important characteristics of both sensors and data capture processes, and discusses how semantic and quantitative reasoning can be combined together. This work also addresses challenges such as efficient distributed sensor search and relational-expression based filtering. CASSARAM testing and performance evaluation results are presented and discussed.Comment: IEEE sensors Journal, 2013. arXiv admin note: text overlap with arXiv:1303.244

    Efficient processing of similarity queries with applications

    Get PDF
    Today, a myriad of data sources, from the Internet to business operations to scientific instruments, produce large and different types of data. Many application scenarios, e.g., marketing analysis, sensor networks, and medical and biological applications, call for identifying and processing similarities in big data. As a result, it is imperative to develop new similarity query processing approaches and systems that scale from low dimensional data to high dimensional data, from single machine to clusters of hundreds of machines, and from disk-based to memory-based processing. This dissertation introduces and studies several similarity-aware query operators, analyzes and optimizes their performance. The first contribution of this dissertation is an SQL-based Similarity Group-by operator (SGB, for short) that extends the semantics of the standard SQL Group-by operator to group data with similar but not necessarily equal values. We realize these SGB operators by extending the Standard SQL Group-by and introduce two new SGB operators for multi-dimensional data. We implement and test the new SGB operators and their algorithms inside an open-source centralized database server (PostgreSQL). In the second contribution of this dissertation, we study how to efficiently process Hamming-distance-based similarity queries (Hamming-distance select and Hamming-distance join) that are crucial to many applications. We introduce a new index, termed the HA-Index, that speeds up distance comparisons and eliminates redundancies when performing the two flavors of Hamming distance range queries (namely, the selects and joins). In the third and last contribution of this dissertation, we develop a system for similarity query processing and optimization in an in-memory and distributed setup for big spatial data. We propose a query scheduler and a distributed query optimizer that use a new cost model to optimize the cost of similarity query processing in this in-memory distributed setup. The scheduler and query optimizer generates query execution plans that minimize the effect of query skew. The query scheduler employs new spatial indexing techniques based on bloom filters to forward queries to the appropriate local sites. The proposed query processing and optimization techniques are prototyped inside Spark, a distributed main-memory computation system

    A Framework for Dynamic Web Services Composition

    Get PDF
    Dynamic composition of web services is a promising approach and at the same time a challenging research area for the dissemination of service-oriented applications. It is widely recognised that service semantics is a key element for the dynamic composition of Web services, since it allows the unambiguous descriptions of a service's capabilities and parameters. This paper introduces a framework for performing dynamic service composition by exploiting the semantic matchmaking between service parameters (i.e., outputs and inputs) to enable their interconnection and interaction. The basic assumption of the framework is that matchmaking enables finding semantic compatibilities among independently defined service descriptions. We also developed a composition algorithm that follows a semantic graph-based approach, in which a graph represents service compositions and the nodes of this graph represent semantic connections between services. Moreover, functional and non-functional properties of services are considered, to enable the computation of relevant and most suitable service compositions for some service request. The suggested end-to-end functional level service composition framework is illustrated with a realistic application scenario from the IST SPICE project
    • 

    corecore