8 research outputs found

    An Approach Ahead Product Counterfeiting Identification for BIRTHMARKS in Light of DYKIS

    Get PDF
    Programming skin pigmentation will be an exceptional trademark of a project. Thus, thinking about the birthmarks between those plaintiff What's more respondent projects gives a compelling methodology for programming counterfeiting identification. However, programming skin pigmentation era appearances two principle challenges: the non attendance of source book What's more different code confusion systems that endeavour should shroud the aspects of a system. We recommend another sort for product skin pigmentation known as progressive magic direction book grouping (DYKIS) that might a chance to be concentrated from an executable without the have for source book. Those counterfeiting identification calculation In view of our new birthmarks will be versatile to both powerless confusion strategies for example, compiler optimizations and solid confusion systems executed clinched alongside instruments for example, such that sand mark, allatori What's more upx. We recommended an instrument known as DYKIS-PD (DYKIS counterfeiting identification tool) Furthermore require on direct examinations ahead vast number about double projects

    Malware Detection Using Dynamic Analysis

    Get PDF
    In this research, we explore the field of dynamic analysis which has shown promis- ing results in the field of malware detection. Here, we extract dynamic software birth- marks during malware execution and apply machine learning based detection tech- niques to the resulting feature set. Specifically, we consider Hidden Markov Models and Profile Hidden Markov Models. To determine the effectiveness of this dynamic analysis approach, we compare our detection results to the results obtained by using static analysis. We show that in some cases, significantly stronger results can be obtained using our dynamic approach

    Software similarity and classification

    Full text link
    This thesis analyses software programs in the context of their similarity to other software programs. Applications proposed and implemented include detecting malicious software and discovering security vulnerabilities

    Malware variant detection

    Get PDF
    Malware programs (e.g., viruses, worms, Trojans, etc.) are a worldwide epidemic. Studies and statistics show that the impact of malware is getting worse. Malware detectors are the primary tools in the defence against malware. Most commercial anti-malware scanners maintain a database of malware patterns and heuristic signatures for detecting malicious programs within a computer system. Malware writers use semantic-preserving code transformation (obfuscation) techniques to produce new stealth variants of their malware programs. Malware variants are hard to detect with today's detection technologies as these tools rely mostly on syntactic properties and ignore the semantics of malicious executable programs. A robust malware detection technique is required to handle this emerging security threat. In this thesis, we propose a new methodology that overcomes the drawback of existing malware detection methods by analysing the semantics of known malicious code. The methodology consists of three major analysis techniques: the development of a semantic signature, slicing analysis and test data generation analysis. The core element in this approach is to specify an approximation for malware code semantics and to produce signatures for identifying, possibly obfuscated but semantically equivalent, variants of a sample of malware. A semantic signature consists of a program test input and semantic traces of a known malware code. The key challenge in developing our semantics-based approach to malware variant detection is to achieve a balance between improving the detection rate (i.e. matching semantic traces) and performance, with or without the e ects of obfuscation on malware variants. We develop slicing analysis to improve the construction of semantic signatures. We back our trace-slicing method with a theoretical result that shows the notion of correctness of the slicer. A proof-of-concept implementation of our malware detector demonstrates that the semantics-based analysis approach could improve current detection tools and make the task more di cult for malware authors. Another important part of this thesis is exploring program semantics for the selection of a suitable part of the semantic signature, for which we provide two new theoretical results. In particular, this dissertation includes a test data generation method that works for binary executables and the notion of correctness of the method

    Automated Failure Explanation Through Execution Comparison

    Get PDF
    When fixing a bug in software, developers must build an understanding or explanation of the bug and how the bug flows through a program. The effort that developers must put into building this explanation is costly and laborious. Thus, developers need tools that can assist them in explaining the behavior of bugs. Dynamic slicing is one technique that can effectively show how a bug propagates through an execution up to the point where a program fails. However, dynamic slices are large because they do not just explain the bug itself; they include extra information that explains any observed behavior that might be connected to the bug. Thus, the explanation of the bug is hidden within this other tangentially related information. This dissertation addresses the problem and shows how a failing execution and a correct execution may be compared in order to construct explanations that include only information about what caused the bug. As a result, these automated explanations are significantly more concise than those explanations produced by existing dynamic slicing techniques. To enable the comparison of executions, we develop new techniques for dynamic analyses that identify the commonalities and differences between executions. First, we devise and implement the notion of a point within an execution that may exist across multiple executions. We also note that comparing executions involves comparing the state or variables and their values that exist within the executions at different execution points. Thus, we design an approach for identifying the locations of variables in different executions so that their values may be compared. Leveraging these tools, we design a system for identifying the behaviors within an execution that can be blamed for a bug and that together compose an explanation for the bug. These explanations are up to two orders of magnitude smaller than those produced by existing state of the art techniques. We also examine how different choices of a correct execution for comparison can impact the practicality or potential quality of the explanations produced via our system

    Forensic identification and detection of hidden and obfuscated malware

    Get PDF
    The revolution in online criminal activities and malicious software (malware) has posed a serious challenge in malware forensics. Malicious attacks have become more organized and purposefully directed. With cybercrimes escalating to great heights in quantity as well as in sophistication and stealth, the main challenge is to detect hidden and obfuscated malware. Malware authors use a variety of obfuscation methods and specialized stealth techniques of information hiding to embed malicious code, to infect systems and to thwart any attempt to detect them, specifically with the use of commercially available anti-malware engines. This has led to the situation of zero-day attacks, where malware inflict systems even with existing security measures. The aim of this thesis is to address this situation by proposing a variety of novel digital forensic and data mining techniques to automatically detect hidden and obfuscated malware. Anti-malware engines use signature matching to detect malware where signatures are generated by human experts by disassembling the file and selecting pieces of unique code. Such signature based detection works effectively with known malware but performs poorly with hidden or unknown malware. Code obfuscation techniques, such as packers, polymorphism and metamorphism, are able to fool current detection techniques by modifying the parent code to produce offspring copies resulting in malware that has the same functionality, but with a different structure. These evasion techniques exploit the drawbacks of traditional malware detection methods, which take current malware structure and create a signature for detecting this malware in the future. However, obfuscation techniques aim to reduce vulnerability to any kind of static analysis to the determent of any reverse engineering process. Furthermore, malware can be hidden in file system slack space, inherent in NTFS file system based partitions, resulting in malware detection that even more difficult.Doctor of Philosoph
    corecore