9,704 research outputs found

    Applications of nonlinear diffusion in image processing and computer vision

    Get PDF
    Nonlinear diffusion processes can be found in many recent methods for image processing and computer vision. In this article, four applications are surveyed: nonlinear diffusion filtering, variational image regularization, optic flow estimation, and geodesic active contours. For each of these techniques we explain the main ideas, discuss theoretical properties and present an appropriate numerical scheme. The numerical schemes are based on additive operator splittings (AOS). In contrast to traditional multiplicative splittings such as ADI, LOD or D'yakonov splittings, all axes are treated in the same manner, and additional possibilities for efficient realizations on parallel and distributed architectures appear. Geodesic active contours lead to equations that resemble mean curvature motion. For this application, a novel AOS scheme is presented that uses harmonie averaging and does not require reinitializations of the distance function in each iteration step

    Additive domain decomposition operator splittings -- convergence analyses in a dissipative framework

    Full text link
    We analyze temporal approximation schemes based on overlapping domain decompositions. As such schemes enable computations on parallel and distributed hardware, they are commonly used when integrating large-scale parabolic systems. Our analysis is conducted by first casting the domain decomposition procedure into a variational framework based on weighted Sobolev spaces. The time integration of a parabolic system can then be interpreted as an operator splitting scheme applied to an abstract evolution equation governed by a maximal dissipative vector field. By utilizing this abstract setting, we derive an optimal temporal error analysis for the two most common choices of domain decomposition based integrators. Namely, alternating direction implicit schemes and additive splitting schemes of first and second order. For the standard first-order additive splitting scheme we also extend the error analysis to semilinear evolution equations, which may only have mild solutions.Comment: Please refer to the published article for the final version which also contains numerical experiments. Version 3 and 4: Only comments added. Version 2, page 2: Clarified statement on stability issues for ADI schemes with more than two operator

    Operator splittings and spatial approximations for evolution equations

    Get PDF
    The convergence of various operator splitting procedures, such as the sequential, the Strang and the weighted splitting, is investigated in the presence of a spatial approximation. To this end a variant of Chernoff's product formula is proved. The methods are applied to abstract partial delay differential equations.Comment: to appear in J. Evol. Equations. Reviewers comments are incorporate

    Operator splitting for semi-explicit differential-algebraic equations and port-Hamiltonian DAEs

    Full text link
    Operator splitting methods allow to split the operator describing a complex dynamical system into a sequence of simpler subsystems and treat each part independently. In the modeling of dynamical problems, systems of (possibly coupled) differential-algebraic equations (DAEs) arise. This motivates the application of operator splittings which are aware of the various structural forms of DAEs. Here, we present an approach for the splitting of coupled index-1 DAE as well as for the splitting of port-Hamiltonian DAEs, taking advantage of the energy-conservative and energy-dissipative parts. We provide numerical examples illustrating our second-order convergence results

    Operator splitting with spatial-temporal discretization

    Get PDF
    Continuing earlier investigations, we analyze the convergence of operator splitting procedures combined with spatial discretization and rational approximations

    A Matrix Element for Chaotic Tunnelling Rates and Scarring Intensities

    Full text link
    It is shown that tunnelling splittings in ergodic double wells and resonant widths in ergodic metastable wells can be approximated as easily-calculated matrix elements involving the wavefunction in the neighbourhood of a certain real orbit. This orbit is a continuation of the complex orbit which crosses the barrier with minimum imaginary action. The matrix element is computed by integrating across the orbit in a surface of section representation, and uses only the wavefunction in the allowed region and the stability properties of the orbit. When the real orbit is periodic, the matrix element is a natural measure of the degree of scarring of the wavefunction. This scarring measure is canonically invariant and independent of the choice of surface of section, within semiclassical error. The result can alternatively be interpretated as the autocorrelation function of the state with respect to a transfer operator which quantises a certain complex surface of section mapping. The formula provides an efficient numerical method to compute tunnelling rates while avoiding the need for the exceedingly precise diagonalisation endemic to numerical tunnelling calculations.Comment: Submitted to Annals of Physics. This work has been submitted to Academic Press for possible publicatio
    corecore