262 research outputs found

    Development of Fluid-Curtain Sealing Technology to Improve the Efficiency and Operational Flexibility of Large Power Generation Turbines

    Get PDF
    Fluidic curtain sealing has recently been shown to offer significantly reduced leakage in rotating turbomachinery seals. The seal type uses an additional flow injected into the leakage path to reduce some existing leakage flow. Shrouded steam turbine tip seals were the focus of research in this thesis, but the seal has potential applications in blade tip seals, stator root seals, shaft seals, and end gland seals in steam turbines as well as in gas turbines. The implementation of such a seal may be simplified in the case of gas turbines since secondary flows of air are already built into the machine to provide cooling flows to high temperature components. The fluidic curtain seal is especially effective when a combination of fluidic curtain and a conventional labyrinth seal is used, and the research presented will generally feature a fluidic curtain placed upstream of a labyrinth fin type restriction. The new addition to knowledge on fluidic curtain sealing described in this work is in characterising seal performance in terms of its design parameters. Better characterisation of the seal allows the development of a set of realistic design rules to specify how fluidic curtains may be applied to the design of new, high performance turbomachinery seals. Two main advances in characterising fluidic curtain seals resulted from the research. The first advance was to numerically and experimentally test basic geometric parameters and their influence on performance to identify design rules which maximize the performance gain of incorporating a fluidic curtain. A series of fundamental dimensionless geometric ratios were proposed and the design space created by these parameters was explored and validated experimentally using a simple annular test rig. CFD was then used to demonstrate that it is possible to incorporate a high performance design into a labyrinth seal independent of the existing labyrinth seal geometry. The second advance is to explore the effect of swirl velocity at the leakage channel inlet on overall seal performance. This was first achieved using CFD to model the selected realistic tip seal design with different levels of inlet swirl. This CFD study was then validated by building the design in a rotating annular test rig where the inlet swirl velocity was controlled. The research findings resulted in a proposed design process for new fluidic curtain seals (Section 8.2) which considers; the geometry of an existing seal, fluid conditions in the leakage path and elsewhere in the turbine stage, rotational speed, and minimum allowable physical clearances

    Three-dimensional unsteady flow in the oscillating turbine blade row

    Get PDF
    This thesis documents an experimental and computational study of the unsteady flow around oscillating blades in low-pressure turbines, with emphasis on the three- dimensional flow behaviour, intra-row interaction effects, tip clearance flow and part- span shroud influence. The research vehicles were a linear low speed oscillating turbine test cascade and a realistic low-pressure steam turbine rotor/stage. Systematic experimental measurements were conducted on the linear turbine cascade, which consists of seven, large scale, prismatic blades with the middle blade being driven to oscillate in a three-dimensional bending/flapping mode. Blades were instrumented with pressure tappings at six span-wise sections between 10% and 95% span to facilitate detailed three-dimensional steady and unsteady pressure measurements on the blade surface. Steady flow pressure was measured by using an inclined manometer bank, whilst the unsteady pressure measurements were obtained through off-board pressure transducers. The measured unsteady pressure was superposed to construct tuned cascade flutter data using a technique named the influence coefficient method. This study produced the first known set of 3D flutter data for tuned turbine cascade. On the computational side, a state-of-the-art, single-passage, three-dimensional, time- marching, Navier-Stokes flow solver has been adopted. The computational solutions of the linear cascade flow exhibits a consistently high level of agreement with the experimental data, which corroborates the experimental findings on the one hand and acts to validate the present flow solver on the other hand. The results, from several aspects, suggest a strong three-dimensional nature of the unsteady aerodynamic response to the blade first-bending/flapping and clearly demonstrate the inadequacies of the currently widely used two-dimensional and quasi-three-dimensional methods. turbine configurations. It was found that accurate flutter predictions require three- dimensional, multi-row flow solvers including tip clearance modelling

    Performance Analysis of an Annular Diffuser Under the Influence of a Gas Turbine Stage Exit Flow

    Get PDF
    In this investigation the performance of a gas turbine exhaust diffuser subject to the outlet flow conditions of a turbine stage is evaluated. Towards that goal, a fully three-dimensional computational analysis has been performed where several turbine stage-exhaust diffuser configurations have been studied: a turbine stage with a shrouded rotor coupled to a diffuser with increasing divergence angle in the diffuser, and a turbine stage with an unshrouded rotor was also considered for the exhaust diffuser performance analysis. The large load of this investigation was evaluated using a steady state numerical analysis utilizing the "mixing plane" algorithm between the rotating rotor and stationary stator and diffuser rows. Finally, an unsteady analysis is performed on a turbine stage with an unsrhouded rotor coupled to an annular exhaust diffuser with an outer wall opening angle of 18°. It has been found that the over the tip leakage flow in the unshrouded rotor emerges as a swirling wall jet at the upper wall of the diffuser. When using the turbine with the shrouded rotor no wall jet was observed, making the flow at the entrance to the diffuser "quasi-uniform". The maximum opening angle of the diffuser upper wall achieved before the diffuser stalls was 12° with a static pressure recovery coefficient of Cp = 0.293. When the wall jet was observed, diffuser opening angles of 18° were possible with a static pressure recovery of Cp = 0.365. Consequently the wall jet energizes the diffuser upper wall boundary layer flow, allows for higher static pressure recovery levels and postpones diffuser stall. By altering the speed of the rotor the effect of the swirl in the turbine exit plane on the performance of the diffuser was explored. In the case where the wall jet was absent the diffuser recovers more pressure when the inlet is swirl-free. In this case the performance of the diffuser is independent on whether the turbine exit flow has co or counter swirl. In the presence of the wall jet, higher static pressure recovery was achieved when the wall jet was in co-swirl and the core flow at a slightly counter-swirl direction. This observation was more pronounced when larger diffuser upper wall opening angles were considered. In the unsteady analysis it was found that the wall jet axial velocity and swirl intensities pulsate with the relative position of the rotor to the stator. The wall jet is always co-swirling while the core flow is counter-swirling. Moreover, the wall jet does not penetrate the diffuser boundary layer as deeply as was observed in the steady state case and flow separation occurs at the upper endwall corner of the diffuser. Furthermore the performance of the diffuser shows a periodic variation that seems to depend on the relative position of the rotor to the stator. The averaged pressure recovery coefficient is Cp = 0.321 which is 11.0 % less than predicted in the steady state case

    Turbine blade-tip clearance excitation forces

    Get PDF
    The results of an effort to assess the existing knowledge and plan the required experimentation in the area of turbine blade tip excitation forces is summarized. The work was carried out in three phases. The first was a literature search and evaluation, which served to highlight the state of the art and to expose the need for an articulated theoretical experimental effort to provide not only design data, but also a rational framework for their extrapolation to new configurations and regimes. The second phase was a start in this direction, in which several of the explicit or implicit assumptions contained in the usual formulations of the Alford force effect were removed and a rigorous linearized flow analysis of the behavior of a nonsymmetric actuator disc was carried out. In the third phase a preliminary design of a turbine test facility that would be used to measure both the excitation forces themselves and the flow patterns responsible for them were conducted and do so over a realistic range of dimensionless parameters

    Automated Experimental Modal Analysis of Bladed Wheels with an Anthropomorphic Robotic Station

    Get PDF
    Experimental modal analysis is challenging when the component has a highly three-dimensional shape, since a great number of measurement points are needed with accurate positioning. An anthropomorphic robotic station is proposed to automate this analysis, specifically on bladed wheels. This provides a reliable control of the spot location and of the beam orientation of a Laser Doppler Vibrometer. The modal frequencies were obtained along with the vibrational shapes and their spatial resolution was managed by exploiting the programming flexibility of the robotic station. The SAFE diagram was easily obtained by measuring a single point for each sector, and an extension of this diagram was demonstrated for the splitter blade wheels. The use of multiple measurement points, for each wheel sector, significantly improved the characterization of the modes having the same number of nodal diameters, hence the same shape coordinate on the SAFE diagram

    Turbomachinery Clearance Control

    Get PDF
    Controlling interface clearances is the most cost effective method of enhancing turbomachinery performance. Seals control turbomachinery leakages, coolant flows and contribute to overall system rotordynamic stability. In many instances, sealing interfaces and coatings are sacrificial, like lubricants, giving up their integrity for the benefit of the component. They are subjected to abrasion, erosion, oxidation, incursive rubs, foreign object damage (FOD) and deposits as well as extremes in thermal, mechanical, aerodynamic and impact loadings. Tribological pairing of materials control how well and how long these interfaces will be effective in controlling flow. A variety of seal types and materials are required to satisfy turbomachinery sealing demands. These seals must be properly designed to maintain the interface clearances. In some cases, this will mean machining adjacent surfaces, yet in many other applications, coatings are employed for optimum performance. Many seals are coating composites fabricated on superstructures or substrates that are coated with sacrificial materials which can be refurbished either in situ or by removal, stripping, recoating and replacing until substrate life is exceeded. For blade and knife tip sealing an important class of materials known as abradables permit blade or knife rubbing without significant damage or wear to the rotating element while maintaining an effective sealing interface. Most such tip interfaces are passive, yet some, as for the high-pressure turbine (HPT) case or shroud, are actively controlled. This work presents an overview of turbomachinery sealing. Areas covered include: characteristics of gas and steam turbine sealing applications and environments, benefits of sealing, types of standard static and dynamics seals, advanced seal designs, as well as life and limitations issues

    Sealing in Turbomachinery

    Get PDF
    Clearance control is of paramount importance to turbomachinery designers and is required to meet today's aggressive power output, efficiency, and operational life goals. Excessive clearances lead to losses in cycle efficiency, flow instabilities, and hot gas ingestion into disk cavities. Insufficient clearances limit coolant flows and cause interface rubbing, overheating downstream components and damaging interfaces, thus limiting component life. Designers have put renewed attention on clearance control, as it is often the most cost effective method to enhance system performance. Advanced concepts and proper material selection continue to play important roles in maintaining interface clearances to enable the system to meet design goals. This work presents an overview of turbomachinery sealing to control clearances. Areas covered include: characteristics of gas and steam turbine sealing applications and environments, benefits of sealing, types of standard static and dynamics seals, advanced seal designs, as well as life and limitations issues

    Testing to Transition the J-2X from Paper to Hardware

    Get PDF
    The J-2X Upper Stage Engine (USE) will be the first new human-rated upper stage engine since the Apollo program of the 1960s. It is designed to carry the Ares I and Ares V into orbit and send the Ares V to the Moon as part of NASA's Constellation Program. This paper will provide an overview of progress on the design, testing, and manufacturing of this new engine in 2009 and 2010. The J-2X embodies the program goals of basing the design on proven technology and experience and seeking commonality between the Ares vehicles as a way to minimize risk, shorten development times, and live within current budget constraints. It is based on the proven J-2 engine used on the Saturn IB and Saturn V launch vehicles. The prime contractor for the J-2X is Pratt & Whitney Rocketdyne (PWR), which is under a design, development, test, and engineering (DDT&E) contract covering the period from June 2006 through September 2014. For Ares I, the J-2X will provide engine start at approximately 190,000 feet, operate roughly 500 seconds, and shut down. For Ares V, the J-2X will start at roughly 190,000 feet to place the Earth departure stage (EDS) in orbit, shut down and loiter for up to five days, re-start on command and operate for roughly 300 seconds at its secondary power level to perform trans lunar injection (TLI), followed by final engine shutdown. The J-2X development effort focuses on four key areas: early risk mitigation, design risk mitigation, component and subassembly testing, and engine system testing. Following that plan, the J-2X successfully completed its critical design review (CDR) in 2008, and it has made significant progress in 2009 and 2010 in moving from the drawing board to the machine shop and test stand. Post-CDR manufacturing is well under way, including PWR in-house and vendor hardware. In addition, a wide range of component and sub-component tests have been completed, and more component tests are planned. Testing includes heritage powerpack, turbopump inducer water flow, turbine air flow, turbopump seal testing, main injector and gas generator, injector testing, augmented spark igniter testing, nozzle side loads cold flow testing, nozzle extension film cooling flow testing, control system testing with hardware in the loop, and nozzle extension emissivity coating tests. In parallel with hardware manufacturing, work is progressing on the new A-3 test stand to support full duration altitude testing. The Stennis A-2 test stand is scheduled to be turned over to the Constellation Program in September 2010 to be modified for J-2X testing also. As the structural steel was rising on the A-3 stand, work was under way in the nearby E complex on the chemical steam generator and subscale diffuser concepts to be used to evacuate the A-3 test cell and simulate altitude conditions

    Rotating Component Modal Analysis and Resonance Avoidance - An Update

    Get PDF
    TutorialRotating disk and blade fatigue failures are usually a low percentage of failures in most machinery types, but other than coupling / shaft end failures remain some of the most problematic for extensive repairs. High-cycle fatigue failures of rotating disks and blades are not common in most machinery types, but when they occur, they require extensive repairs and resolution can be problematic. This paper is an update of the tutorial given at the 2004 Turbomachinery Symposium focusing on high-cycle fatigue failures in steam turbines, centrifugal and axial gas compressors in refineries and process plants. The failure theories and many of the descriptions for cases given in 2004 have been updated to include blade resonance concerns for potential flow as well as vane and blade wake effects. Disk vibratory modes can be of concern in many machines, but of little concern in others as will be explained. In addition, vibratory modes are included where blades are coupled via communication with the main disk. Over the past decade, fluid-structure-interaction computational methods and modal testing have improved and have been applied to failure theories and problem resolution in the given cases. There is also added information on the effects of mistuning blades and disks, some beneficial and some with serious concerns for increased resonant amplification. Finally, knowledge about acoustic pressure pulsation excitation, particularly for centrifugal impellers at rotating blade passing frequency, has been greatly expanded. A review of acoustics calculations for failure prevention, mainly for high-pressure applications is covered here
    corecore