1,042 research outputs found

    Mapping 20 Years of Urban Expansion in 45 Urban Areas of Sub-Saharan Africa

    Get PDF
    By 2050, half of the net increase in the world’s population is expected to reside in sub-Saharan Africa (SSA), driving high urbanization rates and drastic land cover changes. However, the data-scarce environment of SSA limits our understanding of the urban dynamics in the region. In this context, Earth Observation (EO) is an opportunity to gather accurate and up-to-date spatial information on urban extents. During the last decade, the adoption of open-access policies by major EO programs (CBERS, Landsat, Sentinel) has allowed the production of several global high resolution (10–30 m) maps of human settlements. However, mapping accuracies in SSA are usually lower, limited by the lack of reference datasets to support the training and the validation of the classification models. Here we propose a mapping approach based on multi-sensor satellite imagery (Landsat, Sentinel-1, Envisat, ERS) and volunteered geographic information (OpenStreetMap) to solve the challenges of urban remote sensing in SSA. The proposed mapping approach is assessed in 17 case studies for an average F1-score of 0.93, and applied in 45 urban areas of SSA to produce a dataset of urban expansion from 1995 to 2015. Across the case studies, built-up areas averaged a compound annual growth rate of 5.5% between 1995 and 2015. The comparison with local population dynamics reveals the heterogeneity of urban dynamics in SSA. Overall, population densities in built-up areas are decreasing. However, the impact of population growth on urban expansion differs depending on the size of the urban area and its income class.SCOPUS: ar.jinfo:eu-repo/semantics/publishe

    Improving Flood Detection and Monitoring through Remote Sensing

    Get PDF
    As climate-change- and human-induced floods inflict increasing costs upon the planet, both in terms of lives and environmental damage, flood monitoring tools derived from remote sensing platforms have undergone improvements in their performance and capabilities in terms of spectral, spatial and temporal extents and resolutions. Such improvements raise new challenges connected to data analysis and interpretation, in terms of, e.g., effectively discerning the presence of floodwaters in different land-cover types and environmental conditions or refining the accuracy of detection algorithms. In this sense, high expectations are placed on new methods that integrate information obtained from multiple techniques, platforms, sensors, bands and acquisition times. Moreover, the assessment of such techniques strongly benefits from collaboration with hydrological and/or hydraulic modeling of the evolution of flood events. The aim of this Special Issue is to provide an overview of recent advancements in the state of the art of flood monitoring methods and techniques derived from remotely sensed data

    Estimating Solar Energy Production in Urban Areas for Electric Vehicles

    Get PDF
    Cities have a high potential for solar energy from PVs installed on buildings\u27 rooftops. There is an increased demand for solar energy in cities to reduce the negative effect of climate change. The thesis investigates solar energy potential in urban areas. It tries to determine how to detect and identify available rooftop areas, how to calculate suitable ones after excluding the effects of the shade, and the estimated energy generated from PVs. Geographic Information Sciences (GIS) and Remote Sensing (RS) are used in solar city planning. The goal of this research is to assess available and suitable rooftops areas using different GIS and RS techniques for installing PVs and estimating solar energy production for a sample of six compounds in New Cairo, and explore how to map urban areas on the city scale. In this research, the study area is the new Cairo city which has a high potential for harvesting solar energy, buildings in each compound have the same height, which does not cast shade on other buildings affecting PV efficiency. When applying GIS and RS techniques in New Cairo city, it is found that environmental factors - such as bare soil - affect the accuracy of the result, which reached 67% on the city scale. Researching more minor scales, such as compounds, required Very High Resolution (VHR) satellite images with a spatial resolution of up to 0.5 meter. The RS techniques applied in this research included supervised classification, and feature extraction, on Pleiades-1b VHR. On the compound scale, the accuracy assessment for the samples ranged between 74.6% and 96.875%. Estimating the PV energy production requires solar data; which was collected using a weather station and a pyrometer at the American University in Cairo, which is typical of the neighboring compounds in the new Cairo region. It took three years to collect the solar incidence data. The Hay- Devis, Klucher, and Reindl (HDKR) model is then employed to extrapolate the solar radiation measured on horizontal surfaces β =0°, to that on tilted surfaces with inclination angles β =10°, 20°, 30° and 45°. The calculated (with help of GIS and Solar radiation models) net rooftop area available for capturing solar radiation was determined for sample New Cairo compounds . The available rooftop areas were subject to the restriction that all the PVs would be coplanar, none of the PVs would protrude outside the rooftop boundaries, and no shading of PVs would occur at any time of the year; moreover typical other rooftop occupied areas, and actual dimensions of typical roof top PVs were taken into consideration. From those calculations, both the realistic total annual Electrical energy produced by the PVs and their daily monthly energy produced are deduced. The former is relevant if the PVs are tied to a grid, whereas the other is more relevant if it is not; optimization is different for both. Results were extended to estimate the total number of cars that may be driven off PV converted solar radiation per home, for different scenarios

    Land Surface Monitoring Based on Satellite Imagery

    Get PDF
    This book focuses attention on significant novel approaches developed to monitor land surface by exploiting satellite data in the infrared and visible ranges. Unlike in situ measurements, satellite data provide global coverage and higher temporal resolution, with very accurate retrievals of land parameters. This is fundamental in the study of climate change and global warming. The authors offer an overview of different methodologies to retrieve land surface parameters— evapotranspiration, emissivity contrast and water deficit indices, land subsidence, leaf area index, vegetation height, and crop coefficient—all of which play a significant role in the study of land cover, land use, monitoring of vegetation and soil water stress, as well as early warning and detection of forest fires and drought

    Mapping and Monitoring Urban Environment through Sentinel-1 SAR Data: A Case Study in the Veneto Region (Italy)

    Get PDF
    Focusing on a sustainable and strategic urban development, local governments and public administrations, such as the Veneto Region in Italy, are increasingly addressing their urban and territorial planning to meet national and European policies, along with the principles and goals of the 2030 Agenda for the Sustainable Development. In this regard, we aim at testing a methodology based on a semi-automatic approach able to extract the spatial extent of urban areas, referred to as \u201curban footprint\u201d, from satellite data. In particular, we exploited Sentinel-1 radar imagery through multitemporal analysis of interferometric coherence as well as supervised and non-supervised classi\ufb01cation algorithms. Lastly, we compared the results with the land cover map of the Veneto Region for accuracy assessments. Once properly processed and classi\ufb01ed, the radar images resulted in high accuracy values, with an overall accuracy ranging between 85% and 90% and percentages of urban footprint di\ufb00ering by less than 1%\u20132% with respect to the values extracted from the reference land cover map. These results provide not only a reliable and useful support for strategic urban planning and monitoring, but also potentially identify a solid organizational data\ufb02ow process to prepare geographic indicators that will help answering the needs of the 2030 Agenda (in particular the goal 11 \u201cSustainable Cities and Communities\u201d)

    ALOS-2/PALSAR-2 Calibration, Validation, Science and Applications

    Get PDF
    Twelve edited original papers on the latest and state-of-art results of topics ranging from calibration, validation, and science to a wide range of applications using ALOS-2/PALSAR-2. We hope you will find them useful for your future research

    SHAFTS (v2022.3): a deep-learning-based Python package for simultaneous extraction of building height and footprint from sentinel imagery

    Get PDF
    Abstract. Building height and footprint are two fundamental urban morphological features required by urban climate modelling. Although some statistical methods have been proposed to estimate average building height and footprint from publicly available satellite imagery, they often involve tedious feature engineering which makes it hard to achieve efficient knowledge discovery in a changing urban environment with ever-increasing earth observations. In this work, we develop a deep-learning-based (DL) Python package – SHAFTS (Simultaneous building Height And FootprinT extraction from Sentinel imagery) to extract such information. Multi-task deep-learning (MTDL) models are proposed to automatically learn feature representation shared by building height and footprint prediction. Besides, we integrate digital elevation model (DEM) information into developed models to inform models of terrain-induced effects on the backscattering displayed by Sentinel-1 imagery. We set conventional machine-learning-based (ML) models and single-task deep-learning (STDL) models as benchmarks and select 46 cities worldwide to evaluate developed models’ patch-level prediction skills and city-level spatial transferability at four resolutions (100, 250, 500 and 1000 m). Patch-level results of 43 cities show that DL models successfully produce discriminative feature representation and improve the coefficient of determination (R2) of building height and footprint prediction more than ML models by 0.27–0.63 and 0.11–0.49, respectively. Moreover, stratified error assessment reveals that DL models effectively mitigate the severe systematic underestimation of ML models in the high-value domain: for the 100 m case, DL models reduce the root mean square error (RMSE) of building height higher than 40 m and building footprint larger than 0.25 by 31 m and 0.1, respectively, which demonstrates the superiority of DL models on refined 3D building information extraction in highly urbanized areas. For the evaluation of spatial transferability, when compared with an existing state-of-the-art product, DL models can achieve similar improvement on the overall performance and high-value prediction. Furthermore, within the DL family, comparison in building height prediction between STDL and MTDL models reveals that MTDL models achieve higher accuracy in all cases and smaller bias uncertainty for the prediction in the high-value domain at the refined scale, which proves the effectiveness of multi-task learning (MTL) on building height estimation
    corecore