

Forensic Identification and Detection of

Hidden and Obfuscated Malware

Mamoun Atef Alazab

Bachelor degree of Computer Science

Higher Diploma degree of Computer Science

Master degree of Information Technology

This thesis is submitted in total fulfilment

of the requirements for the degree of

Doctor of Philosophy

School of Science, Information Technology and Engineering

University of Ballarat

PO Box 663

University Drive, Mount Helen

Ballarat, Victoria 3353

Australia

January 2012

ii

Principal Supervisor:

Dr Sitalakshmi Venkatraman

Associate Supervisor:

Associate Professor Paul Watters

iii

Statement of Authorship

Except where explicit reference is made in the text of the thesis, this thesis contains no

material published elsewhere or extracted in whole or in part from a thesis by which I

have qualified for or been awarded another degree or diploma. No other person‘s work

has been relied upon or used without due acknowledgement in the main text and

bibliography of the thesis.

Signed:

Name:

Dated:

iv

Forensic Identification and

Detection of Hidden and Obfuscated

Malware

Mamoun Alazab

January 2012

v

Dedication

To my parents, who gave me what I need to get here.

Your love and support have given me the biggest strength.

vi

Acknowledgements

During the duration of my PhD study I was blessed with a combination of excellent

supervision, institutional assistance, inspirational colleagues, industry encouragement and

a supportive family. I have been fortunate to have enjoyed this level of support

throughout this endeavour. It is not possible to acknowledge everyone who has made a

contribution to this study, but special thanks go to those who have given me generous

support and encouragement during my time as a PhD student and during the process of

writing this dissertation, who have supported me greatly during my PhD. It has been a

difficult time and without them I could not have done it.

First, special thanks to my wonderful parents: my dad and my mum who have provided

much support and encouragements over the years.

Very special recognition is due to my principal supervisor, Dr Sitalakshmi Venkatraman.

Without her encouragement, mentorship and her continuous support, I doubt I would find

myself here. I am indebted to Dr Venkatraman for her feedback, enthusiasm, editing

skills, wisdom, insight and expertise in the field of computer security, without which this

dissertation would undoubtedly be a lesser contribution to knowledge. I also thank her for

her tireless support, motivation and encouragement throughout my studies, for the many

hours she devoted in supervising my work, and for setting an exceptional role model in

research excellence. I also would like to thank her for her 5 P‘s (Plan, Prepare, Passion,

Persistence and Patience) and for reminding me when they were needed.

vii

My biggest thanks must be given to my Associate Professor Paul Watters for his

unconditional support, respect and belief in me. I appreciate his vast profound

knowledge and skills in many areas. I am greatly indebted for his valuable instructions

and suggestions in my research work. I have learnt from him a lot not only about

academic studies, but also the professional ethics.

This research has been supported by IBM, Westpac, the Victorian Government and the

Australian Federal Police, the shared communications between these sectors has been

invaluable and has offered insight where blindness would have ensued. The team at

Westpac in particular have been invaluable with their knowledge, insight and feedback,

and have provided me with lots of opportunities to improve as a researcher and as a

professional. I would like to express my heartfelt gratitude to Simon Brown of Westpac

for his valuable ideas, suggestions, constant encouragement and guidance during my

research work. Without such inputs, this thesis would not have reached the required

practical applicability that has been achieved, which is an important aspect in cybercrime

research.

I would also like to thank numerous colleagues, who offered advice and constant

encouragement, I would like to acknowledge the helpful support in particular: Kylie

Turville, Rosemary Torney, Oarabile Maruatona, and Mofakharul Islam, for their

patience, support, guidance and being a great friend throughout the last 3 years of my

study and I hope to have the opportunity to continue to interact with all of them in the

future. Special thanks to my colleague Robert Layton, who gave me support and assist at

important times as research assistance during data collection and data analysis.

viii

I would like to thank my two brothers Ammar Alazab and Moutaz Alazab for being with

me in this long journey and joining me in Australia to be as a family. Also, I would like

to thank all my siblings; Abed Almajed Alazab, Omar Alazab, my only sister Remah

Alazab, who have all given me support throughout my life, have helped to make this

possible, and have ultimately made the end result mean much more than just obtaining a

degree.

Also, I would like to thank my patient and wonderful partner, Penny Butler, who

copyedited my first PhD paper in this dissertation and proofread some of my emails, for

her deep understanding, profound encouragements, unlimited support, constant belief,

love, help, and patience.

The wonderful staff of the University of Ballarat, those within the Research and Graduate

Studies Office, in particular Diane Clingin and Elanor Mahon, and the School of Science,

Information Technology and Engineering, in particular Prof. John Yearwood (Dean) with

administrative support from Maxine Kingston, Yve Rowe and Rebecca Davis. The

support offered by the Internet Commerce Security Laboratory team has been invaluable

to me.

Finally, I would also like to take this opportunity to thank the examiners for their time

and devotion in regarding my PhD thesis.

ix

List of Publications

The following papers, I author and co-author, which have been previously published or

are currently in submission, are reprinted in this dissertation with the full permission of

all co-authors of the papers:

JOURNAL PUBLICATIONS

23- Mamoun Alazab, Shamsul Huda, Paul Watters, Sitalakshmi Venkataraman and John

Yearwood ―A novel Malware detection using hybrid Wrapper-Filter approach and op-code

frequency statistics based on extended x86 IA-32 binary assembly instructions‖, (submitted).

22- Salah Al-Hyari, Moutaz Alazab, Sitalakshmi Venkatraman, Mamoun Alazab, and Ammar

Alazab ―Six Sigma Approach to Improve Quality in e-Services – An Empirical Study in

Jordan‖ (Accepted) IGI Global, The International Journal of Electronic Government

Research (IJEGR), 2011.

21- Salah Al-Hyari, Moutaz Alazab, Sitalakshmi Venkatraman, Mamoun Alazab, and Ammar

Alazab ―Performance Evaluation of E-Government Services Using Balance Scorecard An

Empirical Study Jordan E-Government‖ (Accepted) Benchmarking: an International Journa,

Taylor & Francis, Local Government Studies, 2011.

20- Mamoun Alazab, Mohammad Alkadiri, and Sitalakshmi Venkatraman ―Multivariate Logistic

regression model for Malware anomaly detection based on operation code instructions‖,

(Submitted) Journal of Computing, 2011.

19- Said Elaiwat, Ammar Alazab, Sitalakshmi Venkatraman and Mamoun Alazab "Applying

Genetic Algorithm for Optimizing Broadcasting Process in Ad-hoc Network", The

International Journal of Recent Trends in Engineering and Technology, The Association of

x

Computer Electronics and Electrical Engineers , ISSN: 1797-9617, Vol.4, No.1, 2010, pp. 68

– 72.

18- Mamoun Alazab, Sitalakshmi Venkataraman and Paul Watters ―Effective digital forensic

analysis of the NTFS disk image‖, Ubiquitous Computing and Communication Journal,

ISSN 1994-4608, Vol. 4, No. 3, 2009, pp. 551- 558.

BOOK CHAPTERS

17- Mamoun Alazab, Paul Watters, Sitalakshmi Venkatraman, and Moutaz Alazab ―Malware

Forensics: The Art of Detecting Hidden Maliciousness‖ Book Title: IT Security Governance

Innovations: Theory and Research, (Accepted to publish), IGI Global, 2011.

16- Ammar Alazab, Sitalakshmi Venkatraman, Jemal Abawajy, and Mamoun Alazab "An

Optimal Transportation Routing Approach using GIS-based Dynamic Traffic Flows", Book

Title: Management Technology and Applications Proceedings of the International

Conference on. In Rawani, A. & Zhang C. (Eds), ISBN 978-981-08-6884-0, Research

Publishing Services, 2010, pp. 168 – 174.

15- Mofakharul Islam, Sitalakshmi Venkatraman and Mamoun Alazab ―Stochastic Model Based

Approach for Biometric Identification‖, Book Title: Technological Developments in

Networking, Education and Automation. In K. Elleithy, T. Sobh, M. Iskander, V. Kapila, M.

A. Karim & A. Mahmood (Eds.) Engineering, ISBN: 978-90-481-9151-2, Springer

Netherlands, 2010, pp. 303-308.

14- Mamoun Alazab, Mofakharul Islam, Sitalakshmi Venkatraman ―Towards Automatic Image

Segmentation Using Optimised Region Growing Technique‖, Book Title: AI 2009:

Advances in Artificial Intelligence. In A. Nicholson & X. Li (Eds.) Lecture Notes in

xi

Computer Science, ISBN: 978-3-642-10438-1, Springer-Verlag Berlin Heidelberg, 2009,

Vol.5866, pp. 131-139.

CONFERENCE PUBLICATIONS

13- Mamoun Alazab, Sitalakshmi Venkatraman, Paul Watters, and Moutaz Alazab "Zero-day

Malware Detection based on Supervised Learning Algorithms of API call Signatures" Ninth

Australasian Data Mining Conference: AusDM 2011, CRPIT series, 1-2 December 2011,

Ballarat, Victoria, Australia.

12- Mamoun Alazab, Paul Watters, Sitalakshmi Venkatraman, Ammar Alazab, and Moutaz

Alazab ―Cybercrime: Current Trends of Malware Threats‖ International Conference in

Global Security Safety and Sustainability / International Conference on e-Democracy, CCIS

series from Springer. 24-26 August, 2011, Thessaloniki, Greece.

11- Said Elaiwat, Ammar Alazab, Sitalakshmi Venkatraman and Mamoun Alazab

"GOM: New Genetic Optimizing Model for Broadcasting Tree in MANET", Proceedings of

The IEEE second International Conference on Computer Technology and Development,

IEEE Computer Society, ISBN: 978-1-4244-8844-5, 2010, 2-4 November, Cario, Egypt, pp.

477-481.

10- Mamoun Alazab, Sitalakshmi Venkataraman and Paul Watters "Towards Understanding

Malware Behaviour by the Extraction of API Calls", Cybercrime and Trustworthy

Computing, Workshop, IEEE Computer Society, 2010, 0, pp. 52-59.

9- Mamoun Alazab, Robert Layton, Sitalakshmi Venkataraman and Paul Watters "Malware

Detection Based on Structural and Behavioural Features of API calls", Proceedings The 1st

International Cyber Resilience conference, School of Computer and Information Science,

xii

Security Research Centre, Edith Cowan University, ISBN 978-0-7298-0690-9, 2010, 23-24

August, Perth, WA, pp. 1-10.

8- Mohammad Alkhaleefah, Mahmoud Alkhawaldeh, Sitalakshmi Venkatraman, and Mamoun

Alazab "Towards understanding and improving e-government strategies in Jordan",

International Conference on e-Commerce, e-Business and e-Service, World Academy of

Science, Engineering and Technology, ISSN: 2070-3740, Issue 66, 2010, 28-30 June, Paris,

France, pp. 1871-1877.

7- Mamoun Alazab, Sitalakshmi Venkataraman and Paul Watters "Digital forensic techniques for

static analysis of NTFS images", The Fourth International Conference on Information

Technology, ISBN 9957-8583-0-0, 2009, Amman, Jordan.

ABSTRACTS & PRESENTATIONS

6- Mamoun Alazab "Static analysis for Anomaly and Similarity based detection", Annual

Research Conference, University of Ballarat, Ballarat, VIC, 2011, 3- 4 November, pp. 87.

5- Mamoun Alazab "Static Analysis of Obfuscated Malware", Annual Research Conference,

University of Ballarat, Ballarat, VIC, 2010, 3 November.

4- Mamoun Alazab "Detection of Malware based on Behaviour Identification", University of

Ballarat, Three Minute Thesis Competition, July 2010.

3- Mamoun Alazab "Forensic identification of hidden malware in Physical", University of

Ballarat, 2nd Cybercrime and Trustworthy Computing Workshop, July 2010.

2- Mamoun Alazab "Investigation techniques for static analysis of NTFS file system images",

Annual Research Conference, University of Ballarat, Ballarat, VIC, 2009, 11 November, pp.

23.

xiii

1- Mamoun Alazab "Obfuscated Malware Detection", HCSNet Workshop on Statistical

Parametric Mapping for Functional Magnetic Resonance Imaging, 2009.

xiv

Abstract of the Thesis

Forensic Identification and Detection of Hidden and Obfuscated Malware

Mamoun Alazab

Doctor of Philosophy in Information Technology

School of Science, Information Technology and Engineering

University of Ballarat,

Ballarat, Victoria

Australia

The revolution in online criminal activities and malicious software (malware) has posed a

serious challenge in malware forensics. Malicious attacks have become more organized

and purposefully directed. With cybercrimes escalating to great heights in quantity as

well as in sophistication and stealth, the main challenge is to detect hidden and

obfuscated malware. Malware authors use a variety of obfuscation methods and

specialized stealth techniques of information hiding to embed malicious code, to infect

systems and to thwart any attempt to detect them, specifically with the use of

commercially available anti-malware engines. This has led to the situation of zero-day

attacks, where malware inflict systems even with existing security measures. The aim of

this thesis is to address this situation by proposing a variety of novel digital forensic and

data mining techniques to automatically detect hidden and obfuscated malware.

Anti-malware engines use signature matching to detect malware where signatures are

generated by human experts by disassembling the file and selecting pieces of unique

code. Such signature based detection works effectively with known malware but

performs poorly with hidden or unknown malware. Code obfuscation techniques, such as

xv

packers, polymorphism and metamorphism, are able to fool current detection techniques

by modifying the parent code to produce offspring copies resulting in malware that has

the same functionality, but with a different structure. These evasion techniques exploit

the drawbacks of traditional malware detection methods, which take current malware

structure and create a signature for detecting this malware in the future. However,

obfuscation techniques aim to reduce vulnerability to any kind of static analysis to the

determent of any reverse engineering process. Furthermore, malware can be hidden in file

system slack space, inherent in NTFS file system based partitions, resulting in malware

detection that even more difficult.

Security researchers and the anti-malware industry are facing a herculean task in

extracting the payload, the de-obfuscated malware, and maliciousness hidden by these

techniques. For effective and efficient solutions, this thesis moves away from the

signature based detection to anomaly based detection. This thesis aims to provide

solutions to the problem of detecting hidden and obfuscated malware through the

following major contributions to the literature:

One – Propose a method for detecting malicious software that is hidden in NTFS slack

space partitions. NTFS file system provides useful information leading towards

identifying hidden malware and presentation of digital evidence for the court of law.

Chapter 3 of thesis provides knowledge, methodology and discusses the analysis

techniques used to successfully detect maliciousness in hidden data and hidden space, by

investigating the NTFS file system boot sector.

xvi

Two – Extracting features from the obfuscated executables for reverse obfuscation is

labor intensive and requires deep understanding of kernel and assembly programming.

Develops fully automated system to extract two independent features, namely OP code

and API function call features for finding the fingerprint of executable programs and for

detection and differentiation of different files that are either malicious or benign.

Three – Propose anomaly based detection that focuses on the extended x86 IA-32 binary

assembly instructions' frequency statistics, using i) Maximum Relevance (MR) filter

heuristic, ii) Artificial Neural Net Input Gain Measurement Approximation (ANNIGMA),

and iii) combination of MR and ANNIGMA (MR-ANNIGMA). Experimental results

show that our frequency-statistics based approach achieves high accuracy ~96%.

Four – Propose similarity based detection of unknown malware using API function calls

features, using various distance measures of vector models. Experimental analysis claims

that our proposed method is an effective method to accurately differentiate malware from

benign files and, more importantly, to detect obfuscated malware families.

Five – Investigate the employment of various robust supervised machine learning

algorithms on API function call features. Experimental results achieved high true positive

rate of ~ 99%, and low false positive rate of less than 2%, which has not been achieved in

literature so far. This is much higher than the required commercial acceptance level

indicating that our novel technique is a major leap forward in detecting zero-day

malware.

In this thesis, we have demonstrated the robustness of our proposed techniques and

automated system by testing it on a large dataset of 66,703 executable files in total,

xvii

consisting of 51,223 recent Malware samples collected over the period 2008-2011, with

the remaining executables forming benign samples. Together, these contributions enable

an effective and efficient forensic identification and detection of hidden and obfuscated

malware.

xviii

Table of Contents

Statement of Authorship .. iii

Dedication .. v

Acknowledgements .. vi

List of Publications .. ix

Abstract of the Thesis .. xiv

Table of Contents ... xviii

List of Figures .. xxv

List of Tables ... xxvii

Chapter 1 : Introduction .. 29

1.1 Background ... 29

1.2 Information Security ... 36

1.3 Computer Forensic .. 36

1.4 Definitions .. 39

1.5 Infection Strategies of Malware Authors .. 43

1.5.1 Overwriting Infection ... 44

1.5.2 Companion Infection ... 44

1.5.3 Appending Infection .. 45

1.5.4 Prepending Infection .. 46

1.5.5 Cavity or space fill infection .. 46

1.5.6 Boot Sector Malware ... 47

xix

1.5.7 Macro Malware .. 47

1.6 Malware on the horizon .. 48

1.7 Research Questions and Hypotheses .. 50

1.8 Research Methodology ... 52

1.9 Contributions .. 53

1.10 Roadmap of the Dissertation ... 56

Chapter 2 : Background of Study and Literature Review 58

2.1 Introduction ... 58

2.2 Growth in Malware ... 60

2.3 Conventional Malware Detection ... 66

2.4 Modern Detection ... 70

2.4.1 Heuristics Based Detection .. 70

2.4.2 Behavioral Based Detection ... 72

2.4.3 Semantic Based Detection ... 73

2.4.4 Hidden Markov Model Based Detection ... 74

2.4.5 Similarity Analysis ... 74

2.5 Malware Analysis ... 75

2.6 Code Obfuscation ... 77

2.6.1 Packing ... 80

2.6.2 Polymorphic Malware .. 81

2.6.3 Metamorphic Malware ... 85

2.7 Summary of Literature .. 92

Chapter 3 : Forensic Analysis of the NTFS File System 95

xx

3.1 NTFS File System ... 95

3.2 NTFS Investigation Goal .. 96

3.3 Windows Architecture .. 98

3.3.1 NTFS File System Architecture ... 98

3.3.2 Portable Executable Architecture .. 100

3.4 Digital Crime Investigation Analysis ... 103

3.4.1 Medium Data Analysis .. 106

3.4.2 Volume Analysis .. 107

3.5 Problem Background .. 110

3.5.1 Vulnerabilities of NTFS Disk Structure .. 110

3.5.2 Insufficiency of Malware Detection Tools .. 112

3.5.3 Weaknesses in Digital Forensic Analysis Tools .. 113

3.6 Proposed Forensic Analysis Process ... 114

3.6.1 Stage 1 - Hard Disk Data Acquisition .. 116

3.6.2 Stage 2 - Evidence Searching .. 116

3.6.3 Stage 3 - Analysis of NTFS File System ... 117

3.7 Forensic Investigation Steps ... 117

3.8 Boot Sector Analysis of NTFS ... 119

3.8.1 NTFS Disk Image .. 119

3.8.2 Master File Table ... 121

3.8.3 Boot Sector Analysis and Results .. 121

3.9 Hidden Data Analysis and Results .. 124

Chapter 4 : Anomaly Detection Based on OP-Code 130

xxi

4.1 Overview ... 130

4.2 Malware Behaviours ... 131

4.3 Assembly Language and Executable File Format .. 133

4.4 Descriptive Analysis of Data .. 136

4.5 Proposed OP-Code Detection Methodology ... 137

4.5.1 Disassemble Executable for Op-Code Frequency Statistics 138

4.5.2 Selection of Most Significant OP-Codes ... 140

4.6 Maximum Relevance Filter Heuristic ... 140

4.7 ANNIGMA wrapper-heuristic .. 142

4.8 OP-Code Selection .. 143

4.9 Hybrid Models .. 147

4.9.1 Search Strategies .. 148

4.9.2 Wrapper Step in MR-ANNIGMA ... 149

4.10 Discussion on Experimental Results ... 150

Chapter 5 : Malware Behaviour by the Extraction of API Calls 160

5.1 Overview ... 160

5.2 Windows API Functions ... 162

5.3 API Analysis methods .. 165

5.4 Finding Intrusions ... 166

5.5 Modern Malware Detector Issues ... 167

5.6 Contributions of the Chapter ... 169

5.7 Proposed Approach and Implementation .. 170

5.7.1 Step 1: Unpack and Disassemble Malware. ... 171

xxii

5.7.2 Step 2: Extract API Function Calls Features. .. 173

5.7.3 Step 3: Map the API Function calls with MSDN Library. 174

5.7.4 Step 4: Extract Binary n-gram features. ... 179

5.7.5 Step 5: Build a Support Vector Machine Model. ... 180

5.8 Verification and Validation .. 182

5.9 Experimental Results .. 183

5.10 Limitations and Future Work .. 184

Chapter 6 : Malware Detection based on Data Mining of API calls ... 186

6.1 Overview ... 186

6.2 Data Mining .. 188

6.3 Related Study .. 189

6.4 Methodology ... 193

6.5 Database .. 195

6.6 Signature Generation based on API calls ... 196

6.7 Experiment Based on Similarity ... 197

6.7.1 Cosine Distance ... 199

6.7.2 Bray-Curtis Distance .. 199

6.7.3 Canberra Distance .. 199

6.7.4 Chebyshev Distance ... 199

6.7.5 Manhattan Distance ... 200

6.7.6 Correlation Distance .. 200

6.7.7 Euclidean Distance ... 200

6.7.8 Hamming Distance ... 200

xxiii

6.8 Result Based Similarity Distance ... 201

6.9 Feature Selection and Extraction .. 205

6.10 10-Fold Cross Validation .. 207

6.11 Data Mining Algorithms ... 208

6.11.1 The Naive Bayes (NB) Algorithm ... 209

6.11.2 The k−Nearest Neighbor (kNN) Algorithm ... 212

6.11.3 The Sequential Minimal Optimization (SMO) Algorithm 215

6.11.4 Artificial Neural Networks (ANN) Algorithm .. 219

6.11.5 Logistic Regression .. 223

6.11.6 J48 .. 226

6.12 Evaluation and Validation Metrics ... 228

6.13 Result .. 230

Chapter 7 : Conclusions ... 233

7.1 Overview ... 233

7.2 Discussion ... 233

7.2.1 State-Of-The-Art .. 234

7.2.2 Proposed Detection Methods ... 235

7.3 Forensic Analysis of the NTFS ... 236

7.4 OP-Code Based Detection .. 238

7.5 API Feature Based Detection .. 240

7.5.1 API Behaviour Analysis .. 241

7.5.2 API Similarity based detection .. 242

7.5.3 Data Mining of API Call Features ... 244

xxiv

7.6 Future Work and Final Thoughts .. 246

Abbreviations .. 251

Bibliography .. 254

xxv

List of Figures

Figure 1.1 Companion Infection example .. 45

Figure 2.1 (a) Win32.Bolzano‘s source code (b) Win32.Bolzano‘s signature 69

Figure 2.2 Obfuscation Transformation ... 79

Figure 2.3 Different Packer Protections (a) PECompact (b) Themida (c) ASPack 83

Figure 2.4 The Polymorphic Code Example of P2P-Worm.Win32.Polip 84

Figure 2.5 Original code of Virus.Win95.Regswap ... 86

Figure 2.6 Dead–Code Insertion ... 87

Figure 2.7 Code Transposition based on Unconditional Branches 89

Figure 2.8 Code Transposition based on Independent Instructions 89

Figure 2.9 Register Reassignment .. 90

Figure 2.10 Instruction substitution. ... 91

Figure 3.1 MFT Layout Structure .. 99

Figure 3.2 The Three Stages of a Digital Crime Investigation 104

Figure 3.3 Analysis Areas ... 107

Figure 3.4 Hard Disk Drive Volume and Partition. ... 108

Figure 3.5 Forensic Investigation Steps .. 120

Figure 3.6 Analysis of the Test Boot Sector ... 122

Figure 4.1 The Executable File Format .. 135

Figure 4.2 The Most Frequent 13 OP-Codes for Both Malware and Benign 137

Figure 4.3 Flow Diagrams for OP-Code Frequency Statistics. 139

Figure 4.4 A Single Hidden Layer Multi-Layer Perceptron Neural Network in Wrapper

Approach ... 143

file:///C:/Users/x005/Desktop/thesis/Backup/Thesis.ver9.2.docx%23_Toc325296022
file:///C:/Users/x005/Desktop/thesis/Backup/Thesis.ver9.2.docx%23_Toc325296024

xxvi

Figure 4.5 Venn Diagram for Hybrid Algorithm .. 145

Figure 4.6 Framework for Hybrid of Wrapper and Filter Feature Selection 146

Figure 4.7 Score of OP-Codes When Total Attributes=28 ... 153

Figure 4.8 Score of OP-Codes When Total Attributes=27 ... 153

Figure 4.9 Score of OP-Codes When Total Attributes=17 ... 158

Figure 4.10 Score of OP-Codes When Total Attributes=16 ... 158

Figure 4.11 Score of OP-Codes When Total Attributes=15 ... 159

Figure 4.12 Receiver Operating Characteristics Analysis .. 159

Figure 5.1 The WinAPI Interface DLLs and their Relation .. 164

Figure 5.2 Fully-Automated Architecture to Distribute the API Function Calls 171

Figure 5.3 Distribution of Obfuscation Packers Used in Malware 173

Figure 5.4 API Call Distribution of Malware Samples ... 177

Figure 6.1 API Calls Automation, Similarity, Feature Selection and Malware Detection

Methodology ... 195

Figure 6.2 Accuracy of NB with k Cross Validations (k=2 to 10) 211

Figure 6.3 Accuracy of kNN with k Cross Validations (k=2 to 10) 214

Figure 6.4 Accuracy of SMO with k Cross Validations (k=2 to 10) 216

Figure 6.5 Accuracy of ANN with k Cross Validations (k=2 to 10) 222

Figure 6.6 Accuracy of Logistic Regression with k Cross Validations (k=2 to 10) 225

Figure 6.7 Accuracy of J48 with k Cross Validations (k=2 to 10) 227

xxvii

List of Tables

Table 2.1 Instruction substitution and an equivalent code substitution 92

Table 3.1 Portable Execution Structure .. 102

Table 3.2 NTFS Metadata Files Information .. 105

Table 3.3 NTFS Information Details .. 123

Table 3.4 Results of $Boot Analysis .. 126

Table 3.5 Analysis of the Test Boot Sector .. 129

Table 4.1 Heuristics Score for MR, ANNIGMA and MR-ANNIGMA 154

Table 4.2 Accuracies at Different Iteration for MR, ANNIGMA and Proposed Hybrid

Approach MR- ANNIGMA .. 156

Table 5.1 Main Malicious Behaviour Groups of API Call Features 178

Table 5.2 Experimental Results from SVM Classifier Using n-grams 184

Table 6.1 Data set ... 196

Table 6.2 Signature Sample of API Database ... 197

Table 6.3 Similarity of Trojan.Downloader.Win32.Dadobra ... 202

Table 6.4 Similarity of Worm.Win32.Delf ... 202

Table 6.5 Similarity between Trojan.Downloader.Win32.Dadobra vs Worm.Win32.Delf

 ... 203

Table 6.6 Similarity Matrix Benign Files ... 204

Table 6.7 Mean similarity matrix () .. 204

Table 6.8 Performance of Naive Bayes Fold Cross Validation (k=2 to 10) 212

Table 6.9 Performance of kNN Fold Cross Validation (k=2 to 10)................................ 215

file:///C:/Users/x005/Desktop/thesis/Backup/Thesis.ver9.2.docx%23_Toc325295967
file:///C:/Users/x005/Desktop/thesis/Backup/Thesis.ver9.2.docx%23_Toc325295968
file:///C:/Users/x005/Desktop/thesis/Backup/Thesis.ver9.2.docx%23_Toc325295969
file:///C:/Users/x005/Desktop/thesis/Backup/Thesis.ver9.2.docx%23_Toc325295970
file:///C:/Users/x005/Desktop/thesis/Backup/Thesis.ver9.2.docx%23_Toc325295971
file:///C:/Users/x005/Desktop/thesis/Backup/Thesis.ver9.2.docx%23_Toc325295972
file:///C:/Users/x005/Desktop/thesis/Backup/Thesis.ver9.2.docx%23_Toc325295977
file:///C:/Users/x005/Desktop/thesis/Backup/Thesis.ver9.2.docx%23_Toc325295978
file:///C:/Users/x005/Desktop/thesis/Backup/Thesis.ver9.2.docx%23_Toc325295979
file:///C:/Users/x005/Desktop/thesis/Backup/Thesis.ver9.2.docx%23_Toc325295980
file:///C:/Users/x005/Desktop/thesis/Backup/Thesis.ver9.2.docx%23_Toc325295981
file:///C:/Users/x005/Desktop/thesis/Backup/Thesis.ver9.2.docx%23_Toc325295981
file:///C:/Users/x005/Desktop/thesis/Backup/Thesis.ver9.2.docx%23_Toc325295982
file:///C:/Users/x005/Desktop/thesis/Backup/Thesis.ver9.2.docx%23_Toc325295983
file:///C:/Users/x005/Desktop/thesis/Backup/Thesis.ver9.2.docx%23_Toc325295984
file:///C:/Users/x005/Desktop/thesis/Backup/Thesis.ver9.2.docx%23_Toc325295985

xxviii

Table 6.10 Performance of SMO Normalized Polynomial Kernel Fold Cross Validation

(k=2 to 10)... 217

Table 6.11 Performance of SMO Polynomial Kernel Fold Cross Validation (k=2 to 10)

 ... 217

Table 6.12 S Performance of SMO PUK Kernel Fold Cross Validation (k=2 to 10)..... 218

Table 6.13 Performance of SMO RBF Kernel Fold Cross Validation (k=2 to 10) 218

Table 6.14 Performance of Artificial Neural Networks Fold Cross Validation (k=2 to 10)

 ... 222

Table 6.15 Performance of Logistic Regression with k Cross Validations (k=2 to 10) . 226

Table 6.16 Performance of J48 with k Cross Validations (k=2 to 10) 227

Table 6.17 Results Nine Classifiers at k = 10 .. 232

file:///C:/Users/x005/Desktop/thesis/Backup/Thesis.ver9.2.docx%23_Toc325295986
file:///C:/Users/x005/Desktop/thesis/Backup/Thesis.ver9.2.docx%23_Toc325295986
file:///C:/Users/x005/Desktop/thesis/Backup/Thesis.ver9.2.docx%23_Toc325295987
file:///C:/Users/x005/Desktop/thesis/Backup/Thesis.ver9.2.docx%23_Toc325295987
file:///C:/Users/x005/Desktop/thesis/Backup/Thesis.ver9.2.docx%23_Toc325295988
file:///C:/Users/x005/Desktop/thesis/Backup/Thesis.ver9.2.docx%23_Toc325295989
file:///C:/Users/x005/Desktop/thesis/Backup/Thesis.ver9.2.docx%23_Toc325295990
file:///C:/Users/x005/Desktop/thesis/Backup/Thesis.ver9.2.docx%23_Toc325295990
file:///C:/Users/x005/Desktop/thesis/Backup/Thesis.ver9.2.docx%23_Toc325295991
file:///C:/Users/x005/Desktop/thesis/Backup/Thesis.ver9.2.docx%23_Toc325295992
file:///C:/Users/x005/Desktop/thesis/Backup/Thesis.ver9.2.docx%23_Toc325295993

29

Chapter 1 : Introduction

Sherlock Holmes: “It is of the highest importance in the art of detection to be

able to recognize out of a number of facts which are incidental and which vital.

Otherwise your energy and attention must be dissipated instead of being

concentrated.”

 —Sir Arthur Conan Doyle, “The Adventure of the Reigate Squire,‖

 The Strand Magazine (1893)

1.1 Background

The field of computer crime has matured possessing rich history (Casey 2004; Maria

2011). The growth of the Internet has resulted in the increasing computer attacks and

intrusions. Among these attacks, Malware (malicious software) is one of the biggest

threats facing the digital world (Alperovitch 2011; RSA 2011). With more and more use

of computers, portable devices and the Internet in everyday life, identification of new or

unknown malware has become the biggest challenge in digital forensics (Vassil 2009). Of

late, malware are being designed more for financial gain leading to a huge impact against

individuals, organisations and business assets. Recent trends in malware designed for

such financial fraud purposes indicate their increasing complexity and they are evolving

rapidly as Internet provides more opportunities for automated financial activities. As a

result, the financial damages caused by malware to individuals and businesses have

dramatically increased in the past few years (RSA 2011).

30

In many ways, cybercrime is no different than traditional crime (Jahankhani &

Al-Nemrat 2008). Both crimes involve in identifying targets, using surveillance and

psychological profiling. The major difference is that the perpetrators of cybercrime are

increasingly remote to the scene of the crime (Jahankhani & Al-Nemrat 2010). The

traditional idea of a 'criminal gang' loses its meaning as members can now reside on

different continents without ever having to actually meet.

Data has become more valuable than money. Hence, accessing bank data gives

cyber criminals repeated access to the money. Researches into credit card fraud detection

have steadily increased over the recent years (Aycock 2006; Ghosh & Turrini 2010;

James 2007; Komisarczuk 2010). Intruders, who achieve unauthorized access to financial

system for financial gain, cause losses for financial sectors and there is no single

technique that can deter them. However, a threat that was once focused on single

criminals is now focused on major organised crime crossing international boundaries and

jurisdictions. Recent white paper (RSA 2011) to review the current state of cybercrime by

the RSA Anti-Fraud Command Center warns that attacks will become more prevalent as

more persistent techniques are adopted based on what they witnessed in the year of 2010

and 2011. Moreover, use of botnets, VOIP and mobile SMS in attacks are expected to

rise. Globally, 30,000 phishing attacks are reported each month and at least three percent

of phishing attempts are successful (RSA 2011). Although phishing alone is not directly

responsible for all online banking fraud, Singh‘s statistical work in cyber security

indicates that 900 online bank accounts get compromised each month from phishing

alone (Singh 2007). Therefore, online banking fraud, in our case, includes all

31

unauthorized transactions conducted without the legitimate account holder‘s knowledge

and (usually) resulting in loss of funds from the account.

Malware detection usually occurs in online systems and the anti-virus software

forms the primary tool for the defense against malware. Though the quality of such

malware detectors is improving in the techniques being adopted, namely ‗virus signature‘

based detection or heuristic based detection, the malware attackers are always one step

ahead of the anti-virus tools (Stolfo et al. 2007). The present malware detection systems

usually rely on existing malware signatures with limited heuristics and are unable to

detect those malware that can hide themselves during the scanning process in online

systems (Alazab, Venkatraman, et al. 2009; Venkatraman 2009). According to a recent

report (RSA 2011) new malware goes undetected by the commercially available anti-

virus tools, and the literature survey conducted in this study indicates the need for new

techniques to identify such hidden malware. Therefore, in order to address this

requirement, this research study concentrates, first to developing a robust digital forensic

process for NTFS file system, and then to design and apply innovative techniques for

fulfilling the main objective of detecting hidden malware, which was still an unsolved

challenge for malware detectors. Thus, the research project presented in this document

attempts to fill the gap in both literature and practice.

As a first step to address the challenge, Chapter 3 investigates offline NTFS file

systems and propose effective digital forensic techniques that could be used to analyse

and acquire evidences of hidden malware in NTFS disk images. In the same chapter, the

research focuses on achieving the main goal of this research in proposing and evaluating

an innovative methodology to effectively detect hidden malware. Since NTFS is

32

predominantly used in most computer systems, and malware attackers take advantage of

its weaknesses to hide malware, this research investigates and identifies the main areas of

hidden malware growth. With this in view, the research aims i) to explore the NTFS disk

structure and its vulnerabilities (Alazab, Venkataraman, et al. 2009), ii) to investigate

weaknesses of existing commonly used digital forensic techniques (Alazab 2009) such as

signature-based (Preda et al. 2008), anomaly-based (Patcha & Park 2007), and iii) to

propose and evaluate improved methods in static analysis of NTFS for identifying hidden

malware by investigating the disk image (physical), and for detecting unknown malware

through file content (logical) analysis. Preliminary investigations conducted in this

research study to identify hidden malware using function call analysis have been reported

(Alazab, Layton, et al. 2010; Alazab, Venkataraman, et al. 2010) and subsequently using

file content analysis.

Sophistication in malware through code obfuscation has created another challenge

for digital forensic examiners and reverse engineering, namely the detection rate of new

and unknown malware is low rate (Passerini et al. 2009; Stang 2010) and identifying

benign code as malicious, which is termed as false alarm rate, is high (Patcha & Park

2007). The second challenge is extracting features from the obfuscated executables for

reverse obfuscation is labor intensive and requires deep understanding of kernel and

assembly programming. This thesis aim to develops fully automated system to extract

two independent features, namely OP code and API function call features for finding the

fingerprint of executable programs and for detection and differentiation of different files

that are either malicious or benign. Obfuscation techniques aim to reduce vulnerability to

any kind of static analysis for the determent of any reverse engineering process.

33

Extracting the payload, the de-obfuscated malware, and maliciousness hidden is a

challenging task. This thesis aims to provide solutions to the automatic extracting of

features out of binaries.

The Third challenge is unknown or obfuscated malware detection. Literature

studies on malware detection as illustrated in Chapter 2 have shown that there is no single

technique that could detect all types of malware (Chouchane & Lakhotia 2006; Dinaburg

et al. 2008; Lawton 2002; Sharif et al. 2008; TreadwellZhou & Zhou 2009). Two

techniques are commonly used for malware detection: signature-based detection and

anomaly-based detection. Anti-malware engines use malware signatures to detect known

malware. However, these countermeasures cannot detect unknown malware or unknown

signatures which uniquely identify a specific malware. Therefore, signature based

approaches fail to detect unknown malware. On the other hand, anomaly-based detection

uses the knowledge of normal behaviour patterns to decide the maliciousness of a

program code. It has the key advantage and ability to detect zero day attacks. However,

it is very difficult to accurately specify the system or program‘s behaviour and thus these

approaches usually result in a high false positive rate. For the second challenge in this

dissertation; signature-free detection methods are proposed in Chapter 4, Chapter 5 and

Chapter 6 to cope with polymorphic transformations and metamorphic obfuscations of

malware, and use supervised machine learning algorithms for building better anomaly

detection:

1) OP-code Features based Malware Detection: detailed in Chapter 4, using the

knowledge of normal behaviour patterns of the x86 IA-32 operation codes (op-codes), this

research work has proposed a novel algorithm that combines op-code frequency statistics

34

and hybrid wrapper-filter based feature selection technique for constructing a classifier for

malware detection. Also, hybridized op-code statistics with novel wrapper-filter based feature

selection technique to optimise the process has resulted in achieving the desired efficiency

for large datasets.

2) API Features based Malware Detection: detailed in Chapter 5, using the

knowledge of normal behaviour patterns of the Application Programming Interface (API)

function calls. While some research has been conducted in arriving at file birthmarks

using API call features and the like, there is a scarcity of work that analyses deeply with

respect to the use of such features in malcodes. To address this gap, an attempt for the

first time has been made to automatically classify the behavior of the API function calls

based on the malicious intent present in any packed program. This approach also provides

scope for deeper understanding of code obfuscation and to reverse it automatically with

least human effort as explained in Chapter 5. Also, Chapter 5 proposes a five-step

methodology for developing a fully automated system to arrive at six main categories of

suspicious behavior of API call features to optimise the process and to achieve the desired

efficiency for large datasets by using support vector machine algorithm with n-gram

statistical analysis of API calls by varying n-values from 1 to 5. The main aim is to

increase the true positive rate, reduce the false alarm rate, and to improve the overall

accuracy.

3) Malware Detection and similarity detection based on Data Mining of API calls,

as detailed in Chapter 6, a machine learning framework is proposed and evaluated with

large datasets to investigate further on the preliminary observed patterns and to analyse

using a variety of data mining techniques for detecting malware from benign files

35

effectively, based on the frequency of occurrence of each Windows Application

Programming Interface (API) calls found in the datasets. Also, different distance

measures have been implemented and similarity analysis performed by using eight

commonly used distance measures in vector models, namely Cosine, Bray-Curtis,

Canberra, Chebyshev, Manhattan, Correlation, Euclidean, and Hamming distance

similarity measure for Nearest Neighbor (NN). As well as this, a supervised learning

approach has been adopted that uses a dataset to train, validate and test, an array of

classifiers. Robust classifiers have been selected, namely Naive Bayes (NB) Algorithm,

k−Nearest Neighbor (kNN) Algorithm, Sequential Minimal Optimization (SMO)

Algorithm with 4 different kernels (SMO - Normalized PolyKernel, SMO – PolyKernel,

SMO – Puk, and SMO- Radial Basis Function (RBF)), Backpropagation Neural

Networks Algorithm, Logistic Regression, and J48 decision tree. The chapter also

provides details of how data will be collected to conduct the experimental analysis and

the data mining algorithms adopted for the study will be evaluated.

In creating new malware, malware authors use obfuscation techniques and

behavior modification in order to thwart malware detectors. Obfuscation attempts to hide

the true intentions of existing malicious code without changing the behaviours exhibited

by the malware. Behaviour modification creates new malware by making changes to the

existing malware, although the same behaviour of the malware stills the same.

Sophisticated tools are available for malware writers to create new malware very quickly

suiting their needs based on these techniques. Reuse and recycle code is a major

component in the development of new malware effortlessly.

36

1.2 Information Security

Free from danger is the simplest definition for security, and information security is the

protection of information from any kind of harm. Protection of information from

malware authors (who are called under a variety of names such as black hats, hackers,

and crackers) is of utmost importance in today‘s information society with high level of

cybercrime. Currently the internet offers the biggest buyer and seller of goods and

services through electronic medium. Hence, as today‘s society becomes more electronic

in terms of smart cards, electronic money, electronic purse, electronic checks, digital

cash, stored value cards and online banking, more opportunities for serious threats to e-

security have been created. This threat evolution has escalated to a great extent as society

has moved towards online as the preferred method for Identity theft, financial

transactions and payments (Turville et al. 2010). Today‘s information security is being

breached by such threats posed to individuals and organizations as cybercrimes continue

to aggressively develop techniques to steal money and financial credentials or personal

information for financial gains.

1.3 Computer Forensic

More than quarter century ago, in 1984, the FBI Laboratory and many other law agencies

had commenced developing structures to examine computer evidence, in order to address

the growing demands of computer crimes (Vacca 2005), and the FBI had established the

Computer Analysis and Response Team (CART). In 1991 the term ‗Computer Forensics‘

was coined by the International Association of Computer Investigation Specialists

(IACIS) in Portland, Oregon (Vacca 2005). Computer forensics is the science of

37

preserving, identifying, extracting, analysing and documenting computer evidence found

at crime scenes so that this evidence may be used in a court of law (Rogers & Seigfried

2004). It also answers questions and attempts to provide full descriptions of a digital

crime scene (Reith et al. 2002). In computer systems, the primary goals of digital forensic

analysis are fivefold: i) to identify all the unwanted events that took place, ii) to ascertain

their effect on the system, iii) to acquire the necessary evidence to confirm malicious

activity that may have occurred on computer systems, iv) to prevent future incidents by

detecting the malicious techniques used, and v) to recognize the incitement reasons and

intendance of the attacker for future predictions. The focus of this research is on goal iii)

as this goal has become a major challenge with the recent increase in hidden malware

whose malicious activities go unnoticed by current detection tools and techniques.

Computer forensics is a new science that deals with both law and electronic

devices (Reed 1990-91). The number of criminal justice agencies and organisations is

being constantly increased and they share responsibility for detecting and stopping digital

crime. The Regional Computer Forensics Laboratory of the Federal Bureau of

Investigation (FBI), in their annual report (RCFL 2008) stated that 1,756 TBs of data was

processed in 2008 alone. The year before (RCFL 2007) the RCFL announced that the

amount of data examined per criminal case was increasing by 35% annually from 83

Giga bytes in 2003 to 277 Giga bytes in 2007.

Digital electronic evidence can be described as the information and data of

investigative value that are stored by an electronic device (Casey 2004; Kruse & Heiser

2001). There is no single universal procedure to conduct the investigation of a digital

crime scene (Carrier 2005). Furthermore, there is no standard process, framework or

38

model for conducting forensic investigation in Windows NT File Systems (NTFS), which

is the prime motivation of this research. Many situations have adopted three major

phases for investigative process, which are; acquisition, preservation, and analysis

(Andrew 2007). However, recent trends of hidden malware warrant new techniques for

digital forensics. Hence, this research work aims to investigate and improve the digital

forensic techniques that could be used to analyse and acquire evidences of cybercrimes

and attacks from the most commonly used file system on computers, namely, Windows

NT File System (NTFS).

Digital investigation is a process to answer questions about the compromised

digital data and this involves using either static or live analysis techniques (Kruse &

Heiser 2001). Even though live analysis techniques could help in capturing evidence

during forensic investigations to a certain extent, they are far from infallible and lead to

false negatives of hidden malware. In live analysis, malware such as rootkits can hide

and change itself without being seen. Moreover the attackers target a hidden area on the

system structure to hide the malware. Hence, this research focuses on static analysis

technique as all the hidden information can be captured and cannot be modified to

produce false data as in case of live analysis techniques. An image copy of the NTFS

hard disk would capture even hidden data and hence this study entails developing

efficient techniques to analyse the data in a confined lab environment for the

identification of hidden malware. This research work formed a major initial step towards

addressing the open problem of identifying unseen or new malware that could evade

detection in the form of hidden or obfuscated malicious code.

39

Forensic investigation was conducted on NTFS with existing forensic tools by

running the disk image in a trusted operating system to search for evidence, as shown in

Chapter 3. It was observed that since the NTFS disk image records every event in the

system, the data required to be analysed is huge and this has led to imperfect forensic

tools that are practical for real-time implementation but not comprehensive and effective

as they were unable to detect all malware, in particular hidden malware. Therefore, this

preliminary investigation confirms that a comprehensive methodology with an improved

technique is warranted for an effective forensic analysis that is capable of detecting

hidden malware.

1.4 Definitions

Malware: has numerous synonyms such as; malicious software, malicious code

(MC) and malcode. Malware contains code designed to perform illegal activities that

cause damage and affect the integrity and functionality of digital electronic devices.

McGraw and Morrisett (McGraw & Morrisett 2000) define such malicious code as ―any

code added, changed, or removed from a software system in order to intentionally cause

harm or subvert the intended function of the system‖. For the purpose of this research, the

description given by (Vasudevan & Yerraballi 2006) has been adopted for malware as a

generic term that encompasses viruses, worms, Trojans, exploits, backdoors, keystroke

loggers, rootkits, spyware, and spam. These terms are coined based on the functionality

and behaviour of the malware.

Viruses: The father of computer viruses Dr. Frederick Cohen defined the term

computer virus as ‗A virus is a program that is able to infect other programs by

40

modifying them to include a possibly evolved copy of itself‘ (Cohen 1987). The term

computer virus comes from the similarities with biological virus since it infects a healthy

subject and destroys it. In order for the virus to function and cause damage, it needs an

existing host program. For instance, a virus has been reported and noted to modify the

program code to take control of operating system, make copies of themselves to spread to

new targets, and usually it attaches itself to commonly used software such as Adobe

Acrobat, spread sheets or word processors. The most important part to note here is the

new copies of the virus do not have the exact clone of the initial instance, this called

‗metamorphic‘ viruses, sample functionality of the main one but with different byte

sequence or the signature for each copy to be completely different (Szor 2005).

Worms: Computer worms have grown to become the fastest spreading and most

costly malicious code threats (Holz et al. 2006). A worm replicates itself by executing its

own code independently, and spreads to the other computers using network resource

connections such as e-mail, TCP/IP, IRC, etc. with the goal of infecting as many

computer systems connected to the network as possible. Another name for computer

worms given is network viruses. Since computer worms are designed to copy itself from

one computer to another, while viruses are designed to spread themselves from one file to

another on a single computer, worms are more complex than viruses. The other primary

distinction between a virus and a worm is that a worm does not need a host to cause harm

unlike a virus.

Trojan horses: A Trojan horse is a seemingly harmless computer program

designed to get access to the computer from another location and to perform unauthorized

action by tricking computer users to run program masquerades as a legitimate program.

41

For example, the program could contain a useful function (such as local weather) to

entice users to run the program. Trojan horses replicate in a different way than the

replication procedure adopted by viruses and worms. However, a Trojan horse can be

part of the payload of a worm and can be spread to many machines as part of a worm

infection. It has also been reported that Trojan horses mostly have been sent out as email

attachments (Szor 2005). Usually, Trojan horses are associated with accessing and

sending unauthorized information from their host via email which could be classified as

spyware as well. The embedded malware could also be a time bomb designed to activate

at a certain time (Landwehr et al. 1994).

Logic Bomb: created by malicious authors through inserting the malicious code

into a system which remains dormant and executes its payload when malicious function

conditions are met (such as pre-defined time), and is also named ‗slag code‘. However, a

logic bomb can be used by a virus, worm and other malicious code to gain power, and

spreads before being noticed. When it gets executed, it could cause Denial of Service

(DoS) that leads to slowing down of system or a storage overflow, and would remain

dormant until activated.

Rootkit: Rootkit name comes from the combination of two words, ―root‖ and

―kit‖. The highest access level in UNIX environments is ―Root‖, while ―kit‖ refers to

tools. Hence, a rootkit is defined as (Manap 2001) a collection of tools that enable

attacker to have full control by obtaining the root access level on the compromised

system in order to hide its payload from the operating system without being detect. A

rootkit can hides its presence by hiding the actual files, processes, network connections,

the sniffers, etc. so that there may be a number of processes running on a system that are

42

not revealed in Task Manager or established connections or netstat display. The rootkit is

able to do this by manipulating function calls to the operating system and filtering out

information that would normally appear. Once a rootkit is installed, it allows an attacker

to mask the ongoing intrusion and maintain privileged access to the hacker by

circumventing normal authentication and authorization mechanisms (Lobo, Watters, et al.

2010a, 2010b).

Botnet: is a collection of computers which interact together to compromised

computers and to accomplish their illegal goals. The compromised computers are referred

to drones or zombies, and the malicious software running on them as 'bots'. Botnets send

the majority of spam (McCombie et al. 2009). Bots use vulnerable machines with

methods which are used by other malware classes and they use the command and control

(C&C) channel.

Spyware: is a software that is sneakily installed on a computer to collect

information on system without the user knowledge or consent. However, this software

can be classified as a Trojan horse as well. The consequences of spyware infections can

be severe, including inundating the victim with pop-up ads, stealing the victim‘s financial

information or passwords, or rendering the victim‘s computer useless (Moshchuk et al.

2006).

Backdoor: is a software program which is installed by the attacker on a

compromised system to bypass normal security controls on a system and facilitate the

further unauthorized access of the attacker on the system.

43

Exploit: is software, a chunk of data or a sequence of commands that makes use

of the vulnerabilities of the victim computer to create an unwanted action on the victim‘s

computer. These actions include obtaining the control of the computer system, access

control destruction, or DoS. Often exploits are used to install viruses, warms and rootkits.

1.5 Infection Strategies of Malware Authors

As shown in the previous Section (1.4) there are many types of malware, also different

instances of malware have a variety of penetration methods, malicious purposes, and

effects. A malware instance can be transported through remote exploit, by an e-mail, over

a peer-to-peer network, or through removable media. It can also be automatically

downloaded and installed by visiting a web site containing exploit code (Moshchuk et al.

2006).

The ability to execute program tasks without interrupting the user is very common

in programming. A program will not want to interact with a user when an error occurs for

reasons beyond the user's comprehension. Malware authors implement the same

technique to prevent a user from suspecting infection. This can be very dangerous, as a

virus is allowed to execute fully, without the expressed permission of the user, or indirect

feedback from the computer.

Criminals today have sophisticated service providers and high-tech expertise to

fully take advantage of their current targets. Furthermore, the exploit servers used can be

changed to avoid detection and countermeasures. Malware authors use variety of methods

in order to avoid detection, and employ different kinds of deception (Watters &

44

McCombie 2011). The most common strategies adopted are summarised in the following

subsections (Aycock 2006; Skoudis & Zeltser 2003):

1.5.1 Overwriting Infection

An overwriting infection is accomplished by inserting malicious code into an area of the

original file of the host computer such as XLS, DOC or PDF. Some type of malware

using this strategy completely overwrites a file which destroys the original file, rendering

an entire program useless. However, the advanced malware do not try to destroy the file

in order to trick the user and evade detection tools. This is done by adding the malicious

code in the head or the tail of the host file in order to not affect the functionality of the

host file (Crescenzo & Vakil 2006).

1.5.2 Companion Infection

A companion infection is different from overwritten malware as it does not require a host

file to insert the malicious code; instead it creates a companion file to the EXE host file

(Jacob et al. 2009). To test this infection, a simple experiment performed by injecting the

windows XP professional system with a malware and named it similar to the original

windows file calc but with the extension COM (calc.COM) and saved it in the same path

of the original file of calc.EXE as shown in Figure 1.1. Many users have a tendency to

type the name of the file at the ‗run‘ command without typing the extension in order to

launch an executable program. Since Microsoft DOS looks for .COM files to be executed

before it looks for .EXE files, malware authors need only to save or copy itself as .COM

in the same directory as the original .EXE launched. Malware authors are taking this

45

advantage and they not only save the file with .COM at the same path as the .EXE, but

they also conceal their existence by assigning a "hidden" attribute to the companion

malicious file (the COM file). This way they try to decrease the likelihood that the

system's user could discover the companion file in the directory listing as by default, files

with this hidden attribute do not appear in directory listings. Alternatively, the attacker

tricks computer user into executing malicious code by creating a malware file with the

same name as the benign program, and placing the malicious executable earlier in the

path than the benign one (Skoudis & Zeltser 2003).

Figure 1.1 Companion Infection example

1.5.3 Appending Infection

Also called hooking infection an appending infection is a method is predominantly

adopted by the rootkits as they implant various hooks such as Import Address Table

(IAT) hooks, inline function hooks, System Service Descriptor Table SSDT hooks, etc.

appending infection uses operand command instructions (such as jump (JMP) and

CALL), by modifying the first few instructions in the file function so that the execution

jumps to the address pointed to the malicious function. Usually the malicious code is

inserted at the end of the file where it is not affected by the functionality of the file and

does not raise any suspicion. An example of such a rootkit is the virus ‗Vienna‘. The

46

infection technique can be used in all type of portable executables (PE), such as EXE,

NE, ELF, etc (Lobo, Watters, Wu, et al. 2010).

1.5.4 Prepending Infection

Prepending infection is similar to appending infection, except that the malware inserts

itself at the start of a file. Malware authors have implemented this type of infection on

various operating systems (Daoud et al. 2008). Since the malicious code is allocated at

the start of the file, the malicious prepending code runs before the original code. An

example of the use of this technique is the Hungarian virus Polimer.512.A, which inserts

itself within the first 512 bytes of the beginning of the executable and shifts the original

program content to follow this block of code.

1.5.5 Cavity or space fill infection

Cavity or space fill infection is an infection that attempts to enclose the malicious code in

an empty space while not affecting the actual program and at the same time, not

increasing the length of the program. Malware authors infect files without increasing

their size or damaging the files. They accomplish this by overwriting unused areas of

executable files. These are called cavity viruses. For example, the CIH virus, or

chernoby1 virus uses this strategy to infect portable executable files. Also, in the

Microsoft NTFS file system, Master File Table (MFT) is the core of NTFS since it

contains details of every file and folder on the volume. Each MFT entry has a fixed size

which is 1 KB containing two attributes; an attribute header and attribute content. The

attribute header is used to identify the size, name and the flag value. The attribute content

47

can reside in the MFT followed by the attribute header if the size is less than 700 bytes

(known as a resident attribute), otherwise it will store the attribute content in an external

cluster called cluster run (known as a non-resident attribute). This is because the MFT

entry is 1KB in size and hence cannot fit as it occupies more than 700 bytes. The Lehigh

virus is an example of this infection (Alazab, Venkataraman, et al. 2009).

1.5.6 Boot Sector Malware

Boot sector malware infection involves infecting the boot sector in order to infect the

system every time the machine boots up. The boot sector placed in the beginning of each

partition is appropriately called the partition boot sector (PBS) and the Master Boot

Record (MBR) is allocated in the first sector of the hard drive which contains the boot

code (Lobo, Watters, Wu, et al. 2010). Hence, when the system starts, it locates the first

sector on the hard drive, and executes MBR. Boot sector malware infect the Master Boot

Sector of the hard drive and infect the system every time it boots up. The Michelangelo

virus is an example of a Boot sector malware.

1.5.7 Macro Malware

Embedded in a data file, the term macro means a series of command steps and character

strings saved in a single location that is assigned a name (Alsagoff 2011). Malware

authors are using macros to infect applications such as word processing and spreadsheet

files. Usually, when the name of the macro is found in a document file, the macro is

expanded. The macro could perform the series of steps automatically for manipulating

48

and creating files, changing menu settings, etc (Yao & Liu 2011). A macro virus is often

spread as an e-mail virus. A well-known example is the Melissa virus in March, 1999.

1.6 Malware on the horizon

In this research the focus is to conduct static analysis effectively because all the hidden

information can be captured and cannot be modified to produce false data, which is

apparently the main drawback in live analysis techniques (Alazab 2010). Dynamic

analysis techniques analyze the code of a program by actually executing it. They are

robust to the obfuscation techniques and those anti-static-analysis techniques (i.e, self-

modifying). However, dynamic analysis has many drawbacks. First, it incurs much more

overhead than the static analysis. There could be a lengthy code sequence that has to be

executed to reach conclusions about the code behaviour. Second, it only covers a part of

all possible program execution paths. Therefore, many important behaviours of the

analyzed program cannot be discovered. Third, it is hard to simulate the execution

conditions under which the analyzed malware exhibits its malicious behaviour. For

instance, a bot program needs to receive control and command from a bot master to

exhibit its malicious behaviour. Fourth, if the code is executed in a virtual machine, there

are techniques that can be utilized by the attackers to determine whether the code is

running in virtual environment. As a result, the code can be designed to modify its

runtime behaviour.

The research project presented in this document concentrates on detecting hidden

malware, which is still an unsolved challenge for malware detectors (Stolfo et al. 2007).

As a first step to address this challenge, this research would investigate offline file

49

systems and improve the digital forensic techniques that could be used to analyse and

acquire evidences of hidden malware in NTFS disk images.

The main goal of this research is to propose a methodology to effectively detect

hidden malware. Since NTFS is predominantly used in most computer systems, and

malware attackers take advantage of their weaknesses to hide malware, this research

focuses on main areas of hidden malware growth in NTFS based systems. With this in

view, the research aims i) to explore the NTFS disk structure and its vulnerabilities, ii) to

investigate weaknesses of existing commonly used digital forensic techniques such as

signature-based, heuristic-based and anomaly-based, and iii) to propose and evaluate

improved methods in static analysis of NTFS for identifying hidden malware by

investigating the disk image (physical) and by detecting unknown malware through file

content (logical) analysis.

Since malware detection techniques work very well in detecting known malware,

the malware authors have come up with new and improved techniques for their code to

hide and evade detection by using many techniques, such as polymorphic and

metamorphic techniques. This has led the AV vendors to start studying the behavioural

analysis of the file to check whether the file is benign or malware.

Techniques used for malware detection can be classified into two categories:

anomaly-based detection and signature-based detection. Since the major drawback for

signature-based detection is the inability to detect new or unknown malicious code and

zero day attack, the focus of this research is on anomaly-based detection, a technique that

uses the knowledge of what is under consideration to find out what actually is malicious.

50

In anomaly-based detection, the inverse knowledge comes from the learning

phase, Chapter 4 the knowledge was based on operand codes, Chapter 5 and Chapter 6

the knowledge was based on API function calls. So, anomaly-based detection alerts what

is anomalous behaviour based on knowledge of the normal files. Malware detectors

usually take two inputs. One input is the knowledge of the malicious behaviour, which

comes from the learning phase. The other input is the file under inspection or testing that

is analysed to decide if the file is malicious or benign.

1.7 Research Questions and Hypotheses

Malware identification and analysis is a technically intense topic, requiring deep

knowledge of multiple computer science disciplines. To compound the problem,

successful identification and analysis by malware analysts has been confounded by the

use of hidden and obfuscated malicious binaries in recent years. Cybercriminals have

adopted various obfuscation techniques to disguise the malware binaries, making it

difficult to identify. There are available open-source and commercial tools which are

being used to make the malicious code highly obfuscated in order to remain hidden in the

NTFS file system hard disk drive without being detected by anti-virus tools.

The majority of anti-virus detection systems are signature-based detection, which

is the method used by most of anti-virus detection engines as it is highly effective in

detecting known malware. Even though hybrid systems applying heuristics have been

recently explored, today's anti-malware approaches are neither efficient nor effective in

detecting current obfuscated malware attacks. Therefore, this research aims at proposing

51

and presenting effective and efficient techniques for detecting hidden and obfuscated

malware.

With the recent trend in malware to operate as obfuscated malicious code to

remain hidden and evade from detection any live analysis technique or anti-virus tools,

this research attempts to identify such unknown malware that adopt the following two

predominant methods to attack:

– Physical space such as hidden malware in boot record or slack space, and

– Logical space such as code obfuscation of binary contents.

The primary purpose of this research is to answer the following research

questions:

Q1: Could malicious code hidden in NTFS file system physical space be detected using

an automated process?

Our hypothesis is that signature based detection and existing forensic analysis

tools are unable to reveal hidden malware in NTFS physical space and it calls for a new

forensic analysis process.

Q2: Could anomaly based detection using static features be applied to effectively detect

and classify obfuscated malicious code attacking through binaries or executable files

launched in the logical space of computer systems?

Our hypothesis is that existing live analysis malware detection techniques and

anti-virus tools that predominantly use signature based methods are unable to detect

obfuscated malware hidden in binaries of the computer logical space, and hence calls for

52

new anomaly based detection techniques that could identify obfuscated malware features

by conducting static analysis of the behaviour properties exhibited by such malware.

1.8 Research Methodology

To address the first research question (Q1) listed in section 1.7, this research requires a

systematic methodology to search computer hard disk space to search for significant

evidence of hidden malware attacks. We adopt the Integrated Digital Forensic Model

(IDFM) by Carrier & Spafford (2003) that is widely reported in literature for digital

forensics. We propose a new forensic analysis process within the IDFM framework to

detect hidden malware in computer physical disk space such as boot record and slack

space.

For the second research question (Q2) listed in section 1.7, this research adopts

static analysis methodology as it is well suited for byte-level content analysis of

malicious patterns that is not possible using live or dynamic analysis conducted in

existing anti-malware tools (Karim et al. 2005; Kotler and Maloof, 2006). Since signature

based detection and other existing methods are unable to detect and classify the hidden

malicious activities, this research proposes novel methods of extracting anomalies in the

behaviour patterns of obfuscated malware. We study their statistical behaviour properties

by analysing patterns such as op-codes, API calls, n-gram byte sequences efficiently to

identify and classify unknown malware hidden in the binaries of the computer logical

space. A variety of data mining and machine learning techniques are adopted and the

results are compared in order to determine the performance of our approach.

53

1.9 Contributions

In this dissertation, multiple research problems related to the infection strategies of

malware authors (Section 1.5) and code obfuscation explained in (Section 2.7) have been

studied. These techniques attempt to bypass the most popular malware detection method,

signature based detection. The overall observation is that malware authors are producing

unique threats using different obfuscation methods, and signature-based detection is of

little defense to our present computing environments and such traditional anti-virus

techniques are rapidly becoming obsolete. Therefore, Anomaly Detection (AD) should be

explored and used rather than signature-based detection. Also, anomaly-based detection

methods are required to be adopted to detect malicious activities that are increasing

exponentially since the start of this year.

The literature review presented in Chapter two has clearly identified the lack of

existing digital forensic methods and techniques for identifying hidden malware, which

could be either in the form of slack space implantation (physical) or as obfuscated code

(logical) in file content within the NTFS file system.

The first contribution will fill the gap in literature and practice as there is no

standard process, framework or model for conducting a comprehensive forensic

investigation in NTFS slack space (Purcell & Lang 2008). By effectively extract features

of slack space for detecting hidden malware of the first form will be given. Since

malware attackers take advantage of NTFS file system weaknesses and the inability of

existing AV to check the slack space, a guideline to investigate slack space for

identifying known and unknown malware forms a significant contribution of the study.

54

Chapter 3 of thesis provides knowledge, methodology and discusses the analysis

techniques used to successfully detect maliciousness in hidden data and hidden space, by

investigating the NTFS file system boot sector.

Sophistication in malware through code obfuscation has created another challenge

for digital forensic examiners and reverse engineering, namely the detection rate of new

and unknown malware is low rate (Passerini et al. 2009; Stang 2010) and identifying

benign code as malicious, which is termed as false alarm rate, is high (Patcha & Park

2007). Extracting features from the obfuscated executables for reverse obfuscation is

labor intensive and requires deep understanding of kernel and assembly programming.

Chapter 4 and 5 in the thesis provide methodologies, develops fully automated system to

extract two independent features, namely OP code and API function call features for

finding the fingerprint of executable programs and for detection and differentiation of

different files that are either malicious or benign.

A signature-free detection method is proposed to cope with packer, polymorphic

transformations and metamorphic obfuscations of malware, and use knowledge parts for

building better anomaly detection. For effective and efficient solutions, this thesis moves

away from the signature based detection to anomaly based detection. This thesis provides

two solutions to the limitation of signature based detection. First, the detection of

malware uses the knowledge of normal behaviour patterns of the x86 IA-32 operation

codes (op-codes) and a novel algorithm is proposed that combines op-code frequency

statistics and hybrid wrapper-filter based feature selection technique for constructing a

classifier for malware detection, as shown in Chapter 4. Also, hybridized op-code statistics

with novel wrapper-filter based feature selection technique to optimise the process and

55

achieve the desired efficiency for large datasets. Experimental results show that our

frequency-statistics based approach achieves high accuracy ~96%. Second, detection

Malware based uses the knowledge of normal behaviour patterns of the Application

Programming Interface (API) and proposes a five-step methodology for developing a

fully automated system, also, investigates patterns of obfuscated code further using

several data mining techniques aiming to increase the true positive rate, reduce the false

alarm rate. Chapter five has used statistical n-gram analysis, feature extraction, feature

selection, using SVM algorithm of binary content based on system call sequences

together with innovative techniques to classify whether the binary content is benign or

malicious would improve anomaly-based detection. Chapter Six, used the automated data

mining system implemented for this study has achieved high true positive (TP) rate of

more than 98.5%, and low false positive (FP) rate of less than 2%, which has not been

achieved in literature so far. This is much higher than the required commercial

acceptance level indicating that our novel technique is a major leap forward in detecting

zero-day malware.

This thesis also proposed similarity based detection of unknown malware and

obfuscated malware using API function calls features, using various distance measures of

vector models. As shown in Chapter 6 results show that our proposed method is an

effective method to accurately differentiate malware from benign files and, more

importantly, to detect obfuscated malware families.

56

1.10 Roadmap of the Dissertation

The rest of the dissertation is organized as follows. In the next chapter, the background of

study and related work is provided. A literature review of related works is also presented

in Chapter 2 along with the research contribution and significance of the study. Chapter 3

discusses the forensic analysis of the NTFS file system and existing problems

surrounding forensic analysis, such the vulnerabilities identified in the NTFS file system

disk structure and the weaknesses present in the current forensic techniques. These form

the main motivation in proposing the research questions that have been investigated in

this project with the aim to address hidden malware problem in both physical and logical

content of computer systems. Also, the proposed forensic analysis techniques could be

used to detect hidden malware effectively by analysing the internal structure of the NTFS

disk image (physical). Anomaly based detection uses the knowledge of normal behaviour

patterns of the x86 IA-32 operation codes and the proposed novel algorithm that combines

op-code frequency statistics and hybrid wrapper-filter based feature selection technique for

constructing a classifier for malware detection is described in Chapter 4. Chapter 5 presents

an automated method of extracting API call features and analysing them in order to

understand their use for malicious purposes. In addition, a five-step methodology is

proposed for developing a fully automated system to arrive at six main categories of

suspicious behaviour of API call features. The methodology is devised to detect

obfuscated malware by investigating the structural and behavioural features of API calls.

In particular, n-gram statistical analysis of API calls is applied and experimental results

with large datasets have been analysed for performance and accuracy. Chapter 6 has two

detection methods proposed. First, based on similarity detection, this research proposes a

57

new method to identify zero-day malware that is obfuscated from an existing malware

family by employing similarity measures for Nearest Neighbor (NN) search of Windows

Application Programming Interface (API) call features. The second detection method is

anomaly detection, where a data mining framework has been proposed to detect zero-day

malware effectively as it learns through analysing the behaviour of existing malicious and

benign codes in large datasets. Finally, Chapter 7 provides the conclusions of this study,

highlighting the contributions of the research work and recommendations for future work.

58

Chapter 2 : Background of Study and Literature

Review

“Is there any point to which you would wish to draw my attention?"

“The dog did nothing in the night-time."

“That was the curious incident," remarked Sherlock Holmes.

— Sir Arthur Conan Doyle, “Silver Blaze,”

The Strand Magazine (1892)

2.1 Introduction

Currently, the internet is the biggest platform where buyers and sellers of goods and

services transact through an electronic medium. Today‘s society is getting more

dependent on electronic technologies such as smart cards, electronic money, electronic

purse, electronic checks, digital cash, stored value cards and online banking. This has

created opportunities for serious threats to e-security. Cybercriminals facing current

threats to organizations continue to aggressively hunt and develop new techniques to steal

money and credential information, thereby resulting in an exponential rise in cybercrime

year after year (RSA 2011). In the context of crime-ware, malware is the most valuable

resource to perform unauthorized access by cybercriminals (Ghosh & Turrini 2010).

Cybercriminals are using a variety of highly sophisticated techniques to fool,

thwart and evade any commercially available detection engine. Therefore, ‗Free from

danger‘ has become hard to achieve and is a dream for daily internet users. Malware

59

affects the secrecy and integrity of data as well as the control flow and functionality of a

computer system. Escalating increase in commercial and financial transactions conducted

online provides opportunities for cyber criminals to conduct unauthorized access to

digital systems. Criminals use zero day vulnerabilities to conduct their activities and anti-

forensics techniques to evade being tracked (Alperovitch 2011).

Indeed, a review of the history of malware (Ghosh & Turrini 2010; Venkatraman

2009) and anti-malware reports (Symantec Enterprise Security 2010, 2011a, 2011b) and

predictions (Konstantinou & Wolthusen 2008) show a continuous cybercrime growth

thriven in sophistication over the years, and traditional malware detections appear

insufficient to tackle increasingly sophisticated malware. Therefore, the detection of

malware is not only of interest to researchers but is also a major concern to the general

public. Recent trends in malware for such malicious and illegal purposes indicate

increasing complexity and are evolving rapidly as systems provide more opportunities for

more automated activities of late. The damages caused by malware to individuals and

businesses have dramatically increased recently. Hence, this forms the motivation for the

research work to focus on the obfuscated techniques used in the malware in order to

understand their behaviour and find patterns that would aid in detecting unknown

malware. Since malware exploits and uses file system vulnerabilities to infect the

systems, this research start by the growth and attack strategies of malware through an

illustration of Zeus botnets, and identifies the various existing malware detection methods

that fail to combat them. Hence, there is an imminent need for developing new malware

detection techniques for addressing this situation of rapid malware evolution.

60

2.2 Growth in Malware

As the internet plays an essential role in all areas of society, it has major impact on the

economy, with even the military and government functions of a country being targeted by

malware. The Internet now connects billions of computers and has become an easy

platform to implant malware attacks by exploiting vulnerabilities or flaws in software

systems and critical applications so as to intentionally disrupt their use, or to subvert

them for specific purposes. The rapid increase in malware threatens not only individual

computers, but the availability of the Internet itself as systems are being taken control by

the malware without the knowledge of the computer users.

Today the goals of those creating and unleashing malware have shifted, from

simple vandalism and craving for recognition, to financial gain (James 2007; Stolfo et al.

2007). Malicious attacks have become more organized and purposefully directed. Botnets

in particular confirm this trend (Khan et al. 2010). Botnets are armies of remotely-

controlled computers, or zombies. These computers are compromised and then infected

with software robots, or bots, that allow the zombie computers to be controlled remotely

through established command and control channels (C&C). Collectively, under the

control of C&C servers, botnets become powerful and effective slave computing assets

that can be rented for illegal activities. Such activities include phishing attacks, installing

backdoors or rootkits on host systems to obtain private information, sending spam for

advertising, and launching large scale distributed denial-of-service (DDoS) attacks

(Seewald & Gansterer 2010).

61

A recent major malware threat, the Zeus Trojan, a financial malware Zeus botnet,

is a well-known banking Trojan also called Zbot, NTOS, WSNPOEM, or PRG, and

forms the king of financial malware ‗in the wild‘, both in terms of infection size and

effectiveness (Seewald & Gansterer 2010). Furthermore, to date it is the biggest and the

most sophisticated threat to internet security and to most of the detection engines such as

Symantec (Symantec Enterprise Security 2011b) and McAfee (Alperovitch 2011). The

Zeus Trojan is estimated to be responsible for about 90% of banking fraud worldwide

(Alperovitch 2011) and found guilty in 44% of the banking malware infections, with 3.6

million PCs infected in the US alone (Trusteer 2009). Symantec Corporation describes it

as ―Zeus, King of the Underground Crimeware Toolkits‖.

The Zeus Trojan software, with a friendly interface toolkit that is available in

underground online forums for $1,500 – $20,000US, enabling cyber criminals to

configure and create malicious software to affect user systems, allowing them to take

control of a compromised computer, harming the data, logging keystrokes, and executing

unauthorized transactions in online banking. The name Zeus has created a panic in the

world of computers and security experts today. Reports and studies show that since last

year Zeus has been found embroiled in more than half of the banking malware infections

in the world (Bitdefender Antivirus Technology 2010).

The Zeus Trojan primarily carries a very light footprint and is designed to steal

sensitive data stored on computers or transmitted through web browsers and protected

storage (Alazab, Watters, et al. 2011). Once infected, the computer sends the stolen data

to a bot command and control (C&C) server via encrypted HTTP POST requests, where

the data is stored (Alazab, Watters, et al. 2011). Also, it allows cybercriminals to inject

62

content into a bank‘s web page as it is displayed in the infected computer browser in real

time. It is setup such that the stolen data is sent to a ―drop server‖ controlled by an

attacker called a botmaster and it allows cybercriminals to control the infected systems

remotely. Moreover, Zeus is highly dynamic and applies obfuscation methods such as

polymorphic encryption and metamorphic in a network of bots. In each infection, it re-

encrypts itself automatically to create a new signature to defeat signature-based detection

that makes the signature difficult to comprehend (Alazab, Venkatraman, et al. 2011).

However, The Windows Zeus is increasingly hard to combat as it can successfully evade

commercial detection engines and is able to hide malicious features such as string and

API function calls. Zeus trojan is still developing and it has versions and new plugin

releases that can also infect latest operating systems such as Windows 7 and Vista.

As a fresh threat, according to numerous research labs and hacker forums, the

Zeus botnet recently has combined with the new release of 2010 ‗SpyEye Trojan‘ source

codes to create more sophisticated bots and takes the malware threat to a new level

(Maria 2011). This new toolkit is being reported to be currently available for purchase in

the underground market and version 1.4.1 has been published on January 11, 2011

(SPAMfighter News 2011). The new version of the combination has two versions of a

control panel used for committing fraud and managing compromised systems. Three

trends, including the growth of the Internet connectivity, system extensibility and

complexity, contribute to the growth and evolution of this problem (RSA 2011). The

mono-culture nature of current both hardware and software makes it fairly possible to

exploit a vulnerability which will infect a large number of host computers. The increasing

connectivity of computers via high-speed Internet connections increases the visibility of

63

vulnerable systems and exposes them to these attacks (Altunaya et al. 2011). These

trends indicate that self-learning and self-updating by observing system anomalies and

behaviour patterns is much warranted in malware detection systems of the future

(Venkatraman 2009).

Popularity of the Internet is growing day by day and millions of users are

connected to each other on a daily basis. At the same time malicious activity is also

growing with increasingly profit-driven motives and sophisticated evasion techniques.

High speed data services, cheap broadband, low-cost mobile computing, remote access

using online banking, Instant Messaging (IM), Internet Relay Chat (IRC), Common

Internet File System (CiFS), Simple Mail Transfer Protocol (SMTP) programs that

support Hypertext Markup Language (HTML), scripting, Peer-to-Peer (P2P), as well as

new operating systems with vulnerabilities, have all helped cybercriminals to propagate

their malicious code faster and even helped them to create highly effective malware in a

way those malware can thwart the detection engines.

Creating and producing malicious code is not done only by malware writers, but

there are also, malware kit vendors (Komisarczuk 2010) such as Zeus, exploit kits,

Flesta, MyPolySploit, Limbo2 and SpyEye. These kits are used to create highly effective

malware, serving as new offspring of malware. The new market for malware creation

software on-sale is widely available on the internet and can be found easily using Google

and other search engines. Malware kit or ‗crime ware‘ is being offered for sale on

underground trading forums and IM for negotiation (Emigh 2006). Apart from

purchasing these kits, one could also buy the updates for the kit thereby ensuring and

guaranteeing it as a reliable ongoing business. Likewise, cybercriminals are being hired

64

in underground markets with even after sales services and offers of guaranteed

effectiveness of evading security countermeasures (Danny 2010). As a result,

cybercriminals update the construction kits to suit the needs of their client base to stay

ahead of their contenders.

"Full ZeuS Souurce code of last v2.0.8.9 (includes everything).

Requires MSVC++ 2010. You can create your own HWID licenses and much

more".

According to the Internet Crime Complaint Center (IC3)
2
, malware are evolving

rapidly more recently. A study conducted by University of Maryland  shows  that on an

average, a  computer  connected to  the  Internet  may experience an attack every 39

seconds. Equally important in the first quarter of 2010, another experiment conducted by

the San Diego Supercomputer Center (SDSC) shows that an average of 27,000 hacking

attempts were made per day. Since 2010, these figures have grown exponentially (Ghosh

& Turrini 2010; Komisarczuk 2010; RSA 2011).

Currently, known malware can be recognized by all of the popular AV engines.

However, attackers continually develop new techniques for creating malware that cannot

be detected by AV engines. Once new malware is released, the AV engines will

eventually update their signatures to combat the new malware. The growing size of the

signature databases illustrates the mounting threat of malware. In February 2006,

BiDefender Antivirus (Technology 2006) published that it had over 270 thousand

malware signatures in its database. In 2009, Symantec Internet Security Threat Report

announced that malware activity continues to grow at a record pace, and there are over

1.5 million new malware instances, mostly developed in 2008 (Symantec Enterprise

65

Security 2009a). The increasing size of malware signature databases forces AV engine

researchers and developers to think about more effective methods to check the signatures

rather than traditional signature based techniques. Another reason for the growing sizes

of the signature databases is that new malware propagation mechanisms are being

adopted, rather than attempting to produce totally new malware. All types of malware

such as worms, rootkits viruses, script viruses, trojans, macro viruses, backdoors,

spyware, key loggers, etc. are being recycled to produce new variants of old malware.

Symantec Internet Security threat published report in 2011 (Symantec Enterprise Security

2011b) and 2010 (Symantec Enterprise Security 2011a) announced that the malicious

code activity continues to grow at a record pace, and there are over 2.8 million new

malicious code signatures, mostly developed in 2009. Other sources show the escalating

infection rates with almost 120 million servers identified to be infected in the first quarter

of 2010, with 64% of which were attacked by unknown malicious code (Komisarczuk

2010). Recently, McAfee Labs identified almost 60,000 new pieces of malware per day

and showing the sophistication in malware that makes their detection very difficult

(Alperovitch 2011).

In 2004 Marx revealed that the AV engines need an average of ten hours to

respond with a publicly available update (Marx 2004). The spread of malware instances

can be extremely fast, with some infections requiring only a few seconds (Staniford et al.

2004). In December 1999, experiments conducted by the San Diego Supercomputer

Center, where an operating system was installed and connected to the internet with no

security updates, the computer was attacked just within eight hours of installation, this

contrast with an attack every 39 seconds (General Information Security Statistics 2004).

66

After 21 days of installation, the system had experienced 20 different attacks and within

about 40 days the computer had been compromised. In another case, when PSINet

Europe purposely built an unprotected server and connected it to the Internet in

2003, their results were astonishing: in the first 24 hours the server was maliciously

attacked 467 times and a total of 626 malicious attacks were recorded over the three week

period (Eisner 2003; James 2007). More recently, these figures have grown exponentially

(Alperovitch 2011; Maria 2011; Yao & Liu 2011).

In summary, new malware with variants or obfuscations from existing known

malware are generated rapidly and are used to attack systems that are vulnerable to inflict

as many systems as possible before AV companies are able to take any countermeasure.

Hence, it is a very important requirement of a robust malware detection technique to

handle obfuscating transformations. Sections 2.3 to 2.6 provide a literature survey of

various commonly adopted detection techniques.

2.3 Conventional Malware Detection

Malware detectors are used to scan a computer system to identify malware, with the main

purpose of preventing it from adversely affecting the system. In order to protect

computers AV engine must perform three main tasks: Scanning, Detection, Removal

(Bakshi et al. 2010). A Malware detector (D) is defined as a function whose domain and

range are the set of executable program (p), and its duty to determine executable program

is malicious or benign D: P → malicious, benign. Modern and traditional AV engines

scan the programs (p) in a system for a byte sequence or malware signature (s) that

matches with the stored database engine. If a signature is found in the program (p), it

67

will be identified as a malware, otherwise it is declared as benign, and this is represented

in the equation 2.1.

 () {

 ()

The malware signature is a byte sequence (a number derived from a string of text)

that uniquely identifies a specific malware. An example malware signature for

VirusWin32.Bolzano malware is shown in Figure 2.1 (a) Virus.Win32.Bolzano‘s source

code (b) Virus.Win32.Bolzano‘s signature. Typically, a malware detector uses the

malware signature to identify the malware like a fingerprint. Most countermeasures such

as anti-malware engines are supplied with a database containing information of existing

malware in order to identify maliciousness by looking for code signatures or byte

sequences while scanning the system (Marx 2004; Townsend 2010). A malware detector

scans the system in various locations for characteristic byte sequences or signatures that

match with the one in the database and declares existence of malware, and subsequently

blocks its access to the system. The process is called signature-based detection and most

traditional AV engines use this method (Chouchane & Lakhotia 2006). It is a very

efficient and effective method to detect known malware. The major drawback of this

method is the inability to detect new or unknown malicious code and zero day attacks

(Sung et al. 2004; Xu et al. 2004). Therefore, updating the detection engine or AV

software daily with latest malware signatures is essential so as to protect the computer

system against all known malware. The more malware signatures are fed into the AV

engine, the more effective it is in detecting latest known malware. Since hidden and

obfuscated malware apply sophisticated evasion techniques, signature-based AV engines

68

fail to detect them. Symantec software has announced in its websitethat LiveUpdate is the

most trusted way of updating virus definitions, but not for unknown malware (Symantec

Enterprise Security 2011a, 2011b).

The new threat for computers is that the malware writers can change the byte

sequence of the malcode without affecting the objective of the code, by using obfuscation

techniques such as packing, polymorphic transformations and metamorphic obfuscations,

instead of creating an entirely new malware (Tang et al. 2010). Signature based AV

scanners will not be able to detect these new malware due to the non-existence of their

fingerprints in the signature database. Hence, there is a need to capture the behaviour of

malware based on anomalies or behavioural patterns exhibited by such hidden malware,

which is the main focus of this research work (Chandola et al. 2009).

Due to the growing size of the malware signature database, many AV software

developers and researchers working on malware detection have suggested major changes

in the scanning algorithm such as, i) using an expert system based on Artificial Immune

System (AIS) method (Dasgupta 1997), ii) using I/O Request Package (IRP) sequences

(Zhang et al. 2010), iii) using protocol-level malware scanner (Shetty 2004) to scan data

that is being transferred or downloaded to a computer system at the protocol level, iv)

using disk processor to monitor disk requests to identify malicious programs based on

characteristic properties of the disk requests (Paul 2008), and v) using scanning of

multiple parts of a file to perform diffraction analysis for detecting polymorphic malware

similar to X-RAY scanning (Perriot & Ferrie 2004).

69

Although signature based detection is one of the well-established methods by AV

engines, there is a need to resort to the above mentioned behaviour based methods as

signature based detection suffers from the following drawbacks:

- High false positive: This occurs by identifying benign files as malware. In May, 2007,

Symantec updated their malware signatures and crippled thousands of Chinese PCs by

mistakenly identifying two core Windows.dll files as Trojan horse that Symantec

dubbed "Backdoor.Haxdoor‖ (Keizer 2007).

- High false negative: from failing to detect unknown or new malware (Paul 2008).

Virus.Win32.Bolzano’s source code

B8 F2070000 MOV EAX,7F2

03C5 ADD EAX,EBP

E8 0D000000 CALL 0041158D

B8 07080000 MOV EAX,807

03C5 ADD EAX,EBP

E8 01000000 CALL 0041158D

C3 RETN

(a) Win32.Bolzano‘s source code

Virus.Win32.Bolzano’s signature

B8F2 0700 0003 C5E8 0D00 0000

B807 0800 0003 C5E8 0100 0000 C3

Figure 2.1 (a) Win32.Bolzano‘s source code (b) Win32.Bolzano‘s signature

 (b) Win32.Bolzano‘s signature

70

Even though the quality of malware detectors used in popular AV software and

anti-forensic methods is improving in their techniques, from virus signature-based

detection towards heuristic-based detection, the malware cyber criminals are one step

ahead (Ghosh & Turrini 2010; Venkatraman 2010).

2.4 Modern Detection

Countermeasures such as detection engines are responsible for detecting malicious code

and classify the detected code based on the effects of that code to fall under categories

such as viruses, worms, Trojans, spywares, adware, etc. Different detection engines such

as the traditional signature based detection and heuristic based detection have evolved

(Daoud et al. 2008). Malicious authors, in order to avoid signature based detection

approaches, adopt a number of stealth techniques. Due to the inability of traditional

signature based detection approach to detect obfuscated malicious code, the focus of

research has shifted to improve heuristic based detection (TreadwellZhou & Zhou 2009).

2.4.1 Heuristics Based Detection

Heuristic methods can be static or dynamic, with recent malware detectors using

signature based detection along with heuristics to detect variants of existing this

heuristics approach is dependent on the behaviour of the malware (Symantec Enterprise

Security 1997). Usually, malware authors design their malicious code to achieve a set of

malicious functions; therefore, each piece of malware is unique. Heuristics approaches

use certain base rules that determine the proper functioning of the system, its stability and

data integrity.

71

Heuristic detection is successful in detecting new malware that are generated by

applying toolkits on the known viruses, worms or Trojans to generate thousands of new

malware from the same malware, each one distinct but belonging to the same family.

Hence, heuristics based detection is good to identify threats belonging to the same family

and useful for detecting macro viruses (Konstantinou & Wolthusen 2008). For instance,

when ‗NewVirus‘ comes out, the definition created to detect it will also successfully

identify ‗NewVius.b‘, ‗NewVirus.c‘, ‗NewVirus.d‘, and so on. For example, the Vundo

Trojan that is designed to drop Adware onto a compromised system, has several family

members. Symantec categorises the Trojan into two distinct families, in 2007

Trojan.Vundo (Symantec Enterprise Security 2007), and in 2009 they were realized to be

from the same family and the new malware was termed Trojan.Vundo.B. (Symantec

Enterprise Security 2009b). The only issue of this detector is the false positive rate is

high, where it could identify a non-malicious file as a malware.

Researchers have proposed a heuristic detection approach that targets obfuscated

windows binary files being loaded into memory researchers (TreadwellZhou & Zhou

2009). They look for anomalies, such as Original Entry Point (OEP) with Entry Point

code that starts with a JMP or CALL, or suspicious imports from KERNEL32, or

multiple PE Headers, or Patched Import table that has incorrect calculated SizeOfCodem,

SizeOfData and SizeOfImage in the header. All of these methods could be used by

malware authors and heuristics based detection can detect them within the existing

malware families.

Due to the high false alarm rate, heuristics based detection is believed to work

well when combined with another detection technique such as signature based detection

72

(Yang et al. 2010). Results of other detection techniques used to support heuristics based

detection (Konstantinou & Wolthusen 2008). However, a malware author could write

malicious code that does not fire the rules to cause damage.

2.4.2 Behavioral Based Detection

Behavioural detection is the recent trend for anti-virus softwares and does not rely on

signatures to detect malware. This detection is a dynamic analysis technique that

observes the behaviour of a program by executing it in a sand-box environment in order

to analyze the file during runtime. Whenever the behaviour of the malware seems

―suspicious‖, it is flagged as malware and action will be taken. Behaviour based detection

requires a templates or profile of suspicious behaviour (Govindaraju 2010a, 2010b). In

other words, the templates or profile of the malware becomes its signature. Thus

behaviour based detection technique is a kind of signature based detector except that the

signature here is the functionality of the malware. This detection has two detection

schemas (Jacob et al. 2008). First is Passive detection, which scans computer files to see

if there are any deviations from the normal profile. Second is Active detection, which

uses a sandbox to monitor the behaviour of a program.

It is important to mention here that the recent malware is using code obfuscation

methods that combine static evasion along with dynamic evasion techniques. However,

the issue of the behaviour based detection approach is the high false positives, where a

non-malicious file identified as malware is also not desired. The false positives are due to

the fact that it is usually difficult to define malicious behaviours in an accurate way

(Fukushima et al. 2010).

73

2.4.3 Semantic Based Detection

A semantic analysis technique is used when the malcode is responsible to determine the

malicious nature of the code. A signature is created based on the semantic property of the

code (Christodorescu et al. 2005; Preda et al. 2008). The idea of this detection method is

used for creating signature based on program functionality, and not based on the byte

sequence of the program.

In 2005 Christodorescu et al. state that the fundamental deficiency in the pattern-

matching approach to malware detection is that it is purely syntactic and ignores the

semantics of instructions (Christodorescu et al. 2005). Therefore, they proposed

semantics-aware malware and put forward a malware detector that is able to handle some

of the obfuscations commonly used by hackers. Experimental evaluation has shown that

semantic detection can detect variants of malware with a relatively low run-time

overhead.

Since code obfuscation techniques, as shown in Section 2.6, change the malware

signature but not its behaviour, which has to be preserved, formal methods for program

analysis, such as semantics-based static analysis and model checking, could be used in

designing more sophisticated malware detection algorithms (Kong et al. 2010). Semantic

based methods are able to deal with obfuscated versions of the same malware, such as

identifying similarities through their execution traces (Preda et al. 2008). However,

malware developed using code transposition and instruction substitution techniques can

still evade semantic based detection methods.

74

2.4.4 Hidden Markov Model Based Detection

Hidden Markov models (HMMs) have been extensively used in biological sequence

analysis as it is well suited for statistical pattern analysis. Since 1970, it is used to

analyze and understand a Markov process and provide a result based on a series of

observations related to the process (Krogh 1998). HMM is a state machine where the

transitions between states have fixed probabilities, and it relies on the current situation

and does not consider any past situation.

In recent years, it has been shown that the detection of metamorphic malware is

very effective using Markov models applied to malware detection (Wing Wong 2006). In

addition, it is also been used to determine malware family (Camastra et al. 2011).

Hidden Markov models provide a means to describe sequence variations

statistically. On the other hand, Profile Hidden Markov Models (PHMM) is known for

their success in biological sequence analysis. It has been found that PHMM can

effectively detect metamorphic malware as well (Attaluri, S. & McGhee 2009;

Govindaraju 2010a, 2010b).

In 2007 and 2009, Attaluri showed that PHMM can be successfully used to

detecting metamorphic malware, they still need to use machine learning concept of

having good and better accuracy (Attaluri, Srilatha 2007; Attaluri, S. & McGhee 2009).

2.4.5 Similarity Analysis

Similarity analysis is a detection method based on the analysis of similarities of distance

measures. Distance measures play an important role in a vector model, and similarity

75

analysis can be performed by using three commonly used distance measures, namely

Euclidean, Manhattan and cosine similarity measure for nearest neighbor (NN) that is

primarily used in text mining. In short, the maliciousness of a code is estimated (Shabtai

et al. 2009). For instance, malware such as Win32.Evol (Orr 2006) has a multiple variant

of the same sample malware because of the obfuscation methods. Similarity based

detection approach can be used between the variants to check whether the variant is the

child of the sample under inspection (Alazab 2011). Understanding the relationship used

among the distance measures can help us to choose a proper distance measure for

malware detection.

Usually similarity detection is conducted by performing static analysis, where the

executable program is first disassembled using reverse engineering tools. Each

disassembled executable (P) and the variant disassembled executable (P’) represent a

vector of functions x, y, each function is represented as an array of vector of functions.

The similarity between the functions of a program P and P' is computed. The value is

then compared with the threshold value to determine if the executable is malicious or not.

2.5 Malware Analysis

Detection techniques can be in static, dynamic or hybrid forms. Static analysis uses the

syntax and structural properties of the file. Dynamic analysis is also called Process Under

Inspection (PUI) method, which means the analysis of the files during its running time.

Hybrid analysis combines static with dynamic analysis. Theoretically, a static analysis is

very effective on the information captured from structural properties, like sequence of

bytes ―signatures‖ and anomalies in file content. Since dynamic analysis is only effective

76

with runtime information, such as running process of the PUI, and these are usually

evaded by hidden malware, in this research the focus is on static anomaly based detection

with the prime objective of identifying hidden malware (Egele et al. 2012).

Even though live analysis techniques could help in capturing evidence during

forensic investigations to a certain extent, they are far from infallible and lead to false

negatives of hidden malware. In live analysis, malware such as rootkits can hide and

change itself without being seen. Moreover the attackers can target hidden area on the

system structure to hide the malware.

Static analysis techniques analyze the code of a program without executing it. To

perform static analysis on binary code, the binary code is required to be disassembled

first, in other words converted into corresponding assembler instructions. Next,

conclusions about the program behaviour can be derived by applying various control flow

and data flow analysis techniques. The advantage is static analysis can exhaustively

analyse the complete program code by examining all possible paths of execution. It is

usually faster than the dynamic analysis as behaviour analysis is quite time consuming in

dynamic analysis, where the system state keeps changing. However, the main drawback

of static analysis is that attackers can deliberately craft malware that are hard to analyze

statically. In particular, they can make use of various code obfuscation techniques to

confuse the disassembly and code analysis. This problem is being addressed in this

research work.

In (Islam et al. 2010) authors used pattern recognition algorithms and statistical

methods, theirs framework combines the static features of function length and printable

77

string information extracted from malware samples into a single test of 1400 unpacked

malware and 151 clean files, they achieved an overall classification accuracy of over

98%. Same authors in theirs study (Tian et al. 2010) to distinguish malicious files from

benign files on a dataset of 1368 malware and 456 benign files by investigating the

behavioural features using logs of various API calls, using runtime features of malware

files, the experimental results provided an accuracy of over 97%.

2.6 Code Obfuscation

Code obfuscation is used to transform the program code in such a way to make it difficult

to read and understand. Detecting malware is a game of obfuscation and de-obfuscation

that malware writers and AV vendors play against each other. The malware writers use

obfuscators to evade detection, while, AV vendors try to deobfuscate code and improve

their detection techniques. Recently, this game has become more advanced and highly

complicated for AV vendors, preventing them from de-obfuscating the code easily. One

such successful approach being adopted by malware writers is the evasion technique such

as polymorphism (Szor 2005; Townsend 2010), metamorphism (Wing Wong 2006) and

packing (Sun et al. 2010), where the malware is able to morph code such that detection

techniques fail. Packers, metamorphic and polymorphic malware use command

sequences that can be altered into a program without changing the main behaviour to

evade the scanning process of the signature detection of malware. Example os this type of

malware include MetaPHOR, Win32/Simile (MetaPHOR 2010), Lexotan32 (Orr 2007),

W32.Evol (Orr 2006), RPME and Mistfall / Zmist (Ferrie & Szor 2001; Szor 2005).

These are advanced obfuscated malware that demonstrate a set of packer, polymorphic

78

and metamorphic code writing skills, which include entry-point obscuring, randomly

using an additional polymorph decryptor, code permutation and code integration.

The term 'obfuscation' is defined here to mean the modifying of program code in a

way that keeps it functionally identical with the aim to reduce vulnerability to any kind of

static analysis, to deter reverse engineering and make it difficult to understand, and less

readable. Obfuscation techniques such as packing, polymorphism and metamorphism are

used by malware authors as well as legitimate software developers. They both use code

obfuscation techniques for different reasons. Using code obfuscation is very effective to

malware author to evade the antivirus scanner since it modifies the program code to

produce offspring copies which have the same functionality but with different byte

sequence to make sure the new code is not recognized by antivirus scanner. By looking at

real world threats such as Win32/Parite, Win32/Rimecud, Win32/Alcan, Win32/Rbot,

Win32/CeeInject, Win32/Nachi Win32/Bagle, and many others, it has been found that the

malware writers are recycling existing malware with different signatures by using

obfuscation techniques such as packing, polymorphic transformations and metamorphic

obfuscations, instead of creating an entirely new malware (Paul 2008). Because of such

threats, sophisticated malware detection techniques are required, especially those that can

capture the behaviour of malware based on observed anomalies.

Obfuscation methods could transform malcode into a new code without affecting

the original functionality or purpose so that the AV engine‘s scanning process skips the

detection of the signature. The VX Heavens website provides access to thousands of

thousands of malware variants in a variety of different categories (VX Heavens 2011).

79

For each malware variant, a signature must be identified, packaged, and downloaded to

the signature database of users expecting protection from the new attack.

Malware authors are continually developing new techniques for creating and

applying obfuscation techniques T(p) on a malware program (p) to produce an obfuscated

program (p') as shown in the equation 2.2

 () ()

Thereby making it very difficult to reserve engineer and decipher the signature

successfully, even though the two programs p and p' have the same functionality and

exhibit the same affect. On the other hand, since p and p‘ have different byte sequence,

AV engines and reverse engineers are applying de-obfuscation techniques D(p') on the

obfuscated program (p') in order to analyse the malware and to detect the malware, as

shown in Figure 2.2. In summary, malware authors use obfuscation techniques to defeat

the signature based detection by changing the malware signature. These techniques are

described next.

Figure 2.2 Obfuscation Transformation

80

2.6.1 Packing

Recently, malware authors have used packers to avoid detection and to run malware

faster. This results in mainly changing any byte sequence in the PE into a different byte

sequence in the newly produced packed PE. Packing the malware makes the obfuscation

method difficult to understand (Sun et al. 2010) and the malware authors only need to

change a small number of lines of code in order to change the malware signature.

Packers are commonly used today for code obfuscation or compression. Packers

are software programs that could be used to compress and encrypt the PE in secondary

memory and to restore the original executable image when loaded into main memory

(RAM). Cyber criminals do not need to change several lines of code to change the

malware signature mainly because, changing any byte sequence in the PE results in a new

different byte sequence in the newly produced packed PE and starts from its original

entry point (OEP) so that the challenge here to find the OEP. For instance, Themida
i
,

Obsidium
ii
, ASPack / ASProtect

iii
, PECompact

iv
, and Armadillo

v
 are all commonly used

packers and malicious code authors are using such packers to produced new codes.

Figure 2.3 explain three different packer protections (a) PECompact (b) Themida (c)

ASPack. Packers have the essential features of reducing the size of malware, making

malware easier to transform, and thereby producing malware more resistant to static

analysis. Hence, packers being able to bypass detection engines have become the most

favorite toolkits.

i
 www.oreans.com

ii
 www.obsidium.de

iii
 http://www.aspack.com

iv
 http://www.bitsum.com/pecompact.php

v
 www.siliconrealms.com

http://www.oreans.com/
http://www.obsidium.de/
http://www.aspack.com/
http://www.siliconrealms.com/

81

2.6.2 Polymorphic Malware

Polymorphic malware uses encryption to change the body of the malware, and changes

decryption routines in each infection to avoid static byte sequence and as long as the

encryption keys change, the malware becomes difficult to detect by anti-malware

programs (Tang et al. 2010; Xu et al. 2004). This has led AV programs to use different

scanning techniques, from simple byte sequence matching to more complex techniques

such as X-RAYING scanning (Perriot & Ferrie 2004), which scan multiple parts of a file

and performs different analysis to detect polymorphic malware. Polymorphic malware is

hard to detect through signature based detection since it could change the byte sequence

on its own. Such examples are s W32.Fujacks, W32.Vundo, P2P-Worm.Win32.Polip,

Virus.DOS.Chameleon, and w32.Detnat (Gu et al. 2007; Li et al. 2011). Figure 2.4

shows a polymorphic code example of P2P-Worm.Win32.Polip.

Polymorphic technique enables a malicious program to mutate at byte level when

the program creates a copy of itself, where every new copy of the malware is encrypted

with a unique key, which contains a unique byte sequence. Anti-malware vendors are

confronting a serious problem of defeating the complexity of malware. Polymorphic

malware uses encryption and data appending/ data pre-pending in order to change the

body of the malware, and further, it changes decryption routines from infection to

infection as long as the encryption keys change, making it very difficult to create

antivirus signatures to block infections. Crime-ware tool kits such as CRUM Cryptor

Polymorphic, PoisonIvy Polymorphic Online Builder and Mariposa, use polymorphic

code and obfuscation techniques to avoid detection, and are available in black-market

82

with updates for between $50- $10000 depending on the features included (Alazab,

Watters, et al. 2011). As a result, this will lead to anti-malware experts developing

different scanning techniques from simple byte sequence matching to a combination of

difficult antivirus engines to block its numerous propagation techniques. In early 2011,

Symantec Internet Security Threat Report (Symantec Enterprise Security 2011a, 2011b)

stated that detecting polymorphic malware such as w32.Polip and w32.Detnat is much

more difficult and complex than any other type of Malware. The uses of simple scanners

have made this type of obfuscation prolific and pose to continue the threat.

Countermeasures such as AV engines defeat the polymorphic methods by waiting

for the malware to de-obfuscate itself. Malware detection system can run a malware in a

sandbox or emulators (Balakrishnan & Schulze 2005) in order not to cause any damages

or affect the system. As the malware executes, it must decrypt itself to attempt to infect a

file and therefore the emulator can scan for the malware signature when the malware

decides to execute. However, this technique can still thwart the detection engine and the

encryption algorithms have become sophisticated and complex that it becomes very hard

to detect such malware in real time. These types of new obfuscation mechanisms such as

Web-attack toolkits continue to drive up the number of malware variants in common

circulation. In 2010, Symantec encountered more than 286 million unique variants of

malware (Symantec Enterprise Security 2011a).

83

(a) Packer protection from PECompact

(b) Packer protection from Themida

(c) Packer protection from ASPack

Figure 2.3 Different Packer Protections (a) PECompact (b) Themida (c) ASPack

84

Figure 2.4 The Polymorphic Code Example of P2P-Worm.Win32.Polip

The creations of polymorphic malware toolkits such as Mutation Engine, Dark

Angel‘s Multiple Encryptor, NuKE Encryption Device, and TridenT Polymorphic

Engine, have created big challenges for security researchers and AV engines (Li et al.

2011). Generally the polymorphic malware toolkits engine, a small object file linked with

the malware that would make a new polymorphic virus. The code entitles the users to

provide their own random number generator or can use the default one. Also, these

toolkits provide a documentation of the engine which describes how it could be used and

it also includes a demonstrator malware using the engine.

85

2.6.3 Metamorphic Malware

Malware authors resort to sophisticated hiding techniques. Metamorphic engine uses

code obfuscation techniques to produce morphed copies of an original program (Desai

2010; You & Yim 2010). It changes the code itself without the need of using encryption.

In general, there are four techniques commonly used for metamorphic obfuscation. These

are,

i) Dead-code Insertion which inserts operation that do nothing, such as a sequence

of NOPs (No Operation Performed),

ii) Code Transposition which changes the instruction sequence, such as using

JMPs instructions so that the order of instructions is different from the original

one,

iii) Register Reassignment such as replacing [PUSH ebx] with [PUSH eax] to

exchange register names, and

iv) Instruction Substitution which replaces the instructions with different

instructions so as to have the same result - some authors uses a database

dictionary of equivalent instruction sequences to make it easier and faster.

Subsections explain each one in details.

The main difference between polymorphic and metamorphic is in the malware

body. In polymorphic, the malware is encrypted by different encryption key during each

infection and the malware body will decrypt by the same code across multiple infections.

Metamorphic could use many techniques to transforming the code as shown in the

86

subsections below. Win95.Regswap was one of the early metamorphic viruses to make an

impact via register usage exchange (Aycock 2006; Bakshi et al. 2010; Desai 2010; You

& Yim 2010). Figure 2.5 shows the original code of Virus.Win95.Regswap. An example

of metamorphic techniques used on the original virus code is described in the subsection

that follows.

Figure 2.5 Original code of Virus.Win95.Regswap

2.6.3.1 Dead Code Insertion

Dead-code insertion also known as trash insertion, involves insertion of code that does

not change the malware behaviour such as a sequence of NOPs (No Operation

Performed). Dead codes are designed to evade detection and fool antivirus software that

87

use basic signature-based detection matching. This is illustrated in Figure 2.6 (You &

Yim 2010).

Dead-code Insertion, which does nothing to the code logic but change the byte

string of the code can be difficult to detect such as changes in the code using complicated

code of sequence of operations if the function or code has no effect, used to change the

virus signature to some extent. Examples; [NOPs], [MOV eax, eax], [SHL eax, 0], [ADD

eax, 0] and [INC eax] followed by [DEC eax], not only, also passing values through

memory rather than registers. Using such tricks of dead code insertion can make the

analysis time consuming and sometimes fail the detection engine to detect such

threat(Christodorescu & Jha 2004).

Figure 2.6 Dead–Code Insertion

88

2.6.3.2 Code Transposition

Code transposition shuffles the instructions so that the order in the binary content is

completely different resulting in a new signature than the one used by the antivirus

software and this could evade detection. Transposition use Jump instructions to shuffle

the binary content. Figure 3.3.2 shows an example of code transposition. There are some

scenarios that show how to detect this type of obfuscated such as, reorder the instructions

and insert unconditional branches, or jump instructions to restore the original control.

This is then followed by swap instructions if they are not interdependent. Most analysis

techniques use an intermediate representation, such as the Control Flow Graph (CFG)

(Bruschi et al. 2006) or the Program Dependence Graph (PDG) (Ferrante et al. 1987),

that is robust against superfluous changes in control flow.

Code Transposition such as Subroutine Permutation, Subroutine Inlining and

Subroutine Outlining, results in changing of the instructions such that the order of

instructions is different than the parent code, with the use of instructions such as using

JMP, CALL instructions as shown in Figure 2.7 and Figure 2.8 (You & Yim 2010).

89

Figure 2.7 Code Transposition based on Unconditional Branches

Figure 2.8 Code Transposition based on Independent Instructions

90

2.6.3.3 Register Reassignment

The register reassignment transformation replaces code between registers by exchanging

register names with no other effect on program behaviour. For example, if register ebx is

dead throughout a given live range of the register eax, it can replace eax in that live

range. The signature that encodes [PUSH ebx] is not the same as the one that encodes

[PUSH eax] and hence becomes obfuscated. Register Reassignment such as replacing

[PUSH ebx] with [PUSH eax] to exchange register names is shown in Figure 2.9.

Figure 2.9 Register Reassignment

2.6.3.4 Instruction Substitution

This obfuscation technique uses a dictionary of equivalent instruction sequences to

replace one instruction sequence with another. Figure 2.10 shows an example of

91

instruction substitution (You & Yim 2010). This kind of obfuscation relies upon human

knowledge of equivalent instructions, making it a challenge for automatic detection of

malicious code. For example, the IA-32 instruction set is rich and contains many different

ways to perform the same operation. The IA-32 assembly language provides ample

opportunity for instruction substitution. Instruction substitution uses an equivalent code

substitution to replace the instructions by different instructions with the same result.

Some authors use a database dictionary of equivalent instruction sequences to make it

easier and faster, as shown in Table 2.1.

Figure 2.10 Instruction substitution.

92

2.7 Summary of Literature

In summary, signature based detection is disadvantageous as it cannot be used to detect

novel attacks and the repository of known signatures has to be continually augmented to

include newer signatures. Evidence has shown that new attacks are frequently generated

through modifications of known attacks. The present malware detection system usually

rely on existing malware signatures with limited heuristics and are unable to detect those

malware that can hide itself during the scanning process in online systems. In this

dissertation, will be focus on develop a robust digital forensic process for NTFS file

system, and then to design and apply innovative techniques for fulfilling the main

objective of detecting hidden malware, also propose effective digital forensic techniques

that could be used to analyse and acquire evidences of hidden malware in NTFS disk

images is very important.

Literature studies on malware detection have shown that there is no single

technique that could detect all types of malware and countermeasures cannot detect

Table 2.1 Instruction substitution and an equivalent code substitution

Instructions Equivalent

MOV EAX,ECX XOR EBX,EAX

MOV EBX,EAX XOR EAX,EBX

MOV ECX,EBX XOR EBX,EAX

XOR EAX, EAX MOV EAX, 0

MOV EAX, IMM
PUSH IMM

POP EAX

OP REG1,REG2

MOV MEM, REG1

OP MEM, REG2

MOV REG, MEM

93

unknown malware or unknown signatures which are uniquely identify a specific malware

(Christodorescu & Jha 2004; Skoudis & Zeltser 2003). Therefore, signature based

approaches fail to detect unknown malware. On the other hand, anomaly-based detection

uses the knowledge of normal behaviour patterns to decide the maliciousness of a

program code. It has the key advantage and ability to detect zero day attacks. However,

it is very difficult to accurately specify the system or program‘s behaviour and thus these

approaches usually are resulting in more false positives (Kolter & Maloof 2006;

Symantec Enterprise Security 2011b).

As shown in the advanced malware, the malware obfuscation technologies have

become sophisticated and complex. Clearly, such a tendency is expected to be retained

based on the growth of the hardware and software technologies. Also, they will be

revised to be suited for the popular infrastructures such as web and smartphone.

The purpose of the research is a positive step towards overcoming the digital

forensic problems identified in the above sections. The possible approaches and methods

that would be adopted in this research are detailed in Chapter 3, Chapter 4, Chapter 5 and

Chapter 6. In a nutshell, these methods are categorised under 2 parts, i) Digital Data

Investigation of Slack Space (Physical) Chapter 3 and ii) Obfuscated Malware Detection

(Logical) Chapter 4, Chapter 5 and Chapter 6. The first part involved investigation of the

hidden malware in the slack space for identifying known and unknown malware as

malware attackers take advantage of the NTFS weaknesses and the inability of existing

AV to check the slack space. In the second part, a statistical n-gram analysis of binary

content that is based on operation codes (op-codes) and API system call sequence feature

together with the data mining learning techniques such as support vector machine (SVM)

94

algorithms were used to classify whether the binary content is benign or malicious These

proposed methods are quite novel and would help in identifying hidden malware with a

focus on an improved anomaly-based detection.

95

Chapter 3 : Forensic Analysis of the NTFS File

System

Sherlock Holmes: “The world is full of obvious things which nobody by any

chance ever observes”.

 —Sir Arthur Conan Doyle, “The Hound of the Baskervilles,”

 The Strand Magazine (1902)

“Not everything that is undocumented is automatically useful…

Some operating system internals are just internals in theirs

Strict scene, that is, implementation details.”

— Sven Schrieber

3.1 NTFS File System

Forensic analysis of the Windows NT File System (NTFS) could provide useful

information leading towards malware detection and presentation of digital evidence for

the court of law. Since NTFS records every event of the system, forensic tools are

required to process an enormous amount of information related to the user / kernel

environment, buffer overflows, trace conditions, network stack and many more. This has

led to forensic tools that are imperfect and though they are commercially available, they

are not comprehensive and effective (Richard & Roussev 2006). Many existing

techniques have failed to identify malicious code in hidden data of the NTFS disk image

(Vassil 2009). This chapter discusses the analysis technique explored to successfully

96

detect maliciousness in hidden data, by investigating the NTFS boot sector. The chapter

also reports the experimental studies conducted with some of the existing popular

forensics tools and their limitations that have been identified. Further, through the

proposed three-stage forensic analysis process, the chapter shows how the experimental

investigation has attempted to unearth the vulnerabilities of NTFS disk image and the

weaknesses of the current forensic techniques.

3.2 NTFS Investigation Goal

Digital investigation is a process to answer questions about the compromised computers

(Carrier 2005). This chapter focuses on static analysis since it can capture all the hidden

information that cannot be modified during the analysis process, unlike live analysis

techniques which could result in having falsified data. An image copy of the NTFS hard

disk would capture hidden data and hence this study entails developing efficient

techniques to analyse this data in a confined lab environment for the identification of

hidden malware. This research work forms an important contribution in digital forensics,

which is the science of identifying, extracting, analysing and presenting the digital

evidence that has been stored in the digital electronic storage devices to be used in a court

of law (Baryamureeba & Tushabe 2006; Kruse & Heiser 2001; Reed & Angel 2007). It

takes an initial step towards addressing the open problem of identifying unseen or new

malware that could evade detection in the form of hidden or obfuscated malicious code in

the physical file system.

Static analysis of NTFS file system which is the standard and most commonly

used file system could provide useful information for digital forensics. This chapter

97

discusses the analysis technique explored to detect data hidden based on the internal

structure of the NTFS file system in the boot sector. Further, it attempts to unearth the

vulnerabilities within a NTFS file system disk image and highlights the weaknesses of

the current forensic techniques.

The main goal of this chapter is to propose a methodology to effectively detect

hidden malware stored in the physical NTFS file system. Since NTFS file system is

predominantly used in most computer systems, and malware attackers take advantage of

weaknesses in NTFS to hide malware, this chapter focuses on hidden malware forensic.

With this in view, in this chapter the research aims i) to explore the NTFS disk structure

and its vulnerabilities, ii) to investigate weaknesses of existing commonly used digital

forensic techniques such as signature-based, heuristic-based and anomaly-based, and iii)

to propose and evaluate improved methods in static analysis of NTFS for identifying

hidden malware by investigating the physical disk image.

A further goal of this chapter is to effectively detect hidden malware that could be

implanted on a computer system in the slack space (physical) on hard disk drives. Hence,

this chapter provides the background and methods adopted in investigating the physical

slack space and in identifying the hidden malware. To facilitate the research process, a

good understanding of the NTFS file system is essential, and this is briefly described

next.

98

3.3 Windows Architecture

Operating systems play a key role in identifying illegal activities. As files and their

structure are determined by the operating system, understanding the relationship between

the files and the files system of the operating system and their communication

mechanism is really important for digital forensics.

3.3.1 NTFS File System Architecture

Today, NTFS file system is the basis of predominant operating systems in use, such as

Windows 2000, Windows XP, Windows Server 2003, Windows Server 2008, Windows

Vista, and Windows 7 and supported by Linux based distributions. Due to the widespread

use of the NTFS files system, attackers try to target NTFS, as this could result in

affecting more computer users. Another compelling reason for witnessing a strong

relationship between computer crime and the NTFS file system is the sparse studies in

literature that unearth the vulnerabilities of NTFS and lack of standardization in digital

forensics procedures and techniques (Palmer 2001; Rogers & Seigfried 2004).

The key feature to note in NTFS disk structure is that the Master File Table

(MFT) is the core of NTFS file system since it contains details of every file and folder on

the volume and allocates two sectors for every MFT entry. The MFT entry within the

MFT contains attributes that can have any format and any size. Further, as shown in

Figure 3.1 every attribute contains an entry header which is allocated in the first 42 bytes

of a file record, and it contains an attribute header and attributes content. The attribute

header is used to identify the size, name and the flag value. If the size is less than 700

99

bytes (known as a resident attribute), the attribute content will reside in the MFT

followed by the attribute header, otherwise it will store the attribute content in an external

cluster called cluster run known as a non-resident attribute. This is because; the MFT

entry is 1KB in size and hence cannot fit anything that occupies more than 700 bytes. In

addition, since the Windows operating system does not zero the slack space, it becomes a

vehicle to hide data, especially in $Boot file.

Figure 3.1 MFT Layout Structure

In this chapter a preliminary investigation conducted in these aspects revealed the

following problems that form the primary motivation of this research work. In an

operating system, the file system is responsible the organization method of data on a hard

disk volume. It comprises of two parts: the collection of files that store related data, and a

directory structure that organizes and provides information about all the files in the

system. The two most popular file systems used by windows users of today are FAT32

(File Allocation Table) and NTFS file system. Later this chapter will discuss the NTFS

100

file system more in details and how it can allow malicious code to be hidden away from

the radar of any commercially available antivirus tool.

3.3.2 Portable Executable Architecture

The Win32 Portable Executable File Format (PE) introduced by Microsoft is the standard

executable format for all versions of the operating systems on all supported processors.

Therefore, the approach explored in this research would be tested directly on the Portable

Executable (PE) format files. Most programs in windows are constructed by accessing

the Windows application programming interface (API) through functions available in

dynamic Link Library (DLL) on the system. Microsoft provides a great number of DLLs,

and each DLL can be used by more than one program at the same time.

For the obfuscated malware detection system, this research focuses on extracting

feature from API sequence and how to automate the API calls‘ extraction process.

Therefore, it is important to understand the Portable Executable (PE) structure as the data

structures adopted on disk are the same as the data structures used in the memory. For

example, when the function LoadLibrary is called to load the executable into memory, a

data structure such as the IMAGE_NT_HEADERS is identical on disk and in the

memory. However, the Windows loader looks at the PE file and decides what portions of

the file to be mapped in. This mapping is consistent in that higher offsets in the file

correspond to higher memory addresses when mapped into memory. Since a PE file

comprises of various sections and headers, free PE tools (PE Explorer) has been used to

view, analyze and reverse engineer Windows PE files such as EXE, DLL, OCX, ActiveX

101

Controls, Screensavers, SYS, DPL, Control Panel Applets, MSSTYLES, BPL, and

executable files that run on MS Windows platform.

Table 3.1 provides a good understanding of the PE structure that includes DOS

headers and PE headers. The PE header starts with the signature bits ―PE‖ and has some

file properties, such as timestamp, machine type and the number of sections. Section

Table has code sections (.text), and data sections (.data). The .text section is the default

section for code and the .data section stores writable global variables. It also contains the

file‘s Original Entry Point (OEP). OEP refers to the execution entry point of a PE file,

where the file execution begins. Finally, the .rdata section contains read-only data.

Traditional detection engines search the binary files for stored signatures to

identify known malware. However, the malware can easily fool the detection engine by

applying obfuscation technique such as Packer (section 2.6.1) to obfuscate the malware

internal code and data structures from being detected by security software.

102

Table 3.1 Portable Execution Structure

Portable execution Structure

Section Table

DOS Header

COFF File Header

Optional Header

Standard fields

NT additional fields

Optional Header Data Directories

 Export Table

 Import Table

 Resource Table

 Exception Table

 Certificate Table

 Base Relocation Table

 Debug

 Architecture

 Global Ptr

 TLS Table

 Load Config Table

 Bound Import

 Import Address Table (IAT)

 Delay Import Descriptor

 COM+ Runtime Header

 Reserved

Section Table

 .text

 .rdata

 .data

 .idata

 .rsrc

103

Metafile has been defined and its importance explained: Metafile refers to the file

structure of the NTFS file system. It is also used to define files, system driver

management volume, buffer file system changes, assign a drive letter to each partition,

manage free space allocation, and store security and disk space usage information. The

metafiles are treated specially by Windows and are difficult to directly view them.

Metafiles in the NTFS disk root directory start with "$" character, and it is hard to get

information about them by standard means. By looking at $MFT file size, it is possible to

find out useful information such as, time spent by the operating system in cataloguing the

entire disk. Table 3.2 provides the metadata files used by the operating system and their

functions are described.

3.4 Digital Crime Investigation Analysis

According to Michael Andrew (Andrew 2007), the general components in overall

digital forensic process are; acquisition, preservation, and analysis. On similar notes,

Brian Carrier (Carrie 2003; Carrier 2005) state that there is a three-process approach for

digital investigation, which consists of system preservation, evidence searching, and

reconstruction processes. Towards achieving the goal to detect hidden data based on the

internal structure of the NTFS file system in the boot sector, this chapters describes the

three stages used to perform digital forensic analysis in a comprehensive manner. The

three stages as explain in Figure 3.2 are; Stage 1: Hard disk data acquisition, Stage 2:

Evidence searching, and Stage 3: Analysis of NTFS file system.

104

Figure 3.2 The Three Stages of a Digital Crime Investigation

‗Hard disk data acquisition‘ is the process of preserving the state of the digital

crime scene and the purpose of this stage is to maintain the original evidence without

being overwritten during the investigation work. Such a process ensures that evidence is

not lost in the investigation process and also to cater to the need for this stage to undergo

any future analysis that may be required. The ‗Evidence searching‘ stage mainly involves

searching for data that support the hypotheses about the incident, and details about how

to perform searching inside the files and file system of the NTFS in a secure way. In the

Analysis of NTFS file system stage, existing evidence collected, the physical place in the

hard disk, unreached place such as slack space or between the partition, etc. are analysed.

Therefore, it is very important to understand Medium Data and the volume in hard drives,

and these are described in Sections (3.4.1) and (3.4.2).

This chapter attempts to identify and fill the gap found in literature and practice by

studying the techniques used in the analysis of the NTFS disk image. Hence, the main

objectives are i) to explore the NTFS disk image structure and its vulnerabilities, ii) to

investigate different commonly used digital forensic techniques such as signatures, data

hiding, timestamp, etc. and their weaknesses, and iii) finally to suggest improvements in

static analysis of NTFS disk image.

Hard disk data
acquisition

Evidence
searching

Analysis of
NTFS file system

105

Table 3.2 NTFS Metadata Files Information

Metadata Name Metadata # Description

Master File Table $MFT 0 Itself MFT

Master File Table

Mirror
$MFTmirr 1

Copy of the first 16 MFT records placed in

the middle of the disk or the end of the

partition.

Log File $LogFile 2 Transaction logging file for the volume.

Volume Decription

Table
$Volume 3

Contains information about the volume

label (partitions), file system version, time,

etc.

Attributate Definition

Table
$AttrDef 4

List of standard files attributes on the

volume

Root Directory $. 5 Root directory

Cluster Allocation

Bitmap
$Bitmap 6 Volume free space bitmap

Volume Boot Code $Boot 7 Boot sector (bootable partition)

Quota Table $Quota 9
Containing information if disk quota are

being used on the volume. (only for NTFS)

Upper Case Table $Upcase 10

Table containing information for

coverating file names to the Unicode 16 bit

file naming system for international.

106

3.4.1 Medium Data Analysis

Some computers use big-endian ordering and others use little-endian ordering of digital

data to organize multiple bytes (sets of 8 bits, 0 or 1) and the most common technique

used is ASCII or Unicode to encode the characters. A sector represents the basic unit of

data storage on a hard disk with each sector being able to store 512 bytes of data (4096

bits). All types of Microsoft OS are designed to read and write blocks of data called

clusters and these clusters are made up of an even number of sectors that are fixed blocks

of data, e.g. 1024 bytes (2 sectors), 4096 bytes (8 sectors), etc. The number of sectors

needed for a cluster is dependent upon the type of storage device, the operating system

involved and the size of the logical storage device.

The data collected for analysis from a computer system connected to a network

could be classified as volatile and nonvolatile data. Volatile data is information that might

be lost if the system is turned off, such as the current network connection, running

services open TCP or UDP ports, internal routing table, users logged on, open files,

running processes, scheduled jobs, cached NetBIOS name table, and others. To analyse

volatile data, also called Live Analysis, the system needs to be running during the

investigation. On the other hand, nonvolatile data is information that is not lost if the

system turn off such as register data, file system time and date stamps, system version

and patch level. In a Linux based system, information such as file system MD5 checksum

values, user accounts, IIS logs, stored files could be investigated to collect evidence of

malware. Such analysis of nonvolatile data is called Static Analysis.

107

Figure 3.3 shows the different analysis areas on a computer system, and physical

storage media analysis forms the base and lowest level analysis of devices such as hard

disks, memory chips, CD-ROMs, Flash memory, and others. Since all of the data is

stored on medium devices, and that malware exploits the weakness of the disk structure

to store itself without being recognized by the AV engines, the necessity emerges to start

analysis from the physical storage media. Therefore, analysis of the physical storage

media could provide useful information leading towards malware detection and

presentation of digital evidence for the court of law.

Figure 3.3 Analysis Areas

3.4.2 Volume Analysis

A volume is a collection of addressable sectors that the users can use for data storage

(read and write) and is responsible for the creation of partitions that could be defined as a

set of consecutive sectors. Figure 3.4 provides an example of HDD partition and volume

108

of a typical NTFS file system. Volume Analysis involves looking at the data structure

with partitioning and assembling data in digital storage media devices that are stored

when installing Microsoft Windows operating system. Examples of such information are,

the primary or logical partitions on the hard disk, and in the windows system, each

partition has one or more tables to describe the starting and the ending sector (the length)

and the type of partition. Even though these concepts are found to be similar in other

operating systems such as the Linux operating systems, not all of them use volume in the

same way as Microsoft Windows does.

Figure 3.4 Hard Disk Drive Volume and Partition.

Partitioning is dependent on the OS and not the type of interface on the hard disk.

Windows OS uses the same partition system, whether the disk uses an AT Attachment

interface (ATA/IDE) or Small Computer System Interface (SCSI). This research project

is not focusing on the hard disks and types but their basic structures are explored to see

how the malware can hide itself as hidden data. Many existing techniques have failed to

identify malicious code in hidden data of the disk structure (Naiqi et al. 2008). Therefore

it is very important to analyse the volume system and the first task is to investigate the

109

data structure that describes the volumes. When analysing a volume system it is

important to check the consistency of the partitions by checking the start and end sectors.

Disassembly is the process of recovering a symbolic representation of a program

from its binary representation. Disassembling binaries is a difficult task for two primary

reasons: variable-length instructions and fundamentally indistinguishable data embedded

inside code regions. There are two standard disassembly techniques, the linear sweep

method and the recursive traversal method. Various techniques have been proposed to

improve the disassembly coverage and accuracy. Cifuentes et al. in (Cifuentes &

Fraboulet 1997; Cifuentes & Gough 1995) used speculative disassembly techniques to

improve disassembly coverage. Their approach made certain assumptions on the

properties of the machine and the conventions of the programming language or the

operating system. Program obfuscation has been used to protect software security. For

example, it has been used to protect software content from malicious reverse engineering

(Sun et al. 2010; You & Yim 2010). Linn and Debray (Linn & Debray 2003) proposed

two techniques to foil disassemblers by tailoring the static analysis process against a

particular tool. One is through inserting unreachable junk code into the program and the

other is through using a branching function in place of regular call instructions. Kruegel

et al. (Kruegel et al. 2004) proposed static binary analysis techniques to improve the

disassembly success rate for obfuscated binaries. These static disassembly methods

cannot correctly handle code which contain self-modifying and overlapping instructions

or in which other static-resilient techniques are used in (Zhang, 2009). Additionally, to

apply these various techniques to disassemble code buried in network traffic, the starting

110

point of the code should be found first. Our choice reverse engineering tool IDA pro uses

the linear sweep method.

3.5 Problem Background

With the recent trend in malware to operate as hidden malicious code that evade detection

by anti-virus tools and other live analysis techniques, this research firstly attempts to

identify hidden malware that adopt Physical such as ―Slack Space‖ implantation

techniques through exploiting the vulnerabilities of the system .

3.5.1 Vulnerabilities of NTFS Disk Structure

Cybercriminals make use of file system vulnerabilities in order to infect more computers

and guarantee effectiveness of evading security countermeasures. For instance, keeping

the last modified date of an infected file unchanged to make it seem like it was uninfected

was one of the first early techniques cyber criminals had adopted to thwart detection. The

cybercrimes are based on exploiting the vulnerability in applications and operating

systems. This type of matured obfuscation technique has resulted in hidden class of

threats that many would not have been exposed to previously.

Cyber criminals target a vulnerable area on the system structure to hide the

malware. Since NTFS is predominantly used in most computer systems, and malware

cyber criminals take advantage of NTFS weaknesses to hide malware, more computers

get infected without being detected by commercial detection engines (Naiqi et al. 2008).

They are capitalizing on the vulnerabilities of NTFS to hide the malware from AV

engines and further exploit the weaknesses of the present digital forensic techniques from

111

being detected. A preliminary study conducted on the hidden data of the $Boot file

(Alazab, Venkataraman, et al. 2009; Alazab, Venkatraman, et al. 2009; Huebner et al.

2006). It takes an enormous amount of time to analyse the data derived with such tools

and most of the existing tools are complex and not easy to use. Moreover, not all

computer infections are detected by forensic tools, especially intrusions that are in the

form of hidden data in the $Boot file go unchecked. Hence, the conclusion drawn here is

that the existing forensic tools are not comprehensive and effective in identifying the

recent computer threats. This confirms what is reported in literature as well (Ahmad

2002; Palmer 2001; Purcell & Lang 2008; Reith et al. 2002).

As shown in Section 3.3.1 the architecture of the NTFS file system have

weaknesses which led to attackers using different techniques such as disguising file

names, hiding attributes and deleting files to intrude the system.

NTFS, Windows NT‘s native file system, is designed to be more robust and

secure than other Microsoft file systems. The key feature to note in NTFS disk structure

is that the Master File Table (MFT) contains details of every file and folder on the

volume and allocates two sectors for every MFT entry. Since the Windows operating

system does not zero the slack space, cybercriminals make use of MFT to hide malicious

code without raising any suspicion. Such limitations in NTFS have led to cyber criminals

using different techniques such as disguising file names, hiding attributes and using

deleted files to intrude the system.

112

3.5.2 Insufficiency of Malware Detection Tools

Current live malware detection tools such as anti-virus software are able to identify

known malware. Once new malware is released, the AV engines will reactively update

their signatures to combat the new malware. However, recent methods adopted by

computer intruders, attackers and malware are to target hidden and deleted data so that

they could evade from virus scanners. As a result, some malware adopt circumvention

techniques such as polymorphic, metamorphic obfuscations, etc. so that they cannot be

detected through current live analysis techniques.

Countermeasures such as detection engines are failing to detect malware and are

identifying benign file as malware resulting in high false alarm rate and false positives. In

2010 David Stang tested 41 updated scanners on 54,016 malware files, finding less than 1

among the files capable of being detected by only half of the scanners used and on an

average the scanner detected only 62% with a maximum of about 80% (Stang 2010).

However, sophistication in malware through code obfuscation has created another

challenge for digital forensic examiners, namely the detection rate of new and unknown

malware is very low, (Passerini et al. 2009; Symantec Enterprise Security 1997), and

identifying benign code as malicious (false alarm rate) is quite high (Stang 2010). This is

due to the fact that existing techniques and methods do not perform sufficient statistical

analyses to determine if the anomaly was ‗actually‘ malicious. Though recent studies that

use statistical analysis of file binary content including statistical n-gram modeling

techniques (Shafiq et al. 2008; Stolfo et al. 2005, 2007) concentrate on identifying

malcode in document files, the statistical modeling of hidden malcode that predominantly

113

use Windows API calling sequence that reflects the behaviour of a particular piece of

code to evade detection is yet to be explored.

3.5.3 Weaknesses in Digital Forensic Analysis Tools

There is no standard methodology and approach for conducting digital forensics

investigations (Palmer 2001), in spite of the fact that digital crimes are on the rise and

less than 2% of the reported cases result in conviction (Baryamureeba & Tushabe 2006).

The literature surveys conducted in the last few years on digital forensics were more

focused on the technical aspects without any consideration for a generalized model.

While some road maps indicate steps to collect image copy of physical devices, the main

challenge is that ―analytical procedures and protocols are not standardized nor do

practitioners and researchers use standard terminology‖ (Palmer 2001). This has resulted

in a variety of forensic analysis tools that provide different ways to search for the digital

evidence of malware and most of these tools adopt different techniques for different kind

of information.

Since NTFS file system stores all events that take place on a computer system,

huge amount of data analysis is required while scanning the entire NTFS disk image for

forensic purposes. From a preliminary study of this research work conducted on the

hidden data of the $Boot file, it is observed that a variety of tools and utilities have to be

adopted along with manual inspections to identify unseen malware.

114

3.6 Proposed Forensic Analysis Process

Since the physical medium is the fingerprint of both legal and illegal activities, it is very

important to analyse the physical medium for malware deposits. This research adopts a

procedure of data acquisition from NTFS images as explaining in Section 3.8.1. There

are currently no consistent or standardized procedure for accomplishing digital forensics

and there are many models and frameworks suggested by many organisations, agencies

and researchers such as: Farmer and Venema (Farmer & Venema 2005), Kruse and

Heiser (Kruse & Heiser 2001), III and Roussev (Richard & Roussev 2006) , The

Enhanced Integrated Digital Investigation Process (EIDIP) model by Baryamureeba and

Tushabe (Baryamureeba & Tushabe 2006) and the enhanced version of the Integrated

Digital Investigation Process Model (IDIP) proposed by Brian Carrier and Eugene

Spafford (Carrier & Spafford 2003), the Abstract Digital Forensics Model (Reith et al.

2002),Forensic Process Model by the National Institute of Justice (NIJ), the Scientific

Working Group on Digital Evidence (SWGDE 2000).

In this section, the forensic analysis process proposed and adopted to achieve the

above mentioned objectives of this research work are described. An empirical study

conducted using selected digital forensic tools that are predominantly used in practice is

explained. Several factors such as effectiveness, uniqueness and robustness in analysing

NTFS disk image have been considered in selecting the tools / utilities required for this

empirical study. Each utility does some specific functionality, a collection of such tools

have been adopted to perform a comprehensive set of functionalities. The forensic

115

utilities / tools used to conduct the experimental investigation in this research work are

listed below:

i. Disk imaging utilities such as DD (Garner 1970) or DCFLDD (Harbour

2006) for obtaining sector-by-sector mirror image of the disk;

ii. Evidence collection using utilities such as Hexedit (Phillips 2010), Frhed

1.4.0 (Kibria 2009) and Strings V2.41 (Russinovich 2009) to introspect the

binary code of the NTFS disk image;

iii. NTFS disk analysis using software tools such as The Sleuth KIT (TSK)

v3.01 (Carrier 2011), Autopsy (Carrier 2010) and NTFSINFO v1.0

(Russinovich 2006) to explore and extract intruded data as well as hidden

data for performing forensic analysis.

In the first stage of forensic analysis, the DCFLDD developed by Nicholas Harbour

(Harbour 2006) and DD utility from George Garner (Garner 1970) was used to acquire

the NTFS disk image from the digital electronic storage device. This utility was selected

for investigation since it provides simple and flexible acquisition tools. The main

advantage of using these tools is that one could extract the data in or between partitions to

a separate file for more analysis. In addition, this utility provides built-in MD5 hashing

features. Some of its salient features allow the analyst to calculate, save, and verify the

MD5 hash values. In digital forensic analysis, using a hashing technique is important to

ensure data integrity and to identify which values of data have been maliciously changed

as well as to explore known data objects.

116

 Stage 1: Hard disk data acquisition,

 Stage 2: Evidence searching and

 Stage 3: Analysis of NTFS files system.

3.6.1 Stage 1 - Hard Disk Data Acquisition

In the first stage of forensic analysis, the DCFLDD developed by Nicholas Harbour

(Harbour 2006) and DD utility from George Garner (Garner 1970) was used to acquire

the NTFS disk image from the digital electronic storage device. This utility was selected

for investigation since it provides simple and flexible acquisition tools. The main

advantage of using these tools is that one could extract the data in or between partitions to

a separate file for more analysis. In addition, this utility provides built-in MD5 hashing

features. Some of its salient features allow the analyst to calculate, save, and verify the

MD5 hash values. In digital forensic analysis, using a hashing technique is important to

ensure data integrity and to identify which values of data have been maliciously changed

as well as to explore known data objects.

3.6.2 Stage 2 - Evidence Searching

The next stage involved searching for evidences with respect to system tampering. An

evidence of intrusion could be gained by looking for some known signatures, timestamps

as well as even searching for hidden data. In this stage, the Strings command by Mark

Russinovich (Russinovich 2009), Frhed hexeditor tool by Rihan Kibria (Kibria 2009) and

WinHex hexeditor tool by X-Ways Software Technology AG (X-Ways Software

Technology AG) we used to detect a keyword or phrase from the disk image.

117

3.6.3 Stage 3 - Analysis of NTFS File System

In the final stage of the experimental study, the data obtained from the NTFS disk image

were analysed, that contributed towards meaningful conclusions of the forensic

investigation. A collection of tools were adopted such as The Sleuth Kit (TSK) (Carrier

2011), Autopsy Forensic by Brian Carrier (Carrier 2010) and NTFSINFO from Microsoft

Sysinternals by Mark Russinovich (Russinovich 2006) to perform different aspects of the

NTFS file system analysis.

3.7 Forensic Investigation Steps

Many aspects must be taken into consideration when conducting a computer forensic

investigation (Venkatraman 2011). There are different approaches adopted by an

investigator while examining a crime scene. From the literature, five steps are commonly

adopted, such as, Policy and procedure development, Evidence assessment, Evidence

acquisition, Evidence examination, and Documenting and reporting. In the proposed

approach for the digital forensic investigation described in this chapter, the following

nine steps as shown in Figure 3.5are suggested and were successfully adopted in the

experimental study:

Step 1: Policy and Procedure Development – In this step, suitable tools that are

needed in the digital scene are determined as part of administrative considerations. All

aspects of policy and procedure development are considered to determine the mission

statement, skills and knowledge, funding, personal requirement, evidence handling and

support from management.

118

Step 2: Hard Disk Acquisition – This step involves forensic duplication that could

be achieved by obtaining NTFS image of the original disk using DD tool command. This

step is for obtaining sector-by-sector mirror image of the disk and the output of the image

file is created as Image.dd.

Step 3: Check the Data Integrity – This step ensures the integrity of data acquired

through reporting of a hash function. The MD5 tool is used to guarantee the integrity of

the original media and the resulting image file.

Step 4: Extract MFT in the Boot Sector – In this step, the MFT is extracted from

the boot sector. The MFT is analyzed using WinHex hexeditor tool, and NTFSINO is

used to check the number of sectors allocated to the NTFS file system.

Step 5: Extract $Boot file and Backup boot sector – In this step, the $Boot file is

extracted to investigate hidden data. The hidden data is analyzed in the $Boot metadata

file system using WinHex, TSK and Autopsy tools.

Step 6: Compare Boot sector and Backup – A comparison of the original and

backup boot sectors is performed in this step. Using the DD tool, another 2 boot sector

images from the original Image are generated resulting in two image files named,

backupbootsector.dd and bootsector.dd. These two files are then analysed using WinHex

hex-editor tool, TSK and Autopsy tools.

Step 7: Check the Data Integrity – In this step the integrity of data is verified again

for test of congruence. The hashing technique of MD5 tool is adopted to check the data

integrity of the two created image files.

119

Step 8: Extract the ASCII and UNICODE – This step involves extracting the

ASCII and UNICODE characters from the binary files available in the disk image. The

Strings command tool is used for this and keyword search for matching text or

hexadecimal values are recorded on the disk. Through keyword search, even files that

contain specific words that could be related to maliciousness are identified.

Step 9: Physical Presentation – In this final step, all the findings from the forensic

investigation are documented. It involves presenting the digital evidence through

documentation and reporting procedures.

3.8 Boot Sector Analysis of NTFS

3.8.1 NTFS Disk Image

As mentioned in the previous section, the first step to be adopted by a digital forensic

investigator is to acquire a duplicate copy of the NTFS disk image before beginning the

analysis. This is to ensure that the data on the original devices have not been changed

during the analysis. Therefore, it is required to isolate the original infected computer from

the disk image in order to extract the evidence that could be found on the electronic

storage devices. By conducting investigations on the disk image, any hidden intrusions

could be unearthed since the image captures the invisible information as well. The

advantages of analysing disk images are that the investigators can: a) preserve the digital

crime scene, b) obtain the information in slack space, c) access unallocated space, free

space, and used space, d) recover file fragments, hidden or deleted files and directories, e)

view the partition structure, and f) get date-stamp and ownership of files and folders.

120

Figure 3.5 Forensic Investigation Steps

121

3.8.2 Master File Table

To investigate how intrusions take place through data hiding, data deletion and other

obfuscations, it is essential to understand the physical characteristics of the Microsoft

NTFS file system. Master File Table (MFT) is the core of NTFS since it contains details

of every file and folder on the volume and allocates two sectors for every MFT entry

(Vacca 2005) . Hence, a good knowledge of the MFT layout structure also facilitates the

disk recovery process. Each MFT entry has a fixed size which is 1 KB (at byte offset 64

in the boot sector one could identify the MFT record size). MFT layout has been provided

and represents the plan of the NTFS file system using Figure 3.4. The main purpose of

NTFS is to facilitate reading and writing of the file attributes and the MFT enables a

forensic analyst to examine in some detail the structure and working of the NTFS

volume. Therefore, it is important to understand how the attributes are stored in the MFT

entry.

3.8.3 Boot Sector Analysis and Results

The boot sector analysis was performed by investigating metadata files used to describe

the file system. The steps described in previous section were followed by first creating a

NTFS disk image of the test computer using the DD utility for investigating the boot

sector. The NTFSINFO tool was run on the disk image. Table 3.3 shows the boot sector

of the test device and information about the on-disk structure. Such data structure

examination enables the forensic analyst to view the following: MFT information,

allocation size, volume size and metadata files. Useful information such as the size of

122

clusters, sector numbers in the file system, starting cluster address of the MFT, the size of

each MFT entry and the serial number given for the file system could be extracted.

From the information gained above, the steps in Figure 3.6 are followed to analyze

the boot sector image. As shown in Figure 3.6 and Table 3.4, an analysis of the data

structure of this boot sector and the results of the investigation conducted using existing

forensic tools is summarized in Table 3.4. From these results, the conclusion is that the

existing forensic tools do not check possible infections that could take place in certain

hidden data of the boot sector. Hence, the hidden data analysis technique adopted in this

research is described in the next section.

Figure 3.6 Analysis of the Test Boot Sector

123

Table 3.3 NTFS Information Details

NTFS Information Details

Volume Size

Volume size : 483 MB

Total sectors : 991199

Total clusters : 123899

Free clusters : 106696

Free space : 416 MB (86% of drive)

Allocation Size

Bytes per sector : 512

Bytes per cluster : 4096

Bytes per MFT record : 1024

Clusters per MFT record: 0

MFT Information

MFT size : 0 MB (0% of drive)

MFT start cluster : 41300

MFT zone clusters : 41344 - 56800

MFT zone size : 60 MB (12% of drive)

MFT mirror start : 61949

Meta-Data files

124

3.9 Hidden Data Analysis and Results

The recent cybercrime trends are to use different obfuscated techniques such as

disguising file names, hiding attributes and deleting files to intrude the computer system.

Since the Windows operating system does not zero the slack space, it becomes a vehicle

to hide data, especially in $Boot file. Hence, in this study, the hidden data is analysed in

the $Boot file structure. The $Boot entry is stored in a metadata file at the first cluster in

sector 0 of the file system, called $Boot, from where the system boots. It is the only

metadata file that has a static location so that it cannot be relocated. Microsoft allocates

the first 16 sectors of the file system to $Boot and only half of these sectors contains non-

zero values (Huebner et al. 2006).

 In order to investigate the NTFS file system, one requires possessing substantial

knowledge and experience to analyze the data structure and the hidden data. The $Boot

metadata file structure is located in MFT entry 7 and contains the boot sector of the file

system. It contains information about the size of the volume, clusters and the MFT. The

$Boot metadata file structure has four attributes, namely,

$STANDARD_INFORMATION, $FILE_NAME, $SECURITY_DESCRIPTION and

$DATA. The $STANDARD_INFORMATION attribute contains temporal information

such as flags, owner, security ID and the last accessed, written, and created times. The

$FILE_NAME attribute contains the file name in UNICODE, the size and temporal

information as well. The $SECURITY_DESCRIPTION attribute contains information

about the access control and security properties. Finally, the $DATA attribute contains

the file contents. These attribute values for the test samples are shown in Table 3.4 as an

125

illustration. To achieve the invetsigation of NTFS file system, the following TSK

command tools were used:

 Istat –f ntfs c:\image.dd 7

By investigating the resulting attribute values, it was observed that the $Boot data

structure of the NTFS file system was used to hide data. By analysing the hidden data in

the boot sector, one could provide useful information for digital forensics. The size of the

data that could be hidden in the boot sector is limited by the number of non-zero that

Microsoft allocated in the first 16 sectors of the file system. The data could be hidden in

the $Boot metadata files without raising suspicion and without affecting the functionality

of the system.

Analysis of the $Boot data structure of the NTFS file system will identify any

hidden data. The analyzer should start by making a comparison between the boot sector

and the backup boot sector. The image with the boot sector and backup boot sector are

supposed to be identical; otherwise there is some data hidden in the $Boot data structure.

One method is to check the integrity of the backup boot sector and the boot sector by

calculating the MD5 for both of them. A difference in checksum indicates that there is

some hidden data. For the experimental investigation, this comparison was done using the

following commands on the $Boot image file and the backup boot image:

dd if=image.dd bs=512 count=1 skip=61949

of=c:\backupbootsector.dd –MD5sum –verifymd5 –

MD5out=c:\hash1.md5

126

dd if=image.dd bs=512 count=1 of=c:\bootsector.dd –MD5sum –

verifymd5 –MD5out=c:\hash2.MD5

Table 3.4 Results of $Boot Analysis

$Boot Analysis

MFT Entry Header Values:

Entry: 7 Sequence: 7

$LogFile Sequence Number: 0

Allocated File

Links: 1

$STANDARD_INFORMATION Attribute Values:

Flags: Hidden, System

Owner ID: 0

Created: Mon Feb 09 12:09:06 2009

File Modified: Mon Feb 09 12:09:06 2009

MFT Modified: Mon Feb 09 12:09:06 2009

Accessed: Mon Feb 09 12:09:06 2009

$FILE_NAME Attribute Values:

Flags: Hidden, System

Name: $Boot

Parent MFT Entry: 5 Sequence: 5

Allocated Size: 8192 Actual Size: 8192

Created: Mon Feb 09 12:09:06 2009

File Modified: Mon Feb 09 12:09:06 2009

MFT Modified: Mon Feb 09 12:09:06 2009

Accessed: Mon Feb 09 12:09:06 2009

Attributes:

Type: $STANDARD_INFORMATION (16-0) Name: N/A Resident size: 48

Type: $FILE_NAME (48-2) Name: N/A Resident size: 76

Type: $SECURITY_DESCRIPTOR (80-3) Name: N/A Resident size: 116

Type: $DATA (128-1) Name: $Data Non-Resident size: 8192

0 1

127

The main observations from the investigation conducted are that hidden data in the $Boot

data structure could not be detected directly by the currently available popular existing

forensic tools and laborious manual inspections are required to be performed alongside

these tools. Hence, by analysing various existing utilities and tools, the following results

have been arrived at:

i. Since NTFS stores all events that take place on a computer system, there is a huge

amount of data analysis required while scanning the entire NTFS disk image for

forensic purposes. In this empirical study that was focusing on the hidden data of the

$Boot file alone, a variety of tools and utilities were required to be adopted along

with laborious and knowledge-intensive manual inspections.

ii. The existing forensic tools are not comprehensive and effective in identifying the

recent computer threats. Not all computer infections are detected by forensic tools,

especially intrusions that are in the form of hidden data in the $Boot file go

unchecked.

iii. It is essential to perform manual investigations alongside the existing tools. By

adopting a manual introspection of the $Boot file using the three-stage approach of

i) hard disk acquisition, ii) evidence searching and iii) analysis of the NTFS file

system, it is possible to identify hidden data in the $Boot file.

iv. Intelligent search techniques could be adopted to extract the ASCII and UNICODE

characters from binary files in the disk image on either the full file system image or

128

just the unallocated space, which could speed-up the process of identifying hidden

data.

v. One of the main reasons for having varying tools is that Microsoft has different

versions of the NTFS file system to be catered for. While Windows XP and

Windows Server 2003 use the same NTFS version, Windows Vista uses the NTFS

3.1. The new NTFS 3.1 on Windows 7 has changed the on-disk structure. For

example, the location of the volume boot record is at physical sector 2,048. Most of

the existing tools do not work with all the different versions of NTFS file system,

and hence a comprehensive tool is warranted to cope with these changes.

129

Table 3.5 Analysis of the Test Boot Sector

Byte

Range
Size Description Value Action / Result

 0 -- 2 3
Jump to boot

code
9458411

If bootable, jump. If non-

bootable, used to store error

message

 3 -- 10 8 OEM Name – System ID NTFS

11 -- 12 2 Bytes per sector: 512

13 -- 13 1 Sectors per cluster 8

14 -- 15 2 Reserved sectors 0 Unused – Possible Infection

16 -- 20 5 Unused 0 Unused – Possible Infection

21 -- 21 1 Media descriptor 0

22 -- 23 2 Unused 0 Unused – Possible Infection

24 -- 25 2 Sectors per track 63 No Check – Possible Infection

26 -- 27 2 Number of heads 255 No Check – Possible Infection

28 -- 31 4 Unused 32 No Check – Possible Infection

32 -- 35 4 Unused 0 Unused – Possible Infection

36 -- 39 4 Drive type check 80 00 00 00 For USB thumb drive

40 -- 47 8
Number of sectors in file

system (volume)
0.47264 GB

48 -- 55 8
Starting cluster address

of $MFT
4*8=32

56 -- 63 8

Starting cluster address

of MFT Mirror $DATA

attribute

619,49

64 -- 64 1
Size of record - MFT

entry
210=1024

65 -- 67 3 Unused 0 Unused – Possible Infection

68 -- 68 1 Size of index record 01h

69 -- 71 3 Unused 0 Unused – Possible Infection

72 -- 79 8 Serial number C87C8h

80 -- 83 4 Unused 0 Unused – Possible Infection

84 -- 509 426 Boot code ~

510 --511 2 Boot signature 0xAA55

130

Chapter 4 : Anomaly Detection Based on OP-Code

“China and Russia have thousands of well-trained cyberterrorists

and we are just sitting ducks”.

 —Professor George Ledin, Sonoma State University

4.1 Overview

Malware that make use of obfuscation of the extended x86 IA-32 operation codes (OP codes)

pose a great challenge for malware detectors, as they can easily evade current signature-

based, as well as heuristic-based, detection engines. In this chapter, a novel algorithm has

been proposed that combines op-code frequency statistics and hybrid wrapper-filter based

feature selection technique for constructing a classifier for malware detection. Existing op-

code statistical fingerprinting techniques found in the literature are not efficient for analysing

large op-code features that are possible due to the numerous obfuscations taking place in

reality. The novelty of approach presented in this chapter is that hybridized op-code statistics

with a novel wrapper-filter based feature selection technique are used to optimise the process

and have achieved the desired efficiency for large datasets. The main contribution of the

wrapper-filter based feature selection technique used, is that it is capable of selecting the

most important op-codes used in the detection of malware based on the observed patterns of

their obfuscation behaviour. The proposed hybrid wrapper-filter approach uses Maximum

Relevance-Minimum Redundancy and Artificial Neural Net Input Gain Measurement

Approximation (ANNIGMA) and integrates the filter‘s ranking score with the wrapper-

heuristic‘s score to guide the search process in the wrapper stage, and takes advantage of both

the approaches. Also investigated and compared is the malware detection accuracy using

131

Maximum Relevance (MR), filter ranking heuristics with ANNIGMA, and combined MR-

ANNIGMA approaches. Experimental results on large real world malware datasets show that

our frequency-statistics based approach achieves high accuracy in all the three cases, with

additional efficiency achieved through the MR-ANNIGMA wrapper-filter that arrives at a

very compact minimum set of op-codes. Such an approach results in an optimal set of op-

codes representative of the innumerable obfuscation patterns adopted by malware attackers

would aid in real-time efficiency that is warranted in unknown malware detection.

4.2 Malware Behaviours

Malware affects the secrecy and integrity of data as well as the control flow and

functionality of a computer system (Alperovitch 2011). Recent attacks using obfuscated

malware (TreadwellZhou & Zhou 2009) have resulted in disruption of services leading

towards huge financial and legal implications (Bilar 2007; Lawton 2002; McGraw &

Morrisett 2000). Researchers and anti-malware vendors are faced with the challenge of

how to detect such zero day attacks (Chouchane & Lakhotia 2006), which is also a major

concern for various computer user groups, including home, business and even

government users.

Literature surveys on malware detection have shown that there is no single

technique that could detect all types of malware. However, there are two techniques

commonly used for malware detection, signature-based detection and anomaly-based

detection (Birrer et al. 2009; Dinaburg et al. 2008; Lawton 2002). Anti-Virus engines use

malware signatures to detect known malware. The malware signature is a byte sequence

that uniquely identifies a specific malware. Typically, a malware detector uses the

132

malware signature to identify the malware like a fingerprint. Most AV engines are

supplied with a database containing information of existing malware to identify

maliciousness, by looking for code signatures or byte sequences while scanning the

system. A malware detector scans the system for characteristic byte sequences or

signatures that match with the one in the database and declares the existence of malware

blocking its access to the system. The signature matching process is called signature-

based detection and most traditional AV engines use this method. It is a very efficient and

effective method to detect known malware (Venkatraman 2009). But, the major

drawback is the inability to detect new or unknown malicious code. The signature

generation involves manual processing and requires strict code analysis. To overcome

signature based methods, polymorphic malware have an in-built polymorphic engine that

can generate new variants each time it is executed and a new signature is generated.

Therefore, signature based approaches fail to detect such malware. On the other hand,

anomaly-based detection uses the knowledge of normal behaviour patterns to decide the

maliciousness of a program code. This approach has the ability to detect some zero day

attacks. However, it is very difficult to accurately specify the system or program‘s

behaviour and thus these approaches usually are resulting in more false positives than

signature based methods.

In this chapter, combines op-code frequency statistics and hybrid wrapper-filter

based feature selection technique have been combined in order to construct malware

detector. The novelty of the proposed approach is the use of op-code frequency statistics

that does not require the signature of malware while detecting the malware in the AV

engine. Our contribution also includes the following hitherto unreported in the literature.

133

1) Statistical differentiation of the op-code frequency is proposed by exploring

the op-code relationship with regard to malware and benign programs.

2) A fully automated heuristic method is proposed to disassemble the binary

executables and compute op-code frequency statistics

3) A novel hybrid wrapper-filter based feature selection technique is proposed

to find the most important op-code for malware. This kind of approach has

not been explored in the malware literature yet.

4) A signature-free detection method is proposed to cope with polymorphic

transformations and metamorphic obfuscations of malware.

In the proposed approach, a hybrid heuristic of mutual information-based

Maximum Relevance and Artificial Neural Net Input Gain Measurement Approximation

(ANNIGMA) has been developed which is used along with a novel op-code frequency

statistics. The significance of this approach is that it integrates the filter‘s ranking score

with the wrapper-heuristic‘s score to guide the search process in the wrapper stage that

can take the advantages of both approaches and find the most significant op-codes to

detect malware.

4.3 Assembly Language and Executable File Format

The language of reversing compiled binary code is the assembly language (Eilam 2005).

In this chapter, the focus is on the ‗x86‘ also called the (‗IA-32‘, 386, or the i386-

architecture) which is Intel‘s 32-bit architecture and is the basis for all of Intel‘s x86

CPU, since the first version of i386 to our day. The focus was on the Intel-32 assembly

http://en.wikipedia.org/wiki/X86

134

language for these experiments, because it is almost exclusively used in every computer

and is the most popular processor architecture. The IA-32 architecture and IA-64 are

almost same in term of architecture and programming environment, the main difference

is that IA-64 bit processors use the prefix/extension to the 80386 instruction set.

However, there are popular instructions that most likely could exist in any program either

in IA-32 or IA-64 such as moving data, arithmetic or compare operators, conditional

branches and function calls. Instead of focusing on the basic instructions ,our study

considers all IA-32 instructions and have used the list of instructions from the Intel IA-32

Architecture Software Developer's Manual, Volume 1(Intel 2010a), Volume 2A

(Yanfang et al. 2010) and Volume 2B (Intel 2010b).

The Win32 Portable Executable (PE) (Christodorescu & Jha 2003) file formats

such as (.EXE and .DLL) introduced by Microsoft, which is the standard executable

format for all versions of the Windows operating system on all supported processors. As

shown in Figure 4.1 PE file has different sections and headers, Windows PE files start

with the DOS header which is identified by ‗MZ‘. The second section is the PE Signature

field, which when viewed as ASCII text is PE\0\0. Third is the

IMAGE_FILE_HEADER containing the most basic information about the file. Fourth, is

IMAGE_OPTIONAL_HEADER that contains the structure of additional information

provided by the PE creators, beyond the basic information found in the

IMAGE_FILE_HEADER. Last is the section table that has code sections (.text), and

data sections (.data). The .text section is the default section for code and the .data

section stores writable global variables and also contains the file‘s Original Entry Point

135

(OEP) which refers to the execution entry point (where the file execution begins) of a

portable executable file. Finally, the .rdata section contains read-only data.

The experiment in this chapter have been tested on the PE format files; to

compare operation code distributions within malicious and benign files. Automated the

inspection of the op-code frequency statistics implemented, and have given a preliminary

assessment of its frequency used for detection and differentiation different files of

malicious and benign. IDA Pro Dissasember (IDA Pro 2010) has been selected to view

and analyse the PE files.

Figure 4.1 The Executable File Format

136

4.4 Descriptive Analysis of Data

In our dataset for malware and benign files, the aggregate malware dataset yielded

roughly about 48,629,512 op-codes and the aggregate benign dataset yielded roughly

about 405,942 op-codes. The experiment was run on a total of 590 different op-codes

collected from Intel, but for the analysis part the op-codes that have been found in our

sample binaries was only just considered which are in total of 80 op-codes. Analysis

show that the top 13 listings for both malware and benign are identical (ADD/ CALL/

CMP/ JMP/ JNZ/ JZ/ LEA/ MOV/ POP/ PUSH/ RETN/ TEST/ XOR).

Many of the new op-codes were not used at all in all our samples such as: Move Data

from String to String (MOVS/ MOVSB/ MOVSW/ MOVSD/ MOVSQ), Compare String

Operand (CMPS/ CMPSB/ CMPSW/ CMPSD/ CMPSQ), Load Machine Status Word

(LMSW), Load String (LODS/ LODSB/ LODSW/ LODSD/ LODSQ) , Repeat String

Operation Prefix (REP/ REPE/ REPZ/ REPNE/ REPNZ) , Scan String (SCAS/

SCASB/ SCASW/ SCASD). Figure 4.2 shows the top 13 listings for both malware and

benign and theirs frequent op-codes, the Figure shows that percentage of using the op-

codes in malware and clean binaries are almost similar Figures.

137

Figure 4.2 The Most Frequent 13 OP-Codes for Both Malware and Benign

4.5 Proposed OP-Code Detection Methodology

In this chapter a methodology based on op-code analysis is proposed that does not require

any previous knowledge of the binary signatures. The new proposed method for finding

the fingerprint of executable programs and for detection and differentiation of different

files those are malicious and benign. These experiments consider the op-codes based on

the extended x86 IA-32 binary assembly instructions. As features approach is to first

disassemble the binary executable for OP-Code Frequency statistics (section 4.5.1 and

Section 4.5.2) and then to adopt (section 4.6) op-code feature selection algorithms using

Maximum Relevance Filter Heuristic and ANNIGMA Wrapper Heuristics (MR-

ANNIGMA) for malware detection. By adopting such a methodology obfuscated code

such as packing, polymorphism and metamorphism. The proposed signature-free

add call cmp jmp jnz jz lea mov pop
pus

h
retn test xor

Malware 2% 11% 4% 4% 2% 4% 4% 32% 7% 16% 3% 3% 3%

Benign 4% 10% 4% 3% 2% 3% 5% 30% 5% 16% 2% 3% 4%

0%

5%

10%

15%

20%

25%

30%

35%

o
p

-c
o

d
e

F
re

q
u
en

cy

Malware

Benign

138

approach is divided into two main steps which are described in the following sub-

sections.

4.5.1 Disassemble Executable for Op-Code Frequency Statistics

In the first step, a fully automated method is developed for extracting op-code frequency

statistics from malicious and benign binaries executables. Figure 4.3 shows the system

architecture of such an automated process. All samples collected were pre-processed for

anomaly testing. In order to translate a program into an equivalent high-level-language

program based on the binary content, the most reliable disassembly tool used for static

analysis, namely, Interactive Disassembler Pro (IDA Pro 2010) has been chosen which

can disassemble all types of non-executable and executable files (such as ELF, EXE, PE,

etc.). Also, IDA Pro was selected as a component of the automation process of this

research work because it automatically recognizes instruction names of the op-codes for

various compilers and can be further extended with our Python programs and compiled

plugins, resulting in incredibly powerful implementation with flexible levels of analysis

and control. IDA Pro loads a file into memory to analyse the relevant program portion,

creating an IDA database whose components are stored in four files: .id0 that contains the

content of a B-tree-style database, .id1 that contains flags describing each program byte,

.nam that contains index information related to program locations, and .til that is used to

store information concerning local type definitions to a given database. IDA Pro

generates the IDA database files into a single IDB file (.idb) by disassembling and

analysing the binary of the file.

139

Figure 4.3 Flow Diagrams for OP-Code Frequency Statistics.

IDAPython (IDAPython 2011) has been used, which is an IDA Pro plugin that

integrates the Python programming language, allowing scripts to run in IDA Pro to

automate the process, also the C library SQLite (Naiqi et al. 2008) has been used, that

implements a self-contained SQL database engine with our python program to enable us

to convert the binary executable to a database. Therefore, we developed IDA Pro in

SQLite name ‗IDA2SQLite‘ plug-in to store the initial analysis results with the extension

(.db). Our developed plugin generates eight tables of information, each table contains

information about the executable namely Blocks, Functions, Instructions, Names, Maps,

Stacks, Segments, and TargetBinaries. Each of these tables contains different information

about the binary content. For the analysis of the features, we have run the SQL

commands through our Python program to compute the machine op-codes frequency

statistics.

140

4.5.2 Selection of Most Significant OP-Codes

In this step, the frequency statistics of op-codes are used with the wrapper-filter feature

selection to construct a signature-free malware detection approach. Significant research

works have appeared in the literature on feature selection (Balagani & Phoha 2010; Blum

& Langley 1997; Hu et al. 2008; John et al. 1994; Wolf & Shashua 2005). These can be

grouped broadly into three main categories based on the evaluation criteria: 1) the filter

model (section 4.6), 2) the wrapper model (Section 4.7), and 3) hybrid models (section

4.9). The filter models are based on the intrinsic characteristics of the data and do not

involve the application of an induction algorithm. Diverse filter models have been

advanced often involving relevance measures or distance measures as their evaluation

criteria (Wang, H. et al. 1999). A popular filter approach is Maximum Relevance based

on mutual information, which is described in the next section.

4.6 Maximum Relevance Filter Heuristic

Relevant features provide more information about the class variable than irrelevant

features. Mutual information based maximum relevance has been proposed as a good

heuristic to select salient features within the data mining area (Wang, H. et al. 1999). If S

is a set of features and class variable is c, the maximum relevance can be defined as:

 ()

 ∑ ()

 ()

 () is the mutual information between and class c which is defined as:

 () () () ()

141

 () is the entropy of with the probability density function () where takes

discrete values from the set * + then () is defined as:

 () ∑ () ()

 ()

 () in equation (4.2) is the conditional entropy between and c and is defined as:

 () ∑ ∑ () ()

 ()

Where class variable c takes the discrete values from the set * +.

In general, filter models are computationally cheap due to their evaluation criteria.

However, feature subsets selected by filter may result in poor prediction accuracies, since

they are independent from the induction algorithm.

 In contrast, wrapper models use a predetermined induction algorithm and use

predictive accuracy as the evaluation criteria for the feature selection. Wrapper models

face huge computational overhead due to the use of the induction algorithm‘s

performance criteria as their evaluation criteria. In (Hung-Ju et al. 2002), (Zhu et al.

2007), (Elaiwat et al. 2010a) and (Elaiwat et al. 2010b) a hybrid of genetic algorithm and

filter heuristic was proposed, where GA framework forms the subset generation process,

while the filter heuristic improves local search. GA-based approaches face huge

computational overheads due to the evaluation of the induction algorithm embedded in

the GA fitness function. Some wrapper approaches (Hung-Ju et al. 2002) use heuristics

142

generated from wrapper knowledge over wrapper iteration. A popular wrapper heuristics

is Artificial Neural Network Input Gain Measurement Approximation (ANNIGMA).

4.7 ANNIGMA wrapper-heuristic

Artificial Neural Network Input Gain Measurement Approximation (ANNIGMA) is a

weight analysis based wrapper heuristic that ranks features by relevance based on the

weight associated with feature in a Neural Network based wrapper approach (Hung-Ju et

al. 2002). Features that are irrelevant or redundant will produce more error than relevant

features. Therefore, during training, weights of noisy features are controlled in such a

way that they contribute to the output as little as possible. ANNIGMA is based on the

above strategy of the training algorithm. As shown in Figure 4.4, for a two layer Neural

Network, if i, j, k are the input, hidden and output layers and Q is a logistic activation

function (4.1) of the first layer and second layer has a linear function, then the output of

the network is as (4.2). Here are the input feature and W are the weights between

network layers.

 ()

 ()
 ()

 ∑ ⟦∑

⟧

 ()

Then local gain is defined as:

 ∑

 ()

143

Then ANNIGMA score is the local gain normalized on a unity scale as equation (4.8)

(Hung-Ju et al. 2002):

 ()
 ()

Input Layer-i

ijW

1A

2A

iA

Q

Q

Q

jkW

Hidden Layer-j
kOOutput

Layer-k

. . .

Figure 4.4 A Single Hidden Layer Multi-Layer Perceptron Neural Network in Wrapper

Approach

4.8 OP-Code Selection

The proposed op-code-selection and malware detection algorithm in this chapter is a

hybrid of the Wrapper-Filter approach using Maximum Relevance-based Filter Heuristic

and the Artificial Neural Network Input Gain Measurement Approximation (ANNIGMA)

Wrapper Heuristics. Standard filter approaches can extract knowledge of the intrinsic

characteristics from real data. However, filter approaches do not use any performance

criteria based on predictive accuracies. This does not guarantee that selected feature

144

subset will be able to do better in the classification tasks. In contrast, the wrapper

approach uses a predetermined induction algorithm and different search strategies to find

the best feature subset. Use of predictive-accuracy based evaluation criteria in the

wrapper ensures good performance from the selected feature subset. However, repeated

execution of the induction algorithm (in the worst case exponential search space) in the

search process incurs a high computational cost in the wrapper approach. Earlier research

shows that a hybrid of wrapper-filter heuristic significantly improves the performances

while applying in data mining applications (Huda et al. 2010).

In this chapter, a hybrid approach is proposed that introduces the filter heuristic in

the wrapper stage and take advantage of both approaches which is able to find more

significant op-codes than either wrapper or filter alone to find the Malware. The idea

behind this approach can be explained by the Venn-diagram as shown in Figure 4.5. If

the two feature subsets ACBF and ADBE are separately ordered/ ranked according to

their score, then common higher ranked feature subset (ACBD) is the strongly

recommended most significant feature subset by both feature selection algorithms. If the

scores of both algorithms are normalized on the same scale and combined, then feature

subsets with higher combined scores provide the common higher ranked feature subset

from both algorithms. A Backward Elimination (BE) search strategies based on the

combined score along with the wrapper evaluation criteria can find the most significant

features. Performance of the combined score may be affected due to the performance of

the incorporated filter for a particular wrapper approach in the hybrid. However, different

filter approaches can be combined to find a suitable hybrid for a particular wrapper

heuristic and vice-versa. In this chapter, we have combined mutual information based

145

Filter-Maximum Relevance (MR) with Artificial Neural Network Input Gain

Measurement Approximation (ANNIGMA) based wrapper. Here, we have focused on a

Neural network based wrapper and different filter heuristics. We will use other wrapper

approaches in a future work. The following sub-sections describe the proposed hybrid

algorithm.

The proposed hybrid approach avoid the computational overhead of hybrid GA-

based approaches takes advantage of both filter and wrapper heuristics which are absent

in the traditional GA-based hybrid approaches (Hung-Ju et al. 2002; Kohavi & John

1997). This type of hybrid approach is a new concept and has not been explored yet in the

malware detection literature. The different sub-components in the hybrid approach have

been shown in Figure 4.6 and main steps are described in the follow sections.

Figure 4.5 Venn Diagram for Hybrid Algorithm

146

Subset Generation process

Subset

Stopping criteria (Accuracy improved?)

Compute Filter

Score using current

subset and training

data

Accuracy

Op-code

Frequency

Statistics

Final op-code

subset

Wrapper stage

Compute Accuracy

Using the learned classifier,

current subset and test data

Compute Wrapper score

Using the learned classifier

and subset

Train the wrapper using

current subset and training

data

Classifier Classifier

Compute Combined

score using Filter and

wrapper score

Subset Combined

Score

Figure 4.6 Framework for Hybrid of Wrapper and Filter Feature Selection

147

Algorithm 1: Procedure Hybrid Wrapper-Filter approach for Malware detection

Input: // Training data with m features

Output: //an optimal subset of features

Begin

1. Let S=whole set of m features

2. =Initial set of feature which records all generated subsets with accuracy

// Apply a Backward Elimination (BE) search strategy

3. for N = 1 to m-1

4. Current set of feature =S

5. Compute Filter score by (11)

6. for fold=1 to n

7. Train the network with

8. Compute ANNGMA of all features

9. Compute Accuracy

10. endfor

11. Compute average accuracy of all folds for

12. Compute average ANNIGMA of by (11)

13. Compute combined score for every feature in

 by (11-13) for both hybrids

14. Rank the features in using the combined score

 in descending order

15.

16. Update the current feature set

 by removing the feature with lowest score

17. endfor

18. = Find the subset from with the highest accuracy.

19. return

End

4.9 Hybrid Models

The computation of combined score Hybrid of Maximum Relevance and ANNIGMA

based signature-free for malware detection technique uses Artificial Neural Network as

148

the induction algorithm in the wrapper. An n-fold cross-validation approach has been

used in MR-ANNIGMA to train the wrapper. In each fold we compute the ANNIGMA

score for every feature. Then after training of all folds, the ANNIGMA score is averaged

as (4.9):

 () (

) ∑ ()

 <
 ()

While computing the combined score in the proposed ANNIGMA, the relevance

of a feature in the current subset is computed from the individual score which is scaled to

the maximum individual relevance of the subset. The, relevance of a feature in a subset

within the hybrid approach is defined as given in equation (4.10)

 ()
 ()

 () ()
 ()

The combined score of the filter‘s heuristic and the wrapper‘s heuristic in the

proposed MR-ANNIGMA is computed as in equation (4.11)

 ()

 ()

 () ()
 () ()

The detail of algorithm of this hybrid approach is described in Algorithm 1.

4.9.1 Search Strategies

MR-ANNIGMA uses a Backward Elimination (BE) search strategy to generate a subset

of op-codes. Initially, it starts with the full op-code set. Subset generation in BE is guided

149

by the wrapper-filter hybrid heuristic score. The combined score computation follows the

steps of sub-sections. When the number of op-codes in BE process is significantly

reduced compared to the total op-codes, the filter score component is weighted less than

the wrapper score as given in equation (4.12)

 ()

 ()

 () ()
 () ()

Where 0,1 vu

4.9.2 Wrapper Step in MR-ANNIGMA

MR-ANNIGMA uses a single hidden layer Multi-Layer Perceptron (MLP) Network

(Figure 4.4) in the wrapper stage. An n-fold cross validation approach has been applied in

the training of the network. The evaluation criterion of op-code subset is based on the

average prediction accuracy over n-fold of the wrapper (MLP network). In Algorithm 1,

steps 1 to 5 compute the filter score of the current feature subset. Step 6 to 11 compute

the average accuracy over n-folds and compute the wrapper score for the current subset

of op-codes. Step 12 to step 14 computes the hybrid scores and the op-codes are ranked

based on their combined score. Step-15 to step-16 would then generate a new subset

based on the op-code ranking and would keep a record of evaluated op-code subsets with

their accuracy. The BE processes in MR-ANNIGMA would update the MR and

ANNIGMA and the combined score in every iteration. The combined score then guides

the subset generation. The BE continues until a single op-code remains in the current

150

subset. The subset with the highest accuracies or close to the highest accuracies with

fewer op-code set is then chosen as the final op-code subset for the detector.

4.10 Discussion on Experimental Results

The proposed MR-ANNIGMA based signature-free approach has been tested on a large

set of real and recent malware samples for detecting more unknown malware. We have

two types of datasets, namely malware, and executable benign files or ‗good wares‘. For

the malware dataset, we have collected the infected files from honeypots, honeynet

project and other sources, and for benign datasets, we have considered different good

files such as, application software (Educational software, Mathematical software, Image

editing, Spreadsheet, Word processing, Decision making software, Internet Browser,

Email and system software and Programming languages software, and many others).

1,474 executable files have been used in which 450 are benign files and 1,024 malware

samples that have been uniquely named according to their MD5 value. Overall, the op-

code set consists of 97 op-codes, and the list was gathered from Intel, based on the

extended x86 IA-32 binary assembly instructions. A single hidden layer neural network

with 22 hidden nodes and (tansig-- hidden layer function and purelin—output layer

function) is used as Figure 4.5.

Experimental results have been described in Table 4.1 and Table 4.2 provide the score for

filter approach MR, wrapper approach ANNIGMA, and combination of filter approach

MR and wrapper approaches ANNIGMA (MR- ANNIGMA). The backward elimination

(BE) process starts with all 97 op-codes and accuracies of different iterations of the BE

process for all three algorithms have been given in Table 4.2. With all 97 op-codes,

ANNIGMA achieves accuracies of 96.029 %, MR achieves accuracies of 96.002% and

151

MR-ANNIGMA achieves 95.820%. The op-codes are sorted according to their score. In

the same Table 4.1 hybrid score of MR-ANNIGMA has been provided. In the second

iteration, the op-code with lowest score is discarded and then the subset is evaluated.

The BE process continues, while total op-codes 28, in Figure 4.7, the hybrid re-

computes all op-code scores resulting in op-code 6 attaining the lowest for ANNIGMA,

op-code 19 attaining the lowest for MR and op-code 74 attaining the lowest for combined

score. Therefore in this iteration, op-code 74 is eliminated and MR-ANNIGMA achieves

an accuracy of 97.203%. In the next cycle, MR-ANNIGMA eliminates op-code-58 due to

its lowest combined score in Figure 4.7 and accuracy of hybrid increases to 97.434%. In

Figure 4.9 when total op-code is 17, MR-ANNIGMA eliminates op-code 22 and in

Figure 4.10 op-codes 90 is eliminated at total-16 op-codes (due their lowest combined

score) where MR-ANNIGMA achieves accuracy of 97.434%. In the next cycle, BE

process eliminates op-code-97 for lowest combined score in Figure 4.11 at total-15 op-

codes. The BE process continues and ANNIGMA achieves (96.877%) accuracies with 25

op-code set and accuracies of ANNIGMA drops to 68% with one op-code for

ANNIGMA. MR achieves 97.475% accuracies with 27 op-codes as shown in Figure 4.8

and 97.405% with 26 op-codes. MR-ANNIGMA achieves an accuracy of 97.573% at

total op-code 24 and an accuracy of 97.597% at total op-code 23. Accuracies for MR-

ANNIGMA decreases to 93.944% for one op-code. MR-ANNIGMA achieves (97.529%)

accuracies as given in Table 4.2 with smallest set op-codes (15 only) which is the closest

to the accuracy level at the op-code set 23 with highest accuracy 97.597%. Therefore, op-

code set 15 has been considered as the final and most significant op-code set for MR-

ANNIGMA. The accuracy results in the BE process as shows in the same table (Table

152

4.2) that hybrid approach proposed is achieves the highest accuracies with smallest op-

codes sets for detection of Malware.

The final op-codes sets from all three algorithms (ANNIGMA, MR and MR-

ANNIGMA) have been used in a 10-fold cross validation set. The class discriminative

performance of the most significant op-code sets form all three algorithms has been

tested by varying the NN‘s threshold values of the output node in the cross-validation.

Then average sensitivity and specificity over 10-fold have been used to produce a

Receiver Operating Characteristics (ROC) curve for each algorithm which have been

presented in Figure 4.12. The ROC curve of MR-ANNIGMA achieves the highest

sensitivity with the highest specificity in all three algorithms. This demonstrates the

efficacy of the proposed hybrid algorithm MR-ANNIGMA in Malware detection.

Our experimental results show that the proposed wrapper-filter based approach

finds a small op-code set for malware detection while maintaining very high accuracy

and sensitivity levels with high specificity. The proposed approach does not need any

signature to detect malware. However, further investigation could be made using other

wrapper approach. One of the limitations of the proposed approach is that it is supervised

and needs to re-train, which may be difficult for end user. However, this limitation could

be avoided by using a rule generation step along with the result of the proposed approach.

In such a case, the users are required to update only the rules. This would be explored in

future research along with more investigations with regard to feature selection using other

wrapper approaches.

153

Figure 4.7 Score of OP-Codes When Total Attributes=28

Figure 4.8 Score of OP-Codes When Total Attributes=27

Total op-codes in the set=28

0

0.2

0.4

0.6

0.8

1

1.2

74 58 34 36 61 7 27 83 38 90 35 82 6 97 22 30 91 37 65 63 41 39 54 16 44 72 9 19

Opcodes Serial Number

S
c
o

r
e

ANNIGMA MR MR-ANNIGMA

Total Op-codes in the set=27

0

0.2

0.4

0.6

0.8

1

1.2

58 27 83 34 7 36 82 61 38 90 35 97 6 22 30 91 37 39 65 72 41 44 63 16 54 9 19

Op-code serial number

S
c
o

r
e

ANNIGMA MR MR-ANNIGMA

154

Table 4.1 Heuristics Score for MR, ANNIGMA and MR-ANNIGMA

OP-

Code
ANNIGMA MR

MR-

ANNIGMA

OP-

Code
ANNIGMA MR

MR-

ANNIGMA

OP-

Code
ANNIGMA MR

MR-

ANNIGMA

AAA 0.093 0.011 0.104 JA 0.010 0.691 0.701 RCL 0.030 0.521 0.551

AAD 0.288 0.010 0.298 JB 0.009 0.814 0.823 RCR 0.011 0.091 0.102

AAM 0.024 0.021 0.045 JBE 0.014 0.703 0.717 REPXX 0.003 0.000 0.003

AAS 0.076 0.015 0.092 JMP 0.024 0.954 0.977 RET 0.003 0.000 0.003

ADC 0.011 0.474 0.485 JNB 0.017 0.733 0.750 RETF 0.108 0.185 0.293

ADD 0.011 0.854 0.865 JNZ 0.049 0.962 1.011 RETN 0.043 0.943 0.986

AND 0.008 0.696 0.704 JXX 0.002 0.000 0.002 ROL 0.046 0.429 0.475

ARPL 0.175 0.007 0.182 JZ 0.009 0.982 0.992 ROR 0.080 0.526 0.606

CALL 0.155 0.987 1.142 LAR 0.051 0.003 0.054 SAHF 0.045 0.260 0.305

CBW 0.328 0.018 0.346 LDC 0.002 0.000 0.002 SAL 0.045 0.007 0.052

CLC 0.028 0.025 0.053 LEA 0.093 0.962 1.056 SAR 0.009 0.492 0.501

CLD 0.013 0.445 0.458 LGDT 0.013 0.001 0.014 SBB 0.009 0.254 0.264

CLI 0.101 0.026 0.128 LIDT 0.004 0.001 0.005 SCASB 0.003 0.000 0.003

CLTS 0.005 0.000 0.005 LMSW 0.002 0.000 0.002 SCASW 0.002 0.000 0.002

CMC 0.041 0.117 0.158 LODSB 0.003 0.000 0.003 SGDT 0.003 0.000 0.003

155

CMP 0.021 0.978 0.999 LODSW 0.002 0.000 0.002 SHL 0.098 0.467 0.565

CMPSB 0.003 0.000 0.003 LOOP 0.026 0.227 0.253 SHR 0.053 0.624 0.677

CMPSW 0.003 0.000 0.003 LOOPX 0.002 0.000 0.002 SIDT 0.016 0.002 0.017

CWD 0.279 0.018 0.297 LSL 0.075 0.004 0.079 STC 0.016 0.040 0.057

DAA 0.113 0.015 0.128 LTR 0.007 0.000 0.007 STD 0.008 0.410 0.418

DAC 0.105 0.008 0.113 MOV 0.010 1.000 1.010 STI 0.029 0.025 0.054

DEC 0.017 0.837 0.854 MOVSB 0.003 0.000 0.003 STOSB 0.003 0.000 0.003

DIV 0.015 0.553 0.568 MOVSW 0.002 0.000 0.002 STR 0.009 0.000 0.010

ESC 0.003 0.000 0.003 MUL 0.015 0.110 0.124 SUB 0.020 0.775 0.794

FLDCW 0.029 0.302 0.331 NEG 0.019 0.585 0.604 TEST 0.012 0.927 0.939

HLT 0.788 0.005 0.793 NOP 0.066 0.111 0.177 VERR 0.012 0.002 0.014

IDIV 0.080 0.526 0.606 NOT 0.006 0.308 0.314 VERW 0.003 0.000 0.003

IMUL 0.027 0.364 0.391 OR 0.016 0.681 0.697 WAIT 0.098 0.295 0.393

IN 0.170 0.021 0.190 OUT 0.269 0.020 0.289 XCHG 0.007 0.375 0.382

INC 0.028 0.887 0.914 POP 0.016 0.989 1.005 XLAT 0.076 0.017 0.093

INT 0.038 0.042 0.080 POPF 0.020 0.030 0.050 XOR 0.026 0.824 0.850

INTO 0.284 0.006 0.290 PUSH 0.023 0.999 1.022

IRET 0.087 0.015 0.101 PUSHF 0.031 0.037 0.068

156

Table 4.2 Accuracies at Different Iteration for MR, ANNIGMA and Proposed Hybrid Approach MR- ANNIGMA

OP-

Code
ANNIGMA MR

MR-

ANNIGMA

OP-

Code
ANNIGMA MR

MR-

ANNIGMA

OP-

Code
ANNIGMA MR

MR-

ANNIGMA

AAA 68.83 94.71 93.94 JA 96.35 97.20 97.31 RCL 96.33 96.38 96.71

AAD 68.42 94.85 94.28 JB 96.00 96.88 97.05 RCR 96.10 96.55 96.70

AAM 95.30 95.53 94.90 JBE 96.42 96.84 97.11 REPXX 96.52 96.43 96.77

AAS 95.34 95.34 95.25 JMP 96.50 97.39 97.26 RET 96.40 96.38 96.97

ADC 95.47 96.51 95.25 JNB 96.42 97.16 96.89 RETF 96.19 95.93 96.20

ADD 95.41 96.58 95.71 JNZ 96.29 97.07 97.03 RETN 96.32 96.38 96.19

AND 95.33 96.50 95.57 JXX 96.13 96.92 96.81 ROL 96.46 96.46 96.27

ARPL 95.28 96.63 95.71 JZ 96.31 96.77 96.82 ROR 96.38 96.74 96.40

CALL 95.29 96.80 96.33 LAR 96.04 96.51 96.71 SAHF 96.67 96.00 96.28

CBW 95.18 96.55 96.39 LDC 96.04 96.99 96.92 SAL 96.66 96.43 96.21

CLC 95.28 96.84 96.35 LEA 95.90 97.18 97.01 SAR 96.67 96.73 96.59

CLD 95.42 96.73 96.32 LGDT 96.28 96.65 96.69 SBB 96.35 96.13 96.04

CLI 95.40 96.39 96.92 LIDT 96.42 97.12 96.66 SCASB 96.13 96.25 96.29

CLTS 95.11 96.70 97.30 LMSW 96.38 96.52 96.92 SCASW 96.17 95.85 96.42

CMC 96.00 96.70 97.53 LODSB 96.25 96.88 96.97 SGDT 96.61 96.35 96.48

157

CMP 96.12 96.76 97.43 LODSW 96.36 96.76 96.61 SHL 96.48 96.14 96.61

CMPSB 96.28 96.92 97.07 LOOP 96.61 96.77 96.77 SHR 96.47 96.54 96.52

CMPSW 96.25 96.96 96.89 LOOPX 96.42 96.84 96.55 SIDT 96.59 96.42 96.47

CWD 96.43 96.31 97.37 LSL 96.85 96.78 96.63 STC 96.14 96.33 96.27

DAA 96.50 96.97 97.23 LTR 96.61 96.28 96.77 STD 96.43 96.16 96.48

DAC 96.55 96.70 97.07 MOV 96.52 96.55 96.25 STI 96.13 95.89 96.54

DEC 96.05 96.09 97.41 MOVSB 96.78 96.32 97.08 STOSB 96.35 96.10 96.16

DIV 96.77 97.00 97.60 MOVSW 96.39 96.51 96.73 STR 96.54 96.39 96.21

ESC 96.78 97.14 97.58 MUL 96.54 96.36 96.99 SUB 96.40 96.19 96.40

FLDCW 96.88 97.37 97.31 NEG 96.48 96.88 96.38 TEST 96.16 96.42 96.50

HLT 96.80 97.41 97.54 NOP 96.62 96.61 96.93 VERR 96.57 96.48 96.33

IDIV 96.12 97.48 97.43 NOT 96.71 96.52 96.61 VERW 96.09 96.36 95.89

IMUL 96.33 97.27 97.20 OR 96.36 96.85 96.86 WAIT 96.25 96.50 96.69

IN 96.80 97.61 97.16 OUT 96.47 96.65 96.17 XCHG 96.15 96.08 96.32

INC 96.14 97.31 97.22 POP 96.33 96.82 96.58 XLAT 95.86 96.05 95.99

INT 96.59 97.41 97.38 POPF 96.31 96.66 96.89 XOR 96.03 96.00 95.82

INTO 96.63 97.19 97.27 PUSH 96.54 96.66 96.51

IRET 96.51 97.48 97.61 PUSHF 96.48 96.78 96.65

158

Figure 4.9 Score of OP-Codes When Total Attributes=17

Figure 4.10 Score of OP-Codes When Total Attributes=16

Total op-codes in the set=17

0

0.2

0.4

0.6

0.8

1

1.2

22 90 97 30 37 39 65 63 82 72 91 16 44 54 41 9 19

op-codes serial number

S
c
o

r
e

ANNIGMA MR MR-ANNIGMA

Total op-codes in the set=16

0

0.2

0.4

0.6

0.8

1

1.2

90 82 97 30 37 72 91 39 63 65 41 44 9 16 54 19

Op-codes serial Number

S
c

o
re

ANNIGMA MR MR-ANNIGMA

159

Figure 4.11 Score of OP-Codes When Total Attributes=15

Figure 4.12 Receiver Operating Characteristics Analysis

Total Op-codes in the set=15

0

0.2

0.4

0.6

0.8

1

1.2

97 37 30 63 39 82 72 65 91 16 41 19 44 9 54

Op-codes serial number

S
c
o

re

ANNIGMA MR MR-ANNIGMA

ROC Analysis

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.2 0.4 0.6 0.8 1

1.0- Specificity(False positive rate)

Se
ns

iv
ity

MR ANNIGMA MR-ANNIGMA

160

Chapter 5 : Malware Behaviour by the Extraction of API

Calls

Sherlock Holmes: “It is a capital mistake to theorize before one has data.

Insensibly one begins to twist facts to suit theories, instead of theories to suit

facts.”

 —Sir Arthur Conan Doyle, “A Scandal in Bohemia,‖

 The Strand Magazine (1891)

5.1 Overview

As shown earlier, a recent technique adopted by malware authors is to use packers or

software tools that instigate code obfuscation in order to evade detection by antivirus

scanners. It is a common practice to undergo manual unpacking or static unpacking using

existing software tools, and to use human expertise in analysing the Application

Programming Interface (API) calls for malware detection. However extracting these

features from the unpacked executables for reverse obfuscation is time consuming, labour

intensive, and requires deep understanding of kernel and low-level programming such as

assembly programming. This chapter presents an automated method of extracting API

call features and analysing them in order to understand their use for malicious purpose.

While some research has been conducted in arriving at file birthmarks using API call

features and the like, there is a scarcity of work that analyses deeply with respect to the

use of such features in malcodes. To address this gap, automatic methods to classify

malware based on the behaviour the API function calls are proposed in this chapter. The

161

proposed approaches also provide scope for deeper understanding of code obfuscation

and to reverse engineer malware automatically.

This chapter proposes a five-step methodology for developing a fully automated

system to arrive at six main categories of suspicious behaviour of API call features. Also,

the methodology is devised to detect obfuscated malware by investigating the structural

and behavioural features of API calls. In particular, n-gram statistical analysis of API

calls is applied and experimental results with a dataset of 21942 malware and 15275

benign files have shown a promising accuracy of 96.5% for the unigram model. A

preliminary analysis using support vector machine (SVM) with n-values varied from 1 to

5 is also provided. Various analysis of the methods used have considered performance

measurements such as accuracy, false positives and false negatives. Overall, the main

objective of this chapter is to apply SVM, train the classifier and derive an optimum n-

gram model for detecting both known and unknown malware efficiently.

The chapter is organized as follows: next section explains the API calls. Sections

5.3 and 5.4, describe the background of this research, which is based on a thorough

foundation on API calls and PE file formats. Section 5.5 provides the motivation of this

research and the current limitations of AVs. The Section 5.6 highlights the main

contributions of the study. Section 5.7 provides the methodology adopted and the system

architecture of the fully-automated system implemented for this research study. Then in

Section 5.9, the experimental results are discussed. Finally, the limitations and future

work of this ongoing research are provided in Section 5.10.

162

5.2 Windows API Functions

Application Program Interface (API) enables the programs to exploit the power of

Windows and malware authors also make use of API calls to perform malicious actions

(Sharif et al. 2008). Windows API function calls fall under various functional levels such

as system services, user interfaces, network resources, windows shell and libraries. Since

the API calls reflect the functional levels of a program, analysis of the API calls would

lead to an understanding of the behaviour of the file. Malicious code is able to disguise its

behaviour by using API functions provided under Win32 environment to implement their

tasks. Therefore, in binary static analysis, the focus is on identifying all the documented

Windows API call features to understand the malware behaviour.

Simply, the API entitles application programs to communicate with the operating

system and malware authors make use of these API functions to exploit vulnerability in

the system. The Windows API, or ‗WinAPI‘ is Microsoft's core set of application

programming interfaces available in the Microsoft Windows OS and the core Win API

contains approximately 2500 APIs.

In the Windows operating system, user applications rely on the interface provided

within a set of libraries, such as KERNEL32.DLL, NTDLL.DLL and USER32.DLL in

order to access system resources including files, processes, network information and the

registry. This interface is known as the Win32 API. Applications may also call functions

in NTDLL.DLL known as the Native API. The Native API functions perform system

calls in order to have the kernel provide the requested service. The approach described in

this chapter extracts and analyses these API call features including hooking of the system

163

services that are responsible to manage files. The extracted calls are confined to those that

affect the files. Various features related to the calls that create or modify files or even get

information from the file to change some value and information about the DLLs loaded

by the malware before the actual execution are considered for the analysis. Then

statistical testing on the extracted features is performed to determine the malware class

based on suspicious behaviours.

APIs are divided into 3 categories: kernel, user, and GDI. Figure 5.1 shows the

relationship between the DLLs. Windows has a number of main sub-system DLLs such

as USER32.DLL, GDI32.DLL, ADVAPI32.DLL, NTDLL.DLL and KERNEL32.DLL

For the purpose of this research, the focus is on NTDLL.DLL since it serves as the

fundamental user-mode interface of the windows Native APIs. NTDLL.DLL contains the

Native APIs, while KERNEL32.DLL, USER32.DLL, GDI32.DLL consist of the main

Win32 Core Subsystem APIs. Native API is the set of functions exported from both

NTDLL.DLL and ntoskrnl.exe. The actual implementations of the Native API calls reside

in ntoskrnl.exe, which means that Native API is the most direct interface into the

windows kernel.

164

User-Mode
Kernal-Mode

A
p

p
li
c

a
t
io

n
 M

o
d

u
le

s

KERNEL32.DLL

USER32.DLL

GDI32.DLL

NTDLL.DLL

WIN32.SYS

NTOSKRNL.EXE

Windows Kernel

Implementation

Windows

Kernel

 Figure 5.1 The WinAPI Interface DLLs and their Relation

The information of character strings in Portable Executable, such as file header,

the number of DLL, the number of API calls and so on, could be distilled, and normal

programs and virus programs are classified by naive Bayes algorithm, and the detection

result reported in literature is quite good (Sun et al. 2010; You & Yim 2010) . However,

the information in PE file header could be modified easily, and it has some difference

from the true calls of programs. The existing techniques and methods do not perform

sufficient statistical analyses to determine if the anomaly was ‗actually‘ malicious.

Therefore, in this research, static anomaly-based detection analysis have been used,

which consists of examining the code of programs to determine properties of the dynamic

execution of these programs without running them. This technique is adopted to extract

165

and identify the API function calls used by malware 21942 executables samples. The

dataset contains recent malware samples that were collected between July 2009 and

March 2010 from honeypots, honeynet project and other sources. The approach used is

static analysis of the malware based on the Windows API calling sequence and this

chapter describes how to extract those windows calls that reflect the behaviour of a file.

5.3 API Analysis methods

 Windows OS has many undocumented APIs to give Microsoft an edge over one software

vendor or another. This creates a real challenge for malware analysers where the

investigation is based on the API features. However, identifying the API calls in an

executable is very important since it could lead to detecting the behaviour of the

Malware. In addition, it provides a sample of how the API is used and exactly what is the

data it sends/receives. There are many different methods of locating APIs such as the

traditional method that uses kernel mode debugger such as Numega SoftICE (Chang, H.

& Atallah 2002) and WinDbg (Microsoft WinDbg 2010). Applying any of these methods

in any big dataset will take a long processing time.

The Native API implemented in NTDLL forms most of the undocumented calls

inside the user-mode service in Windows and hence making a dump of the export

directory of NTDLL.DLL was exported to a file called a ‗dump‘. The dumps from the

export directories, headers and data sections of executable help to Figure out what their

dependents and what the functions and services provided by NTDLL.DLL along with

service numbers which are used in kernel mode. The name of documented and

undocumented API and the name of the DLL that exports it are extracted and then the

166

binaries that use it are looked for, since MSDN library explains only default functions

that Windows presents.

Offline analysis of these API calls within binary executable code is performed by

using a disassembler to convert it into readable code. Offline analysis provides a better

understanding of the code since the methodology adopted performs a deep analysis into

the code program and their statistical properties. Therefore, in this research, static

anomaly-based detection analyses have been used, which consists of an introspection of

the program codes to determine various dynamic properties of these codes in an isolated

environment. This technique is applied to extract and identify the API function calls

5.4 Finding Intrusions

Current anomaly-based techniques use heuristics approach of detection that is inefficient

and usually results in false positives (Jacob et al. 2008). In this chapter, a novel approach

is proposed to extract the structural and behavioural features from program codes in order

to detect both known and unknown malware.

Windows API calling sequence reflects the behaviour of a particular piece of code

(Ban et al. 2010; Wang, C., Pang, Zhao, Fu, et al. 2009). The API enables the programs

to exploit the power of the operating system and the malware authors are using the API

call as a vehicle to perform malicious actions. A novel technique of extracting the

structural and behavioural features of API calls with the aid of statistical n-gram analysis

has resulted in effective malware detection.

167

An n-gram is an n-contiguous sequence, mainly used for pattern recognition. It

has been used and applied successfully in many areas of computer science applications

such as Computer Speech Recognition (Xiao et al. 2007; Zitouni 2007), Language

Identification (MacNamara et al. 1998), Spelling Correction (Varol & Bayrak 2011),

Optical Character Recognition (OCR) (Järvelin et al. 2007), Authorship Analysis (Layton

et al. 2009) etc. An n-gram method of feature extraction and analysis is quite thorough

but time consuming as the size of n increases. To overcome this constraint, this chapter

proposes an intelligent machine learning technique of feature recognition to train a

classifier for identifying malicious code. Literature studies indicate that a predominantly

used machine learning technique called, Support Vector Machines (SVMs) (Hearst et al.

1998) have been applied successfully to classify text, handwritings (Adankon & Cheriet ;

Do & Artières 2009) and many other datasets. Since malware also exhibit the behaviour

patterns in the form of a file print or feature, this work applies SVM for effectively

classifying the program code as either malicious or benign.

5.5 Modern Malware Detector Issues

The results of the following recent studies have been the prime motivation for this

research: 1) malware authors are able to easily fool the detection engine by applying

obfuscation techniques on known malware (Sharif et al. 2008) , 2) identifying benign

files as malware is becoming very difficult (high false positive), 3) failure to detect

obfuscated malware is high (high false negative) (Symantec Enterprise Security 2010,

2011a), 4) the current detection rate is decreasing, and 5) current malware detectors are

unable to detect zero day attacks (RSA 2011; Symantec Enterprise Security 1997). These

168

results imply that code obfuscation has become a challenge for digital forensic examiners

with the limitations of signature based detection (Santos et al. 2009; Tang et al. 2010).

As a first step to addressing these issue, this chapter proposes a five-step approach

of anomaly based detection that captures and analyses the structural and behavioural

features of API calls from program codes or executables using n-gram and SVM to detect

and classify unknown and obfuscated malware. In this chapter, a method is given on how

to automate the process of effectively extracting the behaviour features of application

programming interface function calls of the core of Windows operating system. The

fully-automated system processes both packed and unpacked portable execution (PE)

files and reverses obfuscation. This chapter discusses further the processes adopted to

extract the n-gram distributions of all the API call features from the malicious and benign

executables and then to apply SVM for machine learning.

The first step of this proposed method is to extract the most frequently occurring

n-grams in each file and collate that list into an overall list for the entire dataset and the

next step is to collect the n-gram distribution for each executable for each n-gram in the

larger list. The third step is to apply principle component analysis (PCA) approach to the

result to account for 95% of the variation and for an effective feature reduction process.

With the extracted features, the main goal of detecting unknown malware is now possible

if the proposed approach caters to all possible code obfuscation techniques that could be

adopted by the malware authors.

Malware authors are continually developing such new techniques for creating

malware that cannot be detected by AV engines, and their level of sophistication is

169

continuing to grow. Through experimental tests, it has been found that all obfuscated

techniques described in Section 2.6 can be used to fool the current detection engines by

obfuscating the malware signature. Hence, in order to cater to all these obfuscation

techniques, this research focuses on unpacking and extracting the behaviour of the

malware through API call analysis rather than the typical "pattern matching" detection

process that are evaded by obfuscations of the byte sequence through packing,

metamorphic and polymorphic techniques. The features of the extracted API calls are

identified in the unpacked executable binary using the n-gram statistical analysis that is

described in the next section.

5.6 Contributions of the Chapter

Recently, API calls have been explored for modeling program behaviour. There are

studies that have used analysis of API calls for generation of a birthmark on portable

execution (Choi et al. 2009; Park et al. 2008a, 2008b; Tamada et al. 2006). The use of

statistical analysis of file binary content including statistical n-gram modeling techniques,

have been tested in identifying malware in document files and does not have sufficient

resolution to represent all class of file types (Stolfo et al. 2005; Wang, C., Pang, Zhao &

Liu 2009). From other study on related work it has been found that the statistical

modeling of hidden malcode that predominantly use Windows API calling sequence for

evading detection is yet to be explored (Bruschi et al. 2006; Chang, H. & Atallah 2002;

Ferrie & Szor 2001; Linn & Debray 2003; Perriot & Ferrie 2004; Venkatraman 2009).

This is the motivation for this research towards a positive contribution in understanding

malware behaviour through statistical analyses of API calls.

170

In this chapter, the static analysis tool IDAPro disassembler (IDA Pro 2010) is

used to disassemble, analyze and extract the API function calls from the binary content of

malware, and to statically identify the behaviour from the API calls. A novel approach is

presented to automate and extract the API function calls from the malware binary

content. A static anomaly based detection technique is applied and it consists of

examining the malware programs without it being executed, so as to determine the

behaviour of the actual execution, and to have it combine with API call feature extraction

for reflecting the overall behaviour of a file.

There are four other main contributions. First, the development of a fully-

automated system to unpack, de-obfuscate and reverse engineer the program codes and

apply feature extraction techniques effectively. Second, the intelligent extraction of the

behaviour of features of API calls that relate to i) hooking of system services, ii) creating

or modifying files, iii) getting information from the file for changing information about

the DLLs loaded by the malware. Third, measurement based application of n-gram

statistical modeling to obtain the distribution of the executables for n-values ranging from

1 to 5. The model is measured based on factors such as accuracy, false positives and

false negatives. Fourth, robust identification of malicious code as against benign code

using SVM to train the classifier for machine learning.

5.7 Proposed Approach and Implementation

This section describes the methodology adopted for the automation of API extraction, the

analysis and the identification of malicious behaviour. The proposed approach shown in

Figure 5.2 consists of five steps for the automated detection of malware using API calls:

171

Step 1: Unpack the malware and disassemble the binary executable to retrieve the

assembly program.

Step 2: Extract API calls and important machine-code features from the assembly

program.

Step 3: Map the API calls with MSDN library and analyse the malicious behaviour.

Step 4: Extract binary n-gram features.

Step 5: Train a classifier and build a model using support vector machine.

Figure 5.2 Fully-Automated Architecture to Distribute the API Function Calls

5.7.1 Step 1: Unpack and Disassemble Malware.

Researchers have been trying to build semi-automated tools for automatically unpacking

malware, such as PolyUnpack (Royal et al. 2006), Renovo (Kang et al. 2007),

OmniUnpack (Martignoni et al. 2007), Ether (Dinaburg et al. 2008), and Eureka (Sharif

172

et al. 2008). PolyUnpack is an automated unpacking technique for extracting the hidden

code through process execution and uses the Windows debugging API to single-step. The

second tool, Renovo, is implemented using the QEMU machine emulator and supports

multiple layers of unpacking (QEMU can run an unmodified target operating system and

all its applications in a virtual machine). However, OmniUnpack uses a coarse-grained

execution tracking approach at the page-level protection mechanism available in

hardware in order to identify when the code gets executed from a page that was newly

modified. Eureka, is similar to OmniUnpack except that Eureka tracks execution at the

system call level. Eureka follows a statistical bigram analysis and coarse-grained

execution tracing method and provides several Windows API resolution techniques that

identify API calls based on their functionality in the unpacked code. Lastly, Ether, is

based on an application of hardware virtualization extension such as Intel VT, and resides

outside the operating system. By studying these semi-automated tools, it is observed that

none of them are completely meet the purpose of analysing the behaviour of

automatically malware by extracting API call features.

In the experiment conducted on 21942 samples of malware, PEiD (PEiD 2008)

was used as it is a detector adopted by most common packers, cryptors, compilers and

even signature-based packer detection in PE files. The results indicate that about 77% of

malware are packed and 23% are unpacked, as shown in Figure 5.3. From the result in

Figure 5.3, it can be concluded that the majority of malware change their byte sequence

or 'Signature' by applying packing techniques to evade detection by anti-virus scanners.

173

Figure 5.3 Distribution of Obfuscation Packers Used in Malware

5.7.2 Step 2: Extract API Function Calls Features.

The unpacked malware from Step 1 with the aid of SQLite and IDA pro (IDA Pro 2010)

to generate a database containing the application programming interface (API) calls (.idb)

automatically from the entire dataset of malware and benign programs. API call features

are extracted from the assembly code of the executables so that the generated information

could be used for effective analysis, using IDA pro from the unpacking.

IDA Pro provides access to its internal resources via an API that allows users to

create plug-ins to be executed by IDAPro. The Python program has been created to

automatically run and create the plugin to use SQLite with IDA Pro for generating the

Nothing found 23%

Upack 6%

Petite 4%

PELock 8%

PECompact 4%

UPX 10%AsProtecect 3%

Microsoft Visual C++ 2%

Microsoft Visual Basic 2%

MEW 2%

kkrunchy 6%

Borland Delphi 4%

Armadillo 21%

FSG 5%

174

database (.db). An interface is developed for accessing the database file (.db) so that the

results from the assembly code of the malware stored in the database could be used for

better binary analysis. The plugin, nameD IDASQLit is created and used with IDA pro

Dissasember to generate eight tables of information, namely Blocks, Functions,

Instructions, Names, Maps, Stacks, Segments, TargetBinaries.

Each of these tables contains different information about the binary content. Function

table contains all the recognizable API system calls and non-recognizable function names

and the length (start and the end location of each function). Instructions table

contains all the operation code and their addresses and block addresses. Maps table

contains the function address and source of block address and the destination of the

function address. Names table contains function addresses, the name of the function

and the type of the function. Stacks table contains function address, the stack

name, and the start and the end address. Segments table contains information that

describes each segment in an executable file, segment name (Code, Data, BSS,

_idata, _tls, _rdata, _reloc, and _rsrc) and the segment length.

Finally, TargetBinaries contain the file name, path name, MD5, and start and the

end of running.

5.7.3 Step 3: Map the API Function calls with MSDN Library.

Using the downloaded Windows API from Microsoft Developer Network

(MSDN) (Microsoft Developer Network 2011), the proposed approach of the system

compares and matches API calls outputted with the look-up table of API libraries from

MSDN. The required processes are implemented in Python to compare and match the

175

API from MSDN and the API calls generated in the database (.db of Step 2) for the

malware sample set. Another Python program was written to extract features such as the

frequency of each API call, call sequence patterns and actions immediately preceding or

after the call. Specific actions are considered that lead to invalid memory references or

undefined registers or invalid target jumps for refining the extracted API call features.

In addition, to list all the API calls that are associated with malcode and to analyse

the features, the machine op-codes such as Jump and Call operations as well as the

function type (import or function) are considered. SQL code snippets are as shown below.

For the analysis of malware behaviour, features such as frequency of call, call sequence

pattern and actions immediately preceding or after the call are being considered. Some

actions that lead to invalid memory reference or undefined register or invalid jump target

are helpful in refining the extracted features for analysis. The SQL command below used

to the information from the tables maps and names, to get all the API calls in the PE file

where the operation code (OP) is been called or jumped of the other functions of the same

program or the API is imported from the DLL of another PE.

All executable programs, malicious or not, have the goal to perform an action

using API calls. Disguised malicious code uses a different, relatively peculiar action

SELECT function_address, src_block_address, name

from Maps, Names"

Where (op='call' or op='jmp')and(type='import' or type =

'function')

176

called suspicious behaviour. Behaviour identification is becoming a rich area to study and

as explained earlier, the malware authors target their malware on the commonly used

NTFS by using API functions provided under Win32 environment to implement their

functions. A statistical analysis of the Windows API calling sequence reflects the

behaviour of a particular piece of code. In this research work, the API call features from

the binary of a program were extracted and analysed to understand their malicious

behaviour and finally to classify the program as malicious or benign. The extracted

features were subjected to a statistical test to determine the malware class based on

suspicious behaviours. As a result of the experimental analysis on the malware samples,

the objective is to identify six main groups of commonly used API function call features

that are based on the malicious behaviour patterns (Table 5.1) and these are listed below:

 Search files.

 Copy/Delete files.

 Get file information.

 Move Files.

 Read /Write files.

 Change file attributes.

Figure 5.4 shows the frequency distribution of these six main groups of API calls

invoked within the experimental dataset for malicious purposes. From result as showing

177

in Figure 5.4, it is clear that the most prominent behaviour commonly exhibited by

malware is to infect file through API calls that perform read/write files.

Figure 5.4 API Call Distribution of Malware Samples

178

Table 5.1 Main Malicious Behaviour Groups of API Call Features

B
eh

a
v
io

u
r

B
eh

av
io

u
r

1

B
eh

av
io

u
r

2

B
eh

av
io

u
r

3

B
eh

av
io

u
r

4

B
eh

av
io

u
r

5

B
eh

av
io

u
r

6

M
a
lw

a
re

 C
a

te
g
o

ry

S
ea

rc
h
 F

il
es

 t
o
 I

n
fe

ct

C
o
p
y
/D

el
et

e
F

il
es

G
et

 F
il

e
In

fo
rm

at
io

n

M
o
v
e

F
il

es

R
ea

d
/W

ri
te

 F
il

es

C
h
an

g
e

F
il

e

A
tt

ri
b
u
te

s

A
P

I
F

u
n

ct
io

n
 C

a
ll

s

F
in

d
C

lo
se

,
F

in
d
F

ir
st

F
il

e,
 F

in
d
F

ir
st

F
il

eE
x
,
F

in
d
F

ir
st

F
il

eN
am

e,
 T

ra
n
sa

ct
ed

W
,

F
in

d
F

ir
st

F
il

eN
am

eW
,
F

in
d
F

ir
st

F
il

eT
ra

n
sa

ct
ed

,
F

in
d
F

ir
st

S
tr

ea
m

,
T

ra
n
sa

ct
ed

W
,

F
in

d
F

ir
st

S
tr

ea
m

W
,
F

in
d
N

ex
tF

il
e,

 F
in

d
N

ex
tF

il
eN

am
eW

,
F

in
d
N

ex
tS

tr
ea

m
W

,

S
ea

rc
h
P

at
h
.

C
lo

se
H

an
d

le
,
C

o
p
y
F

il
e,

 C
o
p

y
F

il
eE

x
,
C

o
p
y
F

il
eT

ra
n
sa

ct
ed

,
C

re
at

eF
il

e,

C
re

at
eF

il
eT

ra
n
sa

ct
ed

,
C

re
at

eH
ar

d
L

in
k
,
C

re
at

eH
ar

d
L

in
k
,
T

ra
n
sa

ct
ed

,

C
re

at
eS

y
m

b
o
li

cL
in

k
,
C

re
at

eS
y
m

b
o
li

c,
 L

in
k
T

ra
n
sa

ct
ed

,
D

el
et

eF
il

e,

D
el

et
eF

il
eT

ra
n
sa

ct
ed

.

G
et

B
in

ar
y
T

y
p
e,

 G
et

C
o
m

p
re

ss
ed

,
F

il
eS

iz
e,

 G
et

C
o

m
p
re

ss
ed

F
il

e,
 S

iz
eT

ra
n
sa

ct
ed

,

G
et

F
il

eA
tt

ri
b
u
te

s,
 G

et
F

il
eA

tt
ri

b
u
te

sE
x
,
G

et
F

il
eA

tt
ri

b
u
te

s,
 T

ra
n
sa

ct
ed

,

G
et

F
il

eB
an

d
w

id
th

,
R

es
er

v
at

io
n
,
G

et
F

il
eI

n
fo

rm
at

io
n
,
B

y
H

an
d
le

,
G

et
F

il
eI

n
fo

rm
at

io
n
,

B
y
H

an
d
le

E
x
,
G

et
F

il
eS

iz
e,

 G
et

F
il

eS
iz

eE
x
,
G

et
F

il
eT

y
p
e,

 G
et

F
in

al
P

at
h
N

am
e
,

B
y
H

an
d
le

,
G

et
F

u
ll

P
at

h
N

am
e,

 G
et

F
u
ll

P
at

h
N

am
e,

 T
ra

n
sa

ct
ed

,
G

et
L

o
n
g
P

at
h

N
am

e,

G
et

L
o
n
g
P

at
h
N

am
e,

 T
ra

n
sa

ct
ed

,
G

et
S

h
o
rt

P
at

h
N

am
e,

 G
et

T
em

p
F

il
eN

am
e,

G
et

T
em

p
P

at
h
.

M
o
v
eF

il
e,

 M
o
v
eF

il
eE

x
,
M

o
v
eF

il
eT

ra
n
sa

ct
ed

,
M

o
v
eF

il
eW

it
h
P

ro
g
re

ss
.

O
p
en

F
il

e,
 O

p
en

F
il

eB
y
Id

,
R

eO
p
en

F
il

e,
 R

ep
la

ce
F

il
e,

 W
ri

te
F

il
e,

 C
re

at
eF

il
e,

C
lo

se
H

an
d

le
.

S
et

F
il

eA
p
is

T
o
A

N
S

I,
 S

et
F

il
eA

p
is

T
o
O

E
M

,
S

et
F

il
eA

tt
ri

b
u
te

s,

S
et

F
il

eA
tt

ri
b
u
te

sT
ra

n
sa

ct
ed

,
S

et
F

il
eB

an
d
w

id
th

R
es

er
v
at

io
n
,

179

5.7.4 Step 4: Extract Binary n-gram features.

An n-gram model (Brown et al. 1992), in simple terms, uses the statistical properties of

n-grams for predicting the next item in a sequence. It is a subsequence of ‗n‘ items from a

given sequence. For this research, the items refer to the list of API calls within an

executable file. An n-gram could be of different sizes: 'unigram' referred when the size is

n=1; 'bigram' where the size is n= 2; size n=3 referred to "trigram; and size n=4 or more

is generally called 'n-gram'. Many disciplines have applied n-gram analysis as the model

is efficient and successful in solving classification problems. In this chapter, n-grams are

applied to the problem of malware detection; by extracting the list of API calls contained

within both packed the unpacked malware. A classifier is trained on the differences in n-

gram distributions between malicious and benign executable files.

Some studies have analysed unigram and bigrams of ASCII byte values (Stolfo et

al. 2007) and computed the frequency and variance of each gram. They have observed

that applying 'unigram' analysis to Portable Document Format (PDF) files embedded with

malcode are pretty effective in malware detection when compared to the COTS AV

scanners. However, such studies are limited to specific document files types and do not

have sufficient resolution to include all classes of file types.

As the number of n-grams is going to be very large, feature selection measures

such as ASCII, UNICODE, API and others are being adopted to yield better results. For

the obfuscated malware detection problem, this work applies n-gram on API call based

features. The last four proposed approaches results in an effective n-gram feature

extraction from API call sequences for classifying executables as malicious or benign

180

with the use of step 5 the use of Support Vector Machines (SVM) as the machine learning

classifier.

To extract the n-gram distributions of all of the malicious and benign executables,

first the frequency of each n-gram within the entire corpus is counted. Once that has been

completed, reduce this list to the top 100 most frequent n-grams. The above procedure is

replicated for n values between 1 and 5 inclusive.

5.7.5 Step 5: Build a Support Vector Machine Model.

The machine learning SVMs (Cortes & Vapnik 1995) are a set of related supervised

learning methods used for classification and regression. SVM constructs a hyperplane or

set of hyperplanes in a high-dimensional space, which can be used for classification.

Basically, a good separation is achieved by the hyperplane that has the largest distance to

the nearest training data points of any class, since in general the larger the margin the

lower the generalization error of the classifier. The method produces a linear classifier, so

its concept description is a vector of weights ~w, and an interceptor a threshold b.

However, SVMs use a kernel function to map training data into a higher dimensional

space so that the problem is linearly separable. It then uses quadratic programming to set

~w and b such that the hyper plane‘s margin is optimal, meaning that the distance is

maximal from the hyperplane to the closest examples of the positive and negative classes.

In 2006, Kolter (Kolter & Maloof 2006) described the use of machine learning

and data mining to detect and classify malware. Kolter tested several classifiers

including, IBk, naive Bayes, support vector machines (SVMs), decision trees, boosted

naive Bayes, boosted SVMs, and boosted decision trees. Kolter found that support vector

http://en.wikipedia.org/wiki/Supervised_learning
http://en.wikipedia.org/wiki/Supervised_learning
http://en.wikipedia.org/wiki/Statistical_classification
http://en.wikipedia.org/wiki/Regression_analysis
http://en.wikipedia.org/wiki/High-dimensional_space
http://en.wikipedia.org/wiki/Generalization_error

181

machine performed exceptionally well and fast as compared to the other classifiers.

Hence, for the obfuscated malware detection system, this research adopts SVM as a

classifier for the detection of hidden malware that invariably uses API call sequence.

SVMs have performed well on traditional text classification tasks, and on

executable files. The supervised learning SVM method is a reliable and popular technique

for data classification. SVM is considered easier to use than many machine learning

approaches such as Neural Networks (NN). Hence, in this step, SVM classification is

used to construct an N-dimensional hyperplane that separates the dataset into two groups,

namely, ‗Malware‘ and ‗Benign‘. Initially, in this step, the data is separated into two sets:

training and testing data sets. Then SVM is applied to the training data with the goal to

produce a model, which is then used to predict the target of the test data. In order to

achieve a higher accuracy of the predictive model for generalisation, K-fold cross-

validation approach is used and applied for test data, with k=10. This value is commonly

used to estimate how well the trained SVM model is going to perform in the future.

For the experiment in this research work, LIBSVM tool is used (Chang, C. & Lin

2011). Both benign files and known malicious files are used to train the SVM classifier

so that the model could be used to test for new obfuscated malware that evades detection

from AV scanners. The verification and validation of the proposed method was

performed for malware detection based on the standard measures in Section (5.8).

Among the four basic types of kernels used by SVM to map the training vectors to

the N-dimensional space, the Radial Basic Function (RBF) kernel is applied, as it can

handle the nonlinear cases. Classification performance has been tested based on

 and

182

C parameters from the equation given below, where C > 0 is the penalty parameter of

error term.

 () (
‖ ‖

) ()

5.8 Verification and Validation

The proposed method for malware detection is evaluated based on the following standard

measures:

a. True Positive (TP): Number of correctly identified malicious code,

b. False Positive (FP): Number of wrongly identified benign code, when a detector

detects benign file as a malware.

c. True Negative (TN): Number of correctly identified benign code.

d. False Negative (FN): Number of wrongly identified malicious code, when a

detector fails to detect malware.

The efficiency of the proposed method is evaluated using the following performance

measures:

Positive (P): The predicted attribute belong to the right class.

Negative (N): The predicted attribute belong to the wrong class.

183

Overall Accuracy: Percentage of correctly identified code, given by:

5.9 Experimental Results

In order to conduct an experimental investigation, the methodology of the system,

described in the Section (5.7) has been used to the dataset collected from honeypots,

honeynet project and other sources between July 2009 and November 2009. The dataset

used is about 37217 executable files in total, with 15275 benign files and 21942 malware

infected files that have been uniquely named according to their MD5 value. From the

experimental study, it has been observed that the overall accuracy of the classifier

decreases as n increases, as shown in Table 5.2. The trend observed here could be due to

the specific dataset that was used for the experimental testing. However, any

generalisation of the observed trend could only be emphatically determined with larger

and wider range of datasets. The initial experimental result of 96.5% accuracy for

unigrams is still very promising as a benchmark for improvements in our future research

work. Further to this, there are clear trends in both the false positive and false negative

values with increasing values of n. While unigrams create the better n-gram models for

the values shown in Table 5.2, the high false negative rate indicates that there is still work

to be done on improving this value.

184

Table 5.2 Experimental Results from SVM Classifier Using n-grams

n-value Accuracy False Positives False Negatives

Unigram 96.50% 1.91% 1.56%

Bigrams 92.99% 6.36% 0.63%

n = 3 88.22% 11.46% 0.03%

n = 4 85.99% 14.01% 0.00%

n = 5 85.03% 14.97% 0.00%

5.10 Limitations and Future Work

The automated system makes use of existing unpacking tools, such as PolyUnpack,

Renovo, OmniUnpack, Ether, and Eureka that are still under research and development.

If the existing tools are unable to unpack malware that uses an unknown packing

algorithm, this would pose a limitation for Step 1 of the automated system. However, the

proposed approach from Step 2 onwards would still work in this case by conducting a

manual unpacking in Step 1. Another limitation of the proposed approach system is that

Step 3 is based on the latest updates of Microsoft with the MSDN library of API call list.

It is believed that this revision is done up-to-date, as MSDN library forms the main

reference for the mapping of the API calls in both malware and benign files.

Future work in this area includes techniques to increase the accuracy of the

system. The FP rate increases while the FN rate decreases as n increases, indicating that it

185

could be possible to use a boosting technique to apply a classifier model derived from a

higher n value to first determine if a file appears to be malicious, then the model uses a

lower n value so as to more accurately determine if this suspected file is in fact malicious.

The system call interface is the facility that the OS offers to user-mode

applications. UNIX operating system has a well-documented, clearly defined set of

system calls. The MINIX operating system has a system call interface consisting of only

53 routines. Everything that the MINIX operating system is capable of doing ultimately

can be resolved into one or more of these system calls. The Window operating system,

which refers to its system call interface as the native API of Windows, has not provided

an official document for its native API. However, today Windows is the most OS

commonly used. Therefore, this research is a step towards addressing malware that try to

target on windows operating system, which is the main target for malware authors with

the view of affecting more computer users. Hence, this research work has limitations in

its application exclusively to malware that make use of Windows API calls.

Other future work entails extracting binary n-gram features to complement the

API call features and to train the classifier resulting in building a model using support

vector machine (SVM). Also the model needs to be tested against larger sets of malware

samples for verifying the accuracy of the modelled system.

186

Chapter 6 : Malware Detection based on Data Mining of

API calls

Sherlock Holmes: “Data! Data! Data! ... I can‟t make bricks without clay.”

 —Sir Arthur Conan Doyle, ―The Adventure of the Copper Beeches,”

 The Strand Magazine (1892)

6.1 Overview

As seen in earlier chapters, code obfuscation techniques can modify the parent code to

produce offspring copies which have the same functionality with different signatures.

There is number of freeware programs that are being used to generate obfuscated code.

These new generations of signatures are growing and at the same time the level of

sophistication of malware is also increasing. However, by analysing the offspring copies

using pattern recognition, the obfuscated code could be detected. In Chapter 4 and

Chapter 5 we showed that using certain pattern recognition methods to analyse op-codes

and API calls leads to successfully detecting zero-day or unknown malware. This chapter

investigates these patterns of obfuscated code further using data mining techniques.

In Chapter 4, signature free detection has been proposed and developed based on op-code

obfuscations adopted by malware writers. In Chapter 5, an automation method of

extracting the API call features has been presented and to understand their use for

malicious purpose has been introduced. A preliminary analysis has been provided using

187

support vector machine with n-gram statistical analysis of API calls by varying n-values

from 1 to 5.

In this chapter, a machine learning framework is proposed and evaluated with large

datasets to further investigate the preliminary observed patterns. A variety of data mining

techniques are used to detect malware from benign files. The proposed framework

focuses in finding the best features and building models that can classify a given program

into a malware or a benign class. The approach rests on the analysis of patterns based on

the frequency of occurrence of each Windows Application Programming Interface calls

found in the datasets. Also, this chapter describes in detail how various data mining

techniques have been adopted to classify and detect a malware based on the frequency of

Windows API calls. Also, this chapter discussed similarity based detection method by

employing similarity measures of Windows Application Programming Interface (API)

call features as shows in Section (6.7). Different distance measures have been

implemented and similarity analysis performed by using eight commonly used distance

measures in vector models, namely Cosine, Bray-Curtis, Canberra, Chebyshev,

Manhattan, Correlation, Euclidean, and Hamming distance similarity measure for Nearest

Neighbor (NN).

A supervised learning approach has been adopted that uses a dataset to train, validate and

test, an array of classifiers. In order to achieve the goal of developing a detection system

to identify zero day malware, robust classifiers have been selected as shown in Section

(6.11) namely Naive Bayes (NB) Algorithm, k−Nearest Neighbor (kNN) Algorithm,

Sequential Minimal Optimization (SMO) Algorithm with 4 different kernels; i) SMO -

Normalized Polynomial Kernel Function, ii) SMO – Polynomial Kernel Function, iii)

188

SMO – PUK, and iv) SMO- Radial Basis Function (RBF), Backpropagation Neural

Networks Algorithm, Logistic Regression, and J48 decision tree.

This chapter also provides details of how data will be collected to conduct the

experimental analysis and the data mining algorithms adopted for the study will be

evaluated.

6.2 Data Mining

In recent years data mining has been the focus of many malware researchers to detect

unknown malware or to classify malware from benign files. Data mining is also referred

to as knowledge discovery in databases. Frawley (Frawley et al. 1992) define it as ―The

nontrivial extraction of implicit, previously unknown, and potentially useful information

from data‖. It is also defined as ―The science of extracting useful information from large

data sets or databases‖ (Hand et al. 2001). In this research, data mining involves the

application of a full suite of statistical and machine learning algorithms on a set of

features derived from malicious and benign files.

 Feature can be described as the input data to the detection systems, and can be

used as patterns for classification in malware detection systems. Reverse engineering

results in extracted features useful for two types of detections; i) Host-Based Intrusion

Detection System (HIDS) – to check, analyse and monitor the computer system internally

such as extract byte sequences, ASCII, instruction sequences, and API call sequences,

and ii) Network-Based Intrusion Detection system (NIDS) - to detect malicious activity

by monitoring network traffic such as denial of service (DOS) attacks, port scans.

189

A data mining approach to malware detection is to employ statistical

classification. Each classification algorithm constructs a model, using machine learning,

to represent the benign and malicious classes. In this approach, a labeled training set is

required to build the class models during a process of supervised learning. The key to

statistical classification is to represent the malicious and benign samples in an appropriate

manner to enable the classification algorithms to work effectively. Feature extraction is

an important component of effective classification, and an associated feature vector that

can accurately represent the invariant characteristics in the training sets and query

samples is highly desirable. Classification is the process of classifying data into two or

more predetermined groups based on features, it responsible in determining if binary

under inspection belongs to the group of malicious programs or to the group of benign

programs.

Chapter five explained how API function calls reflect the functionality of a

program and, hence, is an excellent candidate for data mining to classify malicious

behaviour. Also, in Chapter 5 it was noticed that using features of API for classification

can provide high accuracy rate and low false alarm rate. Therefore, in the following

sections different classification techniques used in this research study and analysed based

on API function call features will be discussed.

6.3 Related Study

Data mining techniques for malware detection usually starts with the first step of

generating a feature set. In 2005, studies reported that a temporal consistency element

was added to the system call frequency to calculate the frequency of API system call

190

sequences (Malan & Smith 2005). Similarity measures were calculated using edit

distance and measuring similarity using the intersection of sets. The first measure was on

ordered sets of native API system calls, while the second one was on unordered sets. Both

similarity measures based on API gave the probabilities of two peers. The drawback is

that they had considered only native API call features.

Static Analysis for Vicious Executables (SAVE) is another work based on API

calls made in an attempt to detect polymorphic and metamorphic malware (Sung et al.

2004). SAVE defines signature as an API sequence of calls and started the reverse

engineering process from decompressed 16 binaries, which are then passed through a PE

file parser. Next, Windows API calls were and mapped, and passed through the similarity

measure module, where similarity measures such as, Euclidian distance, Sequence

alignment, Cosine measure, extended Jaccard measure, and the Pearson correlation

measure were used. Binary executables under inspection were classified by identifying a

high similarity to a known instance of malware in the training set. Although these

similarity measures enable SAVE to detect polymorphic and metamorphic malware

efficiently against 8 malware scanners, their weakness is not being able to detect

unknown malware.

Another signature-free system to detect polymorphic malware and unknown

malware based on the analysis of Windows API execution sequences extracted from

binary executable is called Intelligent Malware Detection System (IMDS) (Ye et al.

2007). IMDS was developed using Objective-Oriented Association (OOA) mining based

classification with a large data set gathered for the experiment (29580 binary executables,

of which 12214 were benign binary executables and 17366 were malicious). For

191

detection, a Classification Based on Association rules (CBA) technique such as Naive

Bayes, SVM and Decision Tree were used. The result was compared against anti-virus

software such as Norton, Kaspersky, McAfee, and Dr.Web. In 2010 the authors of IMDS

had incorporated CIDCPF into their existing IMDS system, and called it CIMDS

(Yanfang et al. 2010). CIDCPF adapted the post processing techniques as follows: first

Chi-square testing was applied and insignificant rules were pruned followed by using

Database coverage based on the Chi-square measure rule ranking mechanism and

Pessimistic error estimation, and finally prediction was performed by selecting the best

First rule. Their results were good, but involved unbalanced test data while the training

data was quite balanced. The detection rate for the training set was 89.6% and the

accuracy was approximately 71.4%. The testing set had a detection rate 88.2% and

accuracy of 67.6%, showing further improvements is necessry.

In 2006, (Kolter & Maloof 2006) described the use of machine learning and data

mining to detect and classify malicious executables. They tested several classifiers

including, IBk, naive Bayes, support vector machines (SVMs), decision trees, boosted

naive Bayes, boosted SVMs, and boosted decision trees. Kolter found that SVMs

performed exceptionally well compared to the other classifiers. Hence, for the obfuscated

malware detection system, this research adopts SVM as a classifier for the detection of

hidden malware that invariably uses API call sequence.

API based features are not only good in classification of malware, but is also good

in detecting injected malicious executables. DOME (Rabek et al. 2003) is a host-based

technique that uses static analysis based on monitoring and validating Win32 API calls

for detecting malicious code in binary executables. In a study on the performance of

192

kernel methods in the context of robustness and generalization capabilities of malware

classification (Shankarapani et al. 2010), results revealed that analysis based on the Win

API function call provides good accuracy to classify malware.

In 2010, (Shankarapani et al. 2010) showed that the frequency of Windows API

calls can be used to classify and detect malware with good accuracy. Authors have

performed a static analysis to measure the similarity for 1593 executables, of malware

and benign. Two analysis methods have been used based on the frequency of occurrence

of each Windows Application Programming Interface (API). First similarity analysis,

computed the mean value for 3 similarity measures (Cosine measure, extended Jaccard

measure) have been used on the dataset. Second used SVM machine learning kernel RBF,

to classify malware and benign. However, the result of the Receiver Operating

Characteristic (ROC) curve was low and the false positive rate was too high for practical

usage. In the same year of 2010, (Cesare & Xiang 2010) have performed similarity

analysis using string edit distances based on control flow to Identify malware variants.

However, the analysis was focused on only packed malware.

Most of previous work relating to similarity based detection exhibit some

drawbacks. They performed their experiments either using small datasets or small set of

API calls or PE sequences, and more importantly did not give prominence to unknown

malware due to obfuscation techniques adopted in existing malware families.

API based features are not only good in classification of malware, but also in

detecting injected malicious executable that result in obfuscated malware. DOME (Rabek

et al. 2003) is a host-based technique that uses static analysis based on monitoring and

193

validating Win32 API calls for detecting malicious code in binary executables. In a study

on the performance of kernel methods in the context of robustness and generalization

capabilities of malware classification (Shankarapani et al. 2010), results revealed that

analysis based on the Win API function call provides good accuracy to classify malware.

Hence, our work focuses on investigating obfuscated malware from large datasets by

employing similarity based detection methods of data mining using API call features.

6.4 Methodology

This section describes the methodology, which is an extension of the methodology

provided in Chapter 5. Figure 6.1 shows the overall methodology used, which consists of

three groups of processes; In the first group, the first 3 steps from Chapter 5 has been

used, Step 1: Unpack the malware and disassemble the binary executable to retrieve the

assembly program. Step 2: Extract API calls and important machine-code features from

the assembly program. Step 3: Map the API calls with MSDN library and analyse the

malicious behaviour to get the API sequence from the binaries. In the second group, after

obtaining the API sequence from binaries, the signature database is updated based on

these API calls. This sequence is compared to a sequence or signature (from the

signature database) and is passed through the similarity measure module to generate the

similarity report. Different distance measures have been implemented and similarity

analysis performed by using eight commonly used distance measures in vector models,

namely Cosine, Bray-Curtis, Canberra, Chebyshev, Manhattan, Correlation, Euclidean,

and Hamming distance similarity measure for Nearest Neighbor (NN).

194

In third group, Mutual Information (MI) based Maximum Relevance (MR) filter

ranking heuristics on the set of API function calls is used for feature selection of relevant

features, which provide more information about the class variable than irrelevant features.

After extracting the best features from the set of API calls, supervised learning

experiments have been applied that uses a dataset to train, validate and test, an array of

classifiers. Nine robust classifiers have been selected for this purpose, They are, Naive

Bayes (NB) Algorithm, k−Nearest Neighbor (kNN) Algorithm, The Sequential Minimal

Optimization (SMO) Algorithm with 4 different kernels i) SMO - Normalized

Polynomial Kernel Function, ii) SMO – Polynomial Kernel Function, iii) SMO – PUK,

and iv) SMO- Radial Basis Function (RBF), Backpropagation Neural Networks

Algorithm, Logistic Regression, and J48 decision tree.

The classification methods require training data to validate the models formulated.

Therefore, K-fold cross-validation has been used for evaluating the results of a statistical

analysis generating an independent dataset using 10 folds. Having k=10 folds uses 90%

of full data is used for training (and 10% for testing) in each fold test. Evaluation (feature

selection + classification) was done inside 10-fold cross-validation loop on all Malware

and benign dataset.

195

Figure 6.1 API Calls Automation, Similarity, Feature Selection and Malware

Detection Methodology

6.5 Database

The dataset used in this research study consists of 66,703 executable files in total, as

shown in Table (6.1). Among them, 51,223 recent Malware have been collected from

honeynet project, VX heavens (VX Heavens 2011) and other sources. The remaining

consists of 15,480 benign files that include : Application software such as Databases,

Educational software, Mathematical software, Image editing, Spreadsheet, Word

processing, Decision making software, Internet Browser, Email and many others system

196

software and Programming languages software and many other applications. All files

have been uniquely named according to their MD5 hash value.

6.6 Signature Generation based on API calls

Signature database has been used to statistically calculate and compute the similarity

measures. Eight distance measures have been adopted to analyse and differentiate

between malware variants and benign executables from various families (section 6.7).

The Signature database has been generated from the database of malware and benign files

(section 6.5) to produce fingerprints or benchmarks for each record based on the API

calls that the executable programs had used as shown in Table 6.2.

Table 6.1 Data set

File Type Qty
Max. Size Min. Size Avg. Size

(KB) (KB) (KB)

1 Benign 15,480 109,850 0.8 32,039

2 Virus 17,509 546 1.9 142

3 Worm 10,403 13,688 1.6 860

4 Rootkit 270 570 2.8 380

5 Backdoor 6,689 1,299 2.4 685

6 Constructor 1,039 77,662 0.9 1,193

7 Exploit 1,207 22,746 0.5 375

8 Flooder 905 16,709 1 1,397

9 Trojan 13,201 17,810 0.7 1,819

197

The database signature has been used later in Section (6.7) to measure the

distances between the programs, and also used in Section (6.11) to apply supervised

machine learning algorithms.

6.7 Experiment Based on Similarity

Similarity mining is a detection method based on the analysis of similarities of the

distance measures and has been adopted to detect unknown malware. Different distance

measures have been implemented and similarity analysis performed by using eight

Table 6.2 Signature Sample of API Database

ID Called API Class

Program 1 ∑𝐴𝑃𝐼

5

𝑖<

 ∑𝐴𝑃𝐼3

𝑖<

 ∑𝐴𝑃𝐼 6

𝑖<

 Malware

Program 2 ∑𝐴𝑃𝐼3

7

𝑖<

 ∑𝐴𝑃𝐼

𝑖<

 Malware

Program 3 ∑𝐴𝑃𝐼

3

𝑖<

 ∑𝐴𝑃𝐼 7

4

𝑖<

 ∑𝐴𝑃𝐼

𝑖<

 ∑𝐴𝑃𝐼38

𝑖<

 ∑𝐴𝑃𝐼6

𝑛

𝑖<

 ∑𝐴𝑃𝐼4

5

𝑖<

 Malware

Program 5 ∑𝐴𝑃𝐼

𝑖<

 ∑𝐴𝑃𝐼4

𝑖<

 ∑𝐴𝑃𝐼6

7

𝑖<

 ∑𝐴𝑃𝐼

9

𝑖<

 Benign

Program 6 ∑𝐴𝑃𝐼4

5

𝑖<

 Benign

.. … …

198

commonly used distance measures in vector models; Cosine, Bray-Curtis, Canberra,

Chebyshev, Manhattan, Correlation, Euclidean, and Hamming distance. The

maliciousness of a code is estimated using these measures. For instance, malware such as

Win32.Evol (Orr 2006) has a multiple variant of the same sample malware because of the

obfuscating methods adopted by the malware authors. Similarity based detection

approach can be used between the variants to checked whether the variant is the child of

the sample under inspection with similar features. Understanding the relationship among

the distance measures can help us to choose a proper distance measure for malware

detection.

Similarity based detection is well-suited for static analysis, where firstly the

executable program is disassembled using reverse engineering tools. Each disassembled

executable (P) represents a vector of functions x, y. (P‘) is the variant malware of the

original executable (P). Each function is represented as an array of vector of functions.

The similarity between the functions of a program (P) and (P') is computed. The value is

then compared with the threshold value to determine if the executable is malicious or not.

Metamorphic and Polymorphic engines can generate and produce thousands of

the malware variants. Effective engines will generate highly dissimilar copies. A

‗similarity analysis‘ can quantify the level of similarity and the difference between two

binary executables. In this section the similarity will be tested based on the extracted

Win API function calls of both malware and benign files. In other words, the signature is

an API sequence of known binaries that has been previously identified for both malware

and benign.

199

For all the distance measure in the subsection below:

 is the API sequence of the test file.

 is the API sequence of a file in the database.

 is the vectors dimension.

 is the distance between vectors u and v.

6.7.1 Cosine Distance

The Cosine distance computed between two n-vectors u and v is defined as:

| |

| |

 ()

6.7.2 Bray-Curtis Distance

The Bray-Curtis distance measured between two n-vectors u and v is defined as:

∑

∑
 ()

6.7.3 Canberra Distance

The Canberra distance between two n-vectors u and v is defined as:

∑

∑
 ()

6.7.4 Chebyshev Distance

The Chebyshev distance computed between two n-vectors u and v is defined as:

200

 ()

6.7.5 Manhattan Distance

The Manhattan distance between two n-vectors u and v is defined as:

 ∑

 ()

6.7.6 Correlation Distance

The correlation distance computed between two n-vectors u and v is defined as:

 (̅) (̅) (̅) ̅
 ()

 where ̅ is the mean of a vectors elements and n is the common dimensionality of u and

v.

6.7.7 Euclidean Distance

The Euclidean distance between two n-vectors u and v is defined as:

 ()

6.7.8 Hamming Distance

The Hamming distance between two n-vectors u and v is simply the proportion of

disagreeing components in u and v, and is defined as:

 ()

201

where is the number of occurrence of , - , -

6.8 Result Based Similarity Distance

The experimental investigation of the similarity analysis was carried out by implementing

distance measures and analysis of the various data mining algorithms in Python

Programming Language. The experiment was run in three different processors, Pentium

(R) Core (TM) 2 Due CPU, 2.19 GHz, 2.98 of RAM with Windows XP professional as

the operating system. The similarity analysis implemented in Python aided in the

malware classification and was evaluated using very large real-life malware dataset. The

datasets were obtained through public databases explained in Section (6.5). The

Similarity distance system was able to automatically identify all malware variants.

Similarity matrix for one set of malware in the same family are shown in Table (6.3) and

Table (6.4) and the highlighted cells identifying a malware variant is defined as having a

similarity equal or less 0.5. As shown the entire cell in the Table (6.3) (6.4) can be

detected as a variant of the original malware Win32.Dadobra.

Similarity matrix for two malware datasets in the same families shows in Table 6.3 and

Table 6.4

202

Table 6.3 Similarity of Trojan.Downloader.Win32.Dadobra

 .aa .aj .ak .al .am .bf .bh .bw

.aa 0.000 0.100 0.207 0.100 0.138 0.138 0.138 0.143

.aj 0.100 0.000 0.226 0.000 0.226 0.226 0.226 0.233

.ak 0.207 0.226 0.000 0.226 0.207 0.207 0.207 0.276

.al 0.100 0.000 0.226 0.000 0.226 0.226 0.226 0.233

.am 0.138 0.226 0.207 0.226 0.000 0.000 0.000 0.207

.bf 0.138 0.226 0.207 0.226 0.000 0.000 0.000 0.207

.bh 0.138 0.226 0.207 0.226 0.000 0.000 0.000 0.207

.bw 0.143 0.233 0.276 0.233 0.207 0.207 0.207 0.000

Table 6.4 Similarity of Worm.Win32.Delf

 am d f g h m R t v w z

am 0.000 0.226 1.000 1.000 1.000 0.194 1.000 1.000 0.167 1.000 0.167

D 0.226 0.000 1.000 1.000 1.000 0.067 1.000 1.000 0.103 1.000 0.103

F 1.000 1.000 0.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

G 1.000 1.000 1.000 0.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

H 1.000 1.000 1.000 1.000 0.000 1.000 1.000 1.000 1.000 1.000 1.000

M 0.194 0.067 1.000 1.000 1.000 0.000 1.000 1.000 0.100 1.000 0.100

R 1.000 1.000 1.000 1.000 1.000 1.000 0.000 1.000 1.000 1.000 1.000

T 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.000 1.000 1.000 1.000

V 0.167 0.103 1.000 1.000 1.000 0.100 1.000 1.000 0.000 1.000 0.000

W 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 0.000 1.000

Z 0.167 0.103 1.000 1.000 1.000 0.100 1.000 1.000 0.000 1.000 0.000

203

The similarity matrix for two malware dataset from different families is given in Table

6.5. The results from Table 6.3, Table 6.4 and Table 6.5 show that there is low

distance/high similarity between malware variants but not with the benign programs.

Table 6.6 shows there is high distance/low similarity between the benign datasets. Table

6.7 shows the mean values for 8 different similarity measurements applied to the entire

dataset, when the threshold for the similarity ratio is less than or equal to 0.5. The overall

results in Table 6.7 demonstrate that the system finds high similarities between malware

variants but not with the benign programs, for 8 different similarity measurements

applied to the entire dataset.

Table 6.5 Similarity between Trojan.Downloader.Win32.Dadobra vs Worm.Win32.Delf

 .aa .aj .ak .al .am .bf .bh .bw

am 0.100 0.188 0.290 0.188 0.167 0.167 0.167 0.200

D 0.200 0.219 0.200 0.219 0.103 0.103 0.103 0.267

F 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

G 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

H 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

M 0.167 0.188 0.226 0.188 0.100 0.100 0.100 0.233

R 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

T 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

V 0.138 0.226 0.207 0.226 0.000 0.000 0.000 0.207

W 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Z 0.138 0.226 0.207 0.226 0.000 0.000 0.000 0.207

204

Table 6.6 Similarity Matrix Benign Files

bint
ext

Dic ffind msgr
ms

hearts
msimn

ms

msgs

Skin
Creator

Skype SkyTel
slide

showz
illa

bintext 0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

Dic 1.00 0.00 1.00 1.00 0.78 1.00 0.98 1.00 1.00 1.00 1.00

ffind 1.00 1.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

msgr 1.00 1.00 1.00 0.00 1.00 1.00 11.00 1.00 1.00 1.00 0.38

ms hearts 1.00 0.78 1.00 1.00 0.00 1.00 1.00 1.00 1.00 1.00 1.00

msimn 1.00 1.00 1.00 1.00 1.00 0.00 1.00 1.00 1.00 1.00 1.00

msmsgs 1.00 0.98 1.00 1.00 1.00 1.00 0.00 0.81 0.98 0.98 1.00

Skin
Creator

1.00 1.00 1.00 1.00 1.00 1.00 0.81 0.00 1.00 0.77 1.00

Skype 1.00 1.00 1.00 1.00 1.00 1.00 0.98 1.00 0.00 0.98 1.00

SkyTel 1.00 1.00 1.00 1.00 1.00 1.00 0.98 0.77 0.98 0.00 1.00

slide
showzilla

1.00 1.00 1.00 0.38 1.00 1.00 1.00 1.00 1.00 1.00 0.00

Table 6.7 Mean similarity matrix ()

Distance Method Malware – Benign Malware – Malware Benign – Benign

Cosine 0.34 0.29 0.39

Bray Curtis 0.84 0.77 0.86

Canberra 0.84 0.77 0.86

Chebyshev 61.27 31.45 79.98

Manhattan 14.32 96.24 18.03

Correlation 0.35 0.243 0.403

Euclidean 78.94 44.31 106.39

Hamming 0.034 0.04 0.03

205

From above Tables (6.2), (6.3), (6.4), (6.5), and (6.6) it can be seen that similarity

analysis is very efficient and effective to detect Malware variants from the same family or

different families of Malware. Also, the experiments confirm that there is no similarity

among the benign files, which is logical and true. Another important observation is that it

is very hard to find similarity between the malware dataset and the benign dataset,

thereby validating that the proposed system is able to clearly distinguish between

malware and benign datasets. In conclusion, Malware can be classified according to

similarity and further, similarly test can be applied to detect malware variants. The

proposed similarity based detection and classification of malware is further improved in

performance by using feature selection, especially when large datasets require more

computing memory and time for processing the extracted features.

6.9 Feature Selection and Extraction

Feature selection was used to select the best subset from the input space. Its ultimate goal

is to select the optimal features subset that can achieve the highest accuracy results. Many

feature selection algorithms involve a combinatorial search through the whole space.

Usually, heuristic methods, such as hill climbing, have to be adopted since the size of

input space is exponential in the number of features. Other methods divide the feature

space into several subspaces which can be searched easily.

There are basically two types of feature selection methods: filter and wrapper.

Filters methods select the best features according to some prior knowledge without

thinking about the bias of further induction algorithm. These methods perform

independent of the classification algorithm or its error criteria.

206

In feature extraction, most methods are supervised. These approaches need some

prior knowledge and labeled training samples. Standard filter approaches can extract

knowledge of the intrinsic characteristics from real data. However, filter approaches do

not use any performance criteria based on predictive accuracies. This does not guarantee

that selected feature subset will be able to do better in the classification/prediction tasks.

In this step, the frequency statistics of the API calls is used to build a robust

signature-free malware detection system. The filter models are based on the intrinsic

characteristics of the data and do not involve the application of an induction algorithm.

Diverse filter models have been advanced, including the ones that use a relevance

measure, and others that deploy a distance measure as their evaluation criteria. Filter

models are computationally cheap due to their evaluation criteria. However, feature

subsets selected by filter may result in poor prediction accuracies, since they are

independent from the induction algorithm.

For better result, there is a need to adopt feature selection approach on the set of

Win API function calls on different data mining algorithms and integrating the filter‘s

feature ranking score to find optimal feature subset for an efficient signature-free

malware detection. In this approach, hybridized novel filter heuristic Mutual Information

(MI) based Maximum Relevance (MR) filter ranking heuristics has been applied with

different data mining algorithms.

Maximum Relevance (MR) for feature selection for relevant features provide

more information about the class variable than irrelevant features. Therefore, mutual

information based maximum relevance is a good heuristic to select salient features within

207

the data mining area. If S is a set of features iF and class variable is c, the maximum

relevance can be defined as (6.9).

 ()

 ∑ ()

 ()

 () is the mutual information between iF and class c which is defined as (6.10).

 () () () ()

)(iFH is the entropy of iF with the probability density function)(ifp where iF takes

discrete values from the set }...,{ 21 ifffF , then)(iFH is defined as (6.11)

 () ∑ ()

 () ()

 () in (6.10) is the conditional entropy between iF and c and is defined as (6.12)

 () ∑ ∑ ()

 () ()

where class variable c takes the discrete values from the set },...,{ 21 icccC .

6.10 10-Fold Cross Validation

The classification algorithms require training data to train the formulated models, and

testing data to test those models. Validation of the models is achieved by making a

208

partition on the database of malware and benign for carrying out the experiments. The

cross-validation is a technique used for evaluating the results of a statistical analysis by

generating an independent dataset for Malware and benign. The most common types of

cross-validation are repeated random sub-sampling validation and K-fold cross-validation

(Hand et al. 2001). For this research study of Malware and Benign classification, K-fold

cross-validation has been selected for validation as it is commonly adopted for many

classifiers (Bhattacharyya et al. 2011; Witten & Frank 2010).

In k-fold cross-validation the data is first partitioned into k sized segments or

folds. Then, k iterations of training and validation are performed such that within each

iteration a different fold of the data is held-out for validation while the remaining k-1

folds are used for learning. The advantage of K-Fold Cross validation is that all the

examples in the dataset are eventually used for both training and testing. Also, all

observations are used for both training and validation, and each observation is used for

validation exactly once. Extensive tests on malware and benign dataset with different

learning techniques, as shown in Section (6.11), have shown that k=10 is the right

number of folds to get the best estimate of error. Having 10 folds means 90% of full data

is used for training (and 10% for testing) in each fold test.

6.11 Data Mining Algorithms

Classification is ―the task of learning a target function that maps each feature set to one of

the predefined class labels‖. Data mining approach has been adopted in this research to

detect malicious programs, to learn from the behaviour of existing malicious and benign

database by analyzed thousands of malicious and benign programs based on Win API

209

features to identify and classify malware. The objective is to find out the best features and

build models that can classify a given program into a malware or a benign class. First,

supervised learning experiments have been applied by using a dataset to train, validate

and test, an array of classifiers. In order to achieve the goal of developed a detection

system to detect a zero day malware, robust data mining classifiers have been adopted,

such as Naive Bayes (NB) Algorithm, k−Nearest Neighbor (kNN) Algorithm, Sequential

Minimal Optimization (SMO) Algorithm with 4 different kernels; i) SMO - Normalized

Polynomial Kernel Function, ii) SMO – Polynomial Kernel Function, iii) SMO – PUK,

and iv) SMO- Radial Basis Function (RBF), Backpropagation Neural Networks

Algorithm, Logistic Regression, and J48 decision tree. These algorithms are described

next..

6.11.1 The Naive Bayes (NB) Algorithm

The Naive Bayes algorithm (Kuncheva 2006) is one classification method based on

conditional probabilities that uses a statistical approach to the problem of pattern

recognition. It is reported that it is the most successful known algorithms for learning to

classify text documents, and further it is fast and highly scalable for model building and

scoring. The idea behind a Naive Bayes algorithm is the Bayes‘ Theorem and the

maximum posteriori hypothesis. Bayes Theorem finds the probability of an event

occurring given the probability of another event that has occurred already. For instant, for

a feature vector x with n attributes values and a class variable ,

 .

210

Bayesian classifiers can predict class membership with probabilities (|) for the

feature vector x whose distribution depends on the class . The class for which

 (|) is called the maximum posteriori probability that feature vector x belongs, can be

computed from (|) by Bayes‘ rule:

 (|)
 (|) ()

 ()
 ()

It applies ―naïve‖ conditional independence assumptions which states that all n

features of the feature vector x are all conditionally independent of one

another, given () Naïve Bayes assumption as follows:

 (|) () ∏ (|)

 < ()

 (|)
 () ∏ (|)

 ()
 ()

The most probable hypothesis given the training data „Maximum a posteriori‟

hypothesis results in the following:

 () ∏ (|)

 <

 ()

In data mining, Naive Bayes algorithm is easy to implement and is an efficient

and effective inductive learning algorithm for machine learning.

211

Among data mining methods, Naive Bayes algorithm is easy to implement and is

an efficient and effective inductive learning algorithm for machine learning. Figure 6.2

and Table 6.8 provide the overall accuracy rate for malware detection achieved through

our experiments using Naive Bayes with k cross validations, k= {2,3,4,5,6,7,8,9,10}.

Figure 6.2 Accuracy of NB with k Cross Validations (k=2 to 10)

212

6.11.2 The k−Nearest Neighbor (kNN) Algorithm

kNN is simple supervised machine learning algorithm that is used for classifying objects

based on closest training instances in the feature space. It has been employed in many

applications in data mining, statistical pattern recognition and many others. It has been

used in many applications in data mining, statistical pattern recognition and many others.

The object is classified based on a majority vote of its k nearest neighbors /low distance

to the object. As showed in (section 6.7) there are some measuring techniques that could

be used to measure distance between the training object and the test object such as Bray-

Curtis, Euclidean, correlation, Canberra, Manhattean, Chebyshev, Dice, Cosine, and

Hamming distances.

In our experiments, the K-nearest neighbors are compute as follows with K:

Table 6.8 Performance of Naive Bayes Fold Cross Validation (k=2 to 10)

Fold
TP

Rate

FP

Rate
Precision Recall

F-

Measure

ROC

Area
Accuracy

Time

Sec.

2 0.922 0.082 0.926 0.922 0.924 0.938 92.02 0.23

3 0.912 0.089 0.912 0.912 0.912 0.933 91.19 0.21

4 0.923 0.077 0.923 0.923 0.923 0.938 92.3 0.29

5 0.909 0.091 0.909 0.909 0.909 0.933 90.91 0.25

6 0.917 0.084 0.917 0.917 0.916 0.94 91.65 0.22

7 0.912 0.089 0.912 0.912 0.912 0.932 91.19 0.23

8 0.915 0.086 0.915 0.915 0.915 0.938 91.47 0.23

9 0.913 0.088 0.913 0.913 0.913 0.939 91.28 0.23

10 0.91 0.09 0.91 0.91 0.91 0.938 91 0.2

213

1. Store all training samples

 in memory.

2. Determine the parameter K = number of nearest neighbors beforehand. (A good k

can be selected using cross-validation for example).

3. Measure the distance between the query-instance (x) and all the training

samples

. (any distance algorithm can be used to) such as:

 (

)√∑ ()

 <

() ()

4. Find the K-minimum distance between the query-instance (x) and each

K

 .

5. Get all categories of training data for the sorted value under K.

6. Find the weighted distance of the query-instance (x) from each of the k nearest

points as follows:

 (

)

∑ (

)

 <

 ()

214

Figure 6.3 Accuracy of kNN with k Cross Validations (k=2 to 10)

Figure 6.3 provides the overall accuracy rate for malware detection achieved through our

experiments using K-Nearest Neighbors with k cross validations, k= {2,3,4,5,6,7,8,9,10}.

Table 6.9 shows the performance of kNN Fold Cross Validation (k=2 to 10)

88.00

89.00

90.00

91.00

92.00

93.00

94.00

95.00

96.00

2 3 4 5 6 7 8 9 10

215

6.11.3 The Sequential Minimal Optimization (SMO) Algorithm

Sequential Minimal Optimization (SMO) is a simple algorithm that can quickly solve the

SVM QP problem, without any extra matrix storage and without using numerical QP

optimization. The advantage of SMO is its ability to solve the Lagrange multipliers

analytically. SMO is a supervised learning algorithm used for classification and

regression, and it is a fast implementation of Support Vector Machines (SVM). The basic

advantage is that it attempts to maximise the margin, for example the distance between

the classifier and the nearest training datum. SMO constructs a hyperplane or set of

hyperplanes in a n-dimensional space, which can be used for classification. Basically, a

separation can be good when the hyperplane has the largest distance to the nearest

training data points of any class, since in general the larger the margin the lower the

generalization error of the classifier. SMO has been selected to classify malicious and

Table 6.9 Performance of kNN Fold Cross Validation (k=2 to 10)

Fold
TP

Rate

FP

Rate
Precision Recall

F-

Measure

ROC

Area
Accuracy

Time

Sec.

2 0.908 0.092 0.908 0.908 0.908 0.933 90.82 0.21

3 0.94 0.059 0.94 0.94 0.94 0.958 0.94 0.23

4 0.929 0.071 0.929 0.929 0.929 0.949 0.93 0.21

5 0.945 0.054 0.946 0.945 0.945 0.963 0.95 0.2

6 0.942 0.056 0.943 0.942 0.943 0.96 0.94 0.22

7 0.941 0.058 0.941 0.941 0.941 0.958 94.06 0.2

8 0.94 0.059 0.94 0.94 0.94 0.96 93.97 0.21

9 0.942 0.056 0.943 0.942 0.943 0.958 94.25 0.23

10 0.948 0.051 0.948 0.948 0.948 0.966 94.81 0.2

http://en.wikipedia.org/wiki/Supervised_learning
http://en.wikipedia.org/wiki/Statistical_classification
http://en.wikipedia.org/wiki/Regression_analysis
http://en.wikipedia.org/wiki/High-dimensional_space
http://en.wikipedia.org/wiki/Generalization_error

216

beingn executables because it is competitive with other SVM training methods such as

Projected Conjugate Gradient "chunking", and in addition it is easier to implement in

WEKA (Witten & Frank 2010).

As shown in Figure 6.4, we have employed 4 different kernels; Radial Basis Function

Kernel (RBF), Polynomial kernel, Normalized Polynomial kernel, and the Pearson VII

function-based universal kernel (Puk), and the overall accuracy rate for malware

detection achieved through Normalized Polynomial kernel is the highest for all the k

cross validations, k={2,3,4,5,6,7,8,9,10}. Tables 6.10, 6.11, 6.12 and 6.13 shows the

performance of the four different kernel of SMO Fold Cross Validation (k=2 to 10).

Figure 6.4 Accuracy of SMO with k Cross Validations (k=2 to 10)

75.00

80.00

85.00

90.00

95.00

100.00

2 3 4 5 6 7 8 9 10

NPoly PolyKernel RBF PUK Kernel

217

Table 6.10 Performance of SMO Normalized Polynomial Kernel Fold Cross Validation (k=2 to

10)

Fold
TP

Rate

FP

Rate
Precision Recall

F-

Measure

ROC

Area
Accuracy

Time

Sec.

2 0.934 0.063 0.937 0.934 0.934 0.936 93.41 4.46

3 0.936 0.061 0.939 0.936 0.936 0.938 93.6 4.34

4 0.938 0.059 0.94 0.938 0.938 0.94 93.78 4.4

5 0.941 0.056 0.943 0.941 0.941 0.942 94.06 4.47

6 0.953 0.042 0.953 0.951 0.951 0.952 95.06 4.3

7 0.968 0.043 0.968 0.968 0.968 0.966 96.81 4.37

8 0.977 0.051 0.978 0.977 0.977 0.966 97.82 4.33

9 0.971 0.044 0.968 0.971 0.971 0.996 97.82 4.29

10 0.986 0.025 0.976 0.986 0.984 0.982 98.3 4.01

Table 6.11 Performance of SMO Polynomial Kernel Fold Cross Validation (k=2 to 10)

Fold
TP

Rate

FP

Rate
Precision Recall

F-

Measure

ROC

Area
Accuracy

Time

Sec.

2 0.903 0.104 0.908 0.903 0.902 0.899 90.26 1.98

3 0.924 0.081 0.927 0.924 0.924 0.921 92.39 1.83

4 0.913 0.092 0.916 0.913 0.912 0.91 91.28 1.81

5 0.937 0.067 0.939 0.937 0.937 0.935 93.69 1.8

6 0.929 0.075 0.932 0.929 0.929 0.927 92.95 1.89

7 0.933 0.07 0.935 0.933 0.933 0.931 93.32 2.07

8 0.928 0.077 0.93 0.928 0.927 0.925 92.76 1.84

9 0.929 0.076 0.931 0.929 0.928 0.926 92.86 1.84

10 0.934 0.069 0.936 0.934 0.934 0.932 93.41 1.8

218

Table 6.12 S Performance of SMO PUK Kernel Fold Cross Validation (k=2 to 10)

Fold
TP

Rate

FP

Rate
Precision Recall

F-

Measure

ROC

Area
Accuracy

Time

Sec.

2 0.903 0.093 0.907 0.903 0.903 0.905 90.26 4.3

3 0.919 0.077 0.923 0.919 0.919 0.921 91.93 4.1

4 0.92 0.077 0.922 0.92 0.92 0.922 92.02 4

5 0.924 0.072 0.927 0.924 0.924 0.926 92.39 3.95

8 0.927 0.07 0.929 0.927 0.927 0.928 92.67 3.4

6 0.929 0.068 0.931 0.929 0.929 0.93 92.86 3.71

7 0.929 0.067 0.932 0.929 0.93 0.931 92.95 3.52

9 0.931 0.065 0.934 0.931 0.931 0.933 93.14 3.17

10 0.94 0.064 0.94 0.932 0.932 0.939 94.23 3.1

Table 6.13 Performance of SMO RBF Kernel Fold Cross Validation (k=2 to 10)

Fold
TP

Rate

FP

Rate
Precision Recall

F-

Measure

ROC

Area
Accuracy

Time

Sec.

2 0.835 0.154 0.855 0.835 0.834 0.84 83.4879 3.05

3 0.882 0.113 0.886 0.882 0.882 0.884 88.22 2.73

4 0.891 0.106 0.894 0.891 0.892 0.893 89.15 2.71

6 0.905 0.094 0.906 0.905 0.905 0.906 90.54 2.98

9 0.915 0.086 0.915 0.915 0.915 0.914 91.47 2.8

5 0.916 0.084 0.916 0.916 0.916 0.916 91.5584 2.8

7 0.916 0.085 0.916 0.916 0.916 0.915 91.56 2.69

8 0.923 0.078 0.923 0.923 0.923 0.922 92.30 2.67

10 0.929 0.073 0.929 0.929 0.929 0.928 92.86 2.6

219

6.11.4 Artificial Neural Networks (ANN) Algorithm

Artificial Neural Networks (ANN) are biologically inspired form of distributed

computing usually comprising of a set of nodes (including input, hidden and output) and

weighted connections between them (Chen et al. 2005). Guo and Li define ANNs as a

topology/architecture formed by organizing nodes into layers and linking the layers of

neurons (Guo & Li 2008). The nodes are interconnected by weighted connections, and

the weights are adjusted when data is presented to the network during a training process

(Dayhoff & DeLeo 2001)

A number of variations of neural networks are in use today in different

applications, including in fraud detection. The use of ANNs in fraud detection spans

almost all major forms of fraud including telecommunications fraud, financial fraud and

computer intrusion fraud among others (Kou et al. 2004). In fraud detection and anomaly

detection, ANNs are fundamentally used as classification tools (Chandola et al. 2009).

Usually, a basic anomaly detection approach using neural networks involves two steps:

training and testing. First, the network is trained on some part of the data to learn the

different classes. Then, the remaining portion of the data is used to run the network to test

accuracy and other performance indicators.

ANNs provide a non-linear mapping from the input space to the output space so

can learn from the given cases and generalize the internal patterns of a given data set

(Guo & Li 2008). Thus, ANNs adapt the connection weights between neurons and

approximate a mapping function that models the provided training data. Neural networks

have the ability to learn distinct classes without knowledge of the data distribution

220

(Chandola et al. 2009). However, most classifications rely on accurately labelled data

which is often not readily available, especially for online banking and credit card fraud

detection (Chandola et al. 2009). In Credit Card fraud detection, the FALCON system,

which the developers claim to be used by 65% of the credit systems worldwide, uses a

Neural network (FICO 2010). Furthermore, VISA, Eurocard and Bank Of America

(among others) use Neural technology in their Credit Card systems (Aleskerov et al.

1997). The SAS fraud management system employs an ensemble of neural networks

called Self Organizing Neural Network Arboretum (SONNA). Lastly, ACI‗s Proactive

Risk Manager (PRM) also features a neural network in its architecture (IBM 2008).

The downside to neural networks‘ distribution free generalisation is that they are

prone to local minima and over-fitting (Bhattacharyya et al. 2011). When the ANN is

learning, a stopping condition may be declared as the anticipated net training error after a

training session. This value is often a global minimum relative to the network‘s training

errors. Sometimes, the ANN stops learning and gets stuck at a local minimum instead of

the desired global minimum. This situation is most commonly referred to as the local

minimum problem. Another problem with ANNs is hidden neuron saturation, where the

hidden layer inputs are too high or too low such that the hidden layer output is almost

close to the bounds of the activation function at that layer (Wang, X. G. et al. 2004). The

other drawback with ANNs is their lack of adaptation to new data trends. At any point,

ANNs will model only the data they have been trained on. This means that when a

statistically different data pattern is introduced, the ANN will need to be re-trained or it

may not correctly classify the new pattern. Consequently, this dictates that ANNs be

retrained on a regular basis to keep up with emerging data trends. In online banking,

221

ANNs are retrained after a defined period or after a certain number of examples have

been collected.

Recently, classification method using a NN was used for Malware detection.

Generally, the classification procedure using the NN consisted of three steps, data

preprocessing, data training, and testing. The data preprocessing was for the feature

selection. In the data training, the selected features from the data preprocessing step was

fed into the NN, and Malware and Benign classifier was generated through the NN. For

the testing, the classifier was used to verify the efficiency of NN. In the experiment, an

error BP (Back Propagation) algorithm was used. The best-known example of a neural

network training algorithm, namely back propagation was employed. Back propagation

algorithm neural network was used because of the large amount of input/output data and

the overwhelming amount of complexity due to the fuzzy outputs.

Figure 6.5 provides the overall accuracy rate for malware detection achieved through our

experiments using Artificial Neural Networks with k cross validations, k=

{2,3,4,5,6,7,8,9,10}. Table 6.14 shows the performance of ANN Fold Cross Validation

(k=2 to 10)

http://www.statsoft.com/textbook/statistics-glossary/b.aspx?button=b#Back Propagation

222

Figure 6.5 Accuracy of ANN with k Cross Validations (k=2 to 10)

0.00

10.00

20.00

30.00

40.00

50.00

60.00

70.00

80.00

2 3 4 5 6 7 8 9 10

Table 6.14 Performance of Artificial Neural Networks Fold Cross Validation (k=2 to 10)

Fold
TP

Rate

FP

Rate
Precision Recall

F-

Measure

ROC

Area
Accuracy

Time

Sec.

2 0.857 0.248 0.882 0.857 0.847 0.742 65.96 16.26

3 0.888 0.175 0.904 0.888 0.883 0.8 74.21 15.6

4 0.827 0.244 0.863 0.827 0.815 0.77 73.38 15.52

5 0.81 0.198 0.856 0.81 0.803 0.725 60.30 15.46

6 0.828 0.235 0.865 0.828 0.817 0.773 73.47 15.43

7 0.836 0.223 0.871 0.836 0.827 0.782 74.40 15.44

8 0.832 0.213 0.869 0.832 0.823 0.768 70.22 15.43

9 0.798 0.263 0.848 0.798 0.783 0.738 67.81 16.17

10 0.864 0.183 0.881 0.864 0.859 0.783 70.87 15.43

223

6.11.5 Logistic Regression

Logistic regression is a member of the family of methods called generalized linear

models ("GLM"). The linear function of the predictor variables is calculated, and the

result of this calculation is run through the link function. In logistic regression, the linear

result is run through a logistic function, which runs from 0.0 (at negative infinity) and

rises monotonically to 1.0 (at positive infinity). Along the way, it is 0.5 when the input

value is exactly zero. Among other desirable properties, it is interesting to note that this

logistic function only returns values between 0.0 and 1.0. Other GLMs operate similarly,

but employ different link functions- some of which are also bound by 0.0 - 1.0, and some

of which are not.

For building linear logistic regression models, Lotus (Chan & Loh 2004) is a

logistic regression tree learner for two class problems (Malware and Benign). The

algorithm constructs logistic regression trees in a top-down way, emphasizes the

importance of unbiased split variable selection through the use of a modified chi-square

test, and uses only numeric attributes for constructing logistic models.

In univariate regression equation, say y = a + b x + e, there is only one

explanatory (or independent variable) x, while the other components in this relation are

the response (or dependent variable) y, the coefficients a and b and the error term e. The

response usually is a continuous random variable, for example Gaussian responses, which

is the most popular case in regression, whilst in some other cases the response can take

discreet values. Logistic regression is one example of these cases. The general graph of

this model is represented by the following plot.

224

The response (or dependent variable) in logistic regression is usually dichotomous

(i.e. measured at two levels), that is, it can take the value 1 with a probability of

success p, or the value 0 with probability of failure 1-p. The logistic model in multivariate

shape can take the following equation:

 , () - [
 ()

 ()
]

 ()

where the constants are called coefficients and are

the ―multivariate‖ explanatory variables. The detection (MLW) data are coded and

considered as response variable while all other features are considered as independent

or explanatory variables.

 {

 ()

The logistic regression model is

 *
 ()

 ()
+

 ()

where is the feature of API function calls, and the risk of malware is

defined in (6.22)

 ()

 ;(: : : :)
 ()

The probability of a file to be a Malware is defined as follows:

225

 ()
 (: : : :)

 (: : : :)
 ()

The goal of logistic regression is to correctly predict the category of outcome for

individual cases using the most parsimonious model. To achieve this aim, a model is

created that includes all independent variables (or explanatory variables) that are

significant (useful) in predicting the response variable. Several different options are

available during model creation. Variables can be entered into the model in the order

specified by the researcher or logistic regression can test the fit of the model after each

coefficient is either added or deleted, called stepwise regression. In R programming

software, the command Step() can do this depending on Akaike's Information Criterion

(AIC).

Figure 6.6 provides the overall accuracy rate for malware detection achieved through our

experiments using Logistic Regression with k cross validations, k= {2,3,4,5,6,7,8,9,10}.

Table 6.15 shows the performance of Logistic Regression Fold Cross Validation (k=2 to

10).

Figure 6.6 Accuracy of Logistic Regression with k Cross Validations (k=2 to 10)

91.00

91.50

92.00

92.50

93.00

93.50

94.00

2 3 4 5 6 7 8 9 10

226

6.11.6 J48

J48 classifier is a C4.5 decision tree used for classification purposes. In order to

classify a new item, the classifier first needs to create a decision tree based on the

attribute values of the available training data. So, whenever it encounters a set of items

(training set) it identifies the attribute that discriminates the various instances most

clearly. This feature that is able to tell the most about the data instances for classifying

them the best is said to have the highest information gain.

Among the possible values of this feature, if there is any value for which there is

no ambiguity, that is, when the data instances falling within its category have the same

value for the target variable, then that branch is terminated and the target value arrived is

Table 6.15 Performance of Logistic Regression with k Cross Validations (k=2 to 10)

Fold
TP

Rate

FP

Rate
Precision Recall

F-

Measure

ROC

Area
Accuracy

Time

Sec.

2 0.924 0.076 0.924 0.924 0.924 0.958 92.39 70.53

3 0.919 0.081 0.919 0.919 0.919 0.963 91.93 70.27

4 0.93 0.07 0.93 0.93 0.93 0.968 93.04 71.16

5 0.936 0.064 0.936 0.936 0.936 0.969 93.60 51.79

6 0.928 0.073 0.928 0.928 0.928 0.969 92.76 50.88

7 0.922 0.078 0.922 0.922 0.922 0.97 92.21 51.08

8 0.924 0.076 0.924 0.924 0.924 0.965 92.39 51.21

9 0.924 0.076 0.924 0.924 0.924 0.968 92.39 50.85

10 0.93 0.07 0.93 0.93 0.93 0.97 93.04 52.69

227

assigned to it. Figure 6.7 provides the overall accuracy rate for malware detection

achieved through our experiments using J48 with k cross validations, k=

{2,3,4,5,6,7,8,9,10} and Table 6.16 provides the overall accuracy rate for malware

detection achieved through our experiments using Naive Bayes with k cross validations,

k= {2,3,4,5,6,7,8,9,10}.

Figure 6.7 Accuracy of J48 with k Cross Validations (k=2 to 10)

87.00

88.00

89.00

90.00

91.00

92.00

93.00

94.00

95.00

2 3 4 5 6 7 8 9 10

Table 6.16 Performance of J48 with k Cross Validations (k=2 to 10)

Fold
TP

Rate

FP

Rate
Precision Recall

F-

Measure

ROC

Area
Accuracy

Time

Sec.

2 0.899 0.1 0.899 0.899 0.899 0.891 89.89 2.02

3 0.917 0.082 0.918 0.917 0.917 0.919 91.74 1.9

4 0.924 0.074 0.925 0.924 0.924 0.923 92.39 1.79

5 0.931 0.067 0.932 0.931 0.931 0.93 93.14 1.86

6 0.939 0.06 0.939 0.939 0.939 0.935 93.88 1.65

7 0.935 0.064 0.936 0.935 0.935 0.942 93.51 1.67

8 0.931 0.068 0.932 0.931 0.931 0.929 93.14 1.64

9 0.937 0.062 0.937 0.937 0.937 0.946 93.69 1.68

10 0.93 0.068 0.931 0.93 0.93 0.931 93.69 1.67

228

6.12 Evaluation and Validation Metrics

Several classification techniques have been used in this research study and for comparing

the performance of each algorithm, it is important to assess how good a classification

algorithm is able to correctly predict variables. The proposed method for malware

detection would be evaluated based on the following standard measures:

True Positive (TP): Number of correctly identified malicious code,

False Positive (FP): Number of wrongly identified benign code, when a detector

identifies a benign file as a malware.

True Negative (TN): Number of correctly identified benign code.

False Negative (FN): Number of wrongly identified malicious code, when a detector fails

to identify the malware because the virus is new and no signature is available yet.

The efficiency of the proposed method would be evaluated using performance

measures such as detection rate, false alarm rate and overall accuracy that are defined as

follows:

Positive (P): The predicted attribute belong to the right class.

 ()

Negative (N): The predicted attribute belong to the right class.

 ()

229

True detection Rate (TP rate): Percentage of correctly identified malicious code.

 ()

False alarm Rate (FP rate): Percentage of wrongly identified benign code, given by:

 ()

Overall Accuracy: Percentage of correctly identified code, given by:

 ()

Two other fundamental measures used for classification effectiveness are precision and

recall.

The precision: the probability of records classified as positive which are classified

correctly.

 ()

The recall: Recall in this context is also referred to as the True Positive Rate. It is the

probability of positive records that have been correctly identified.

 ()

230

F-Measure: It is a measure of a test's accuracy by combining recall and precision scores

into a single measure of performance, usually it is between 0.0 and 1.0, closer to 1 being

a good score and closer to 0.0 being a poor score.

 ()

The Receiver Operating Characteristic (ROC) curve: In a ROC curve the true positive

rate is plotted in function of the false positive rate (100-Specificity) for different cut-off

points. Each point on the ROC curve represents a sensitivity/specificity pair

corresponding to a particular decision threshold. A test with perfect discrimination (no

overlap in the two distributions) has a ROC curve that passes through the upper left

corner (100% sensitivity, 100% specificity). Therefore the closer the ROC curve is to the

upper left corner, the higher the overall accuracy of the test. Usually, ROC area higher

(closer) to 1 is considered good, and closer to 0.0 is considered poor.

6.13 Result

The implementation involves employment of several software such as; WEKA version

3.6.4 software for performing the classification, and MatLab for feature selection. Table

6.17 shows the effectiveness of different data mining approaches. We had applied k cross

validation, with k={2,3,4,5,6,7,8,9,10} for each of the data mining algorithms, and we

observed that with k = 10 most of the algorithms provided the best accuracy. By

comparing the evaluation measures achieved by each of the data mining techniques, we

observe that SVM - Normalized PolyKernel has performed the best, and NN-

Backpropagation exhibited the worst results. This could be attributed to the fact that and

231

NN-Backpropagation follows a heuristic path and usually converges only to locally

optimal solutions and can suffer from multiple local minima, while SVM - Normalized

PolyKernel always finds a unique global minimum. Through our experimental analysis

we found that SVM-Normalized Polynomial Kernel provided an average of 98.5% true

positive rate. With 99% true detection rate of malware as malware, the average weight for

the false alarm rate achieved was about 2% in this case. Overall, SVM-Normalized

Polynomial Kernel had outperformed all other classification methods in all measures,

namely, TP Rate, FP Rate, Precision, Recall, F-Measure and ROC Area.

232

Table 6.17 Results Nine Classifiers at k = 10

TP
Rate

FP Rate Precision Recall
F-

Measure
ROC Area Class

J48

 0.919 0.057 0.947 0.919 0.933 0.931 Malware

0.943 0.081 0.913 0.943 0.928 0.931 Benign

Weighted Avg. 0.93 0.068 0.931 0.93 0.93 0.931

KNN
0.938 0.041 0.962 0.938 0.95 0.966 Malware

0.959 0.062 0.933 0.959 0.946 0.966 Benign

Weighted Avg. 0.948 0.051 0.948 0.948 0.948 0.966

NB
0.913 0.094 0.915 0.913 0.914 0.94 Malware

0.906 0.087 0.904 0.906 0.905 0.936 Benign

Weighted Avg. 0.91 0.09 0.91 0.91 0.91 0.938

NN -
BackPropagation

0.983 0.301 0.82 0.983 0.894 0.744 Malware

0.699 0.017 0.966 0.699 0.811 0.839 Benign

Weighted Avg. 0.864 0.183 0.881 0.864 0.859 0.783

Simple Logistic
0.931 0.07 0.936 0.931 0.934 0.97 Malware

0.93 0.069 0.924 0.93 0.927 0.97 Benign

Weighted Avg. 0.93 0.07 0.93 0.93 0.93 0.97

SVM - Normalized
PolyKernel

0.99 0.018 0.982 0.99 0.986 0.981 Malware

0.981 0.031 0.969 0.981 0.983 0.982 Benign

Weighted Avg. 0.986 0.025 0.976 0.986 0.984 0.982

SVM - PolyKernel
0.966 0.102 0.913 0.966 0.939 0.932 Malware

0.898 0.034 0.96 0.898 0.928 0.932 Benign

Weighted Avg. 0.934 0.069 0.936 0.934 0.934 0.932

SVM – Puk
0.901 0.033 0.968 0.901 0.933 0.934 Malware

0.967 0.099 0.898 0.967 0.931 0.934 Benign

Weighted Avg. 0.932 0.064 0.935 0.932 0.932 0.934

SVM- Radial Basis
Function (RBF)

0.94 0.084 0.925 0.94 0.933 0.928 Malware

0.916 0.06 0.932 0.916 0.924 0.928 Benign

Weighted Avg. 0.929 0.073 0.929 0.929 0.929 0.928

233

Chapter 7 : Conclusions

“Pay no attention to the man behind the curtain.”

— The Wizard of Oz

7.1 Overview

The final chapter of the dissertation provides an overall summary of this research study

and briefly describes the proposed techniques, the results achieved, and the conclusions

arrived at. The first section will be an open discussion on the state-of-the-art of this

research topic. The next sections and subsections will summarise the various malware

detection techniques adopted and their contribution to the information security field of

knowledge. The last section throws some light on possible future research directions,

along with final thoughts.

7.2 Discussion

Malware contains code that is designed to perform illegal activities, to cause damage, and

to affect the integrity and the functionality of the digital system. This thesis has proposed

and evaluated novel techniques to automatically detect hidden and obfuscated malware,

aiming to address the malware threats by proposing a variety of novel digital forensic and

data mining techniques. These techniques take a step to fill the lacuna found in literature

to detect zero-day malware effectively due to the recent obfuscation strategies adopted by

malware writers.

234

Malware attackers are taking advantage of our increased reliance on digital

systems. As the number of cybercrime and computer attacks have increased

exponentially, there is a need for developing standards in evidence collection and

conducting malware analysis effectively as part of both the incident response and forensic

analysis processes. The continued growth and diversification of the Internet has resulted

in the increasing sophistication of tools and methods used to conduct computer system

attacks and intrusions, these attacks can take in physical or logical places of a computer.

Among these attacks, zero-day malware forms the biggest threat to information security.

With more and more use of computers, portable devices and the Internet in everyday life,

identification of new or unknown malware has become a major challenge in digital

forensics and computer security. Hence, this research has focused on detecting such

malware that lie hidden in the physical and logical space of a computer, evading from

anti-virus scanners.

7.2.1 State-Of-The-Art

Cyber criminals are leveraging innovation at a fast pace to target many

organizations, and security vendors cannot match this pace (Stabek et al. 2010). Effective

deterrents to cybercrime are not known, available, or accessible to many practitioners,

many of whom underestimate the scope and severity of the problem (McCombie et al.

2009; Watters 2009). In our view the key for fast speed in malware growth is the lack of

understanding of the various types of hidden malware and their capabilities to exploit file

system vulnerabilities. Security breaches are increasing in frequency and sophistication.

This thesis presented along all the chapters details have been presented for the

235

abovementioned attacking trend with a view to understand the various behaviour of

hidden malicious code that could be categorized as distinct malware types. Organizations

should understand how they are viewed by cyber criminals in terms of attack vectors,

systems of interest, and process vulnerabilities, so that they can better protect themselves

from the Zeus generations and other attacks.

The normalization of different variants of malware to a single normal form could

be effective, but studies indicate that they do not always lead to convergence. Certain

heuristic methods also result in high false positives, thereby warranting the need for new

methods that leverage on the knowledge that could be gained from the anomalies of these

obfuscated malware.

7.2.2 Proposed Detection Methods

This dissertation focuses on the research problem of detection of hidden and obfuscated

malware, which is generally considered as the first step in the malware defense. With

proper identification of malware, it is possible to defend against infection. Unfortunately,

there are multiple reasons why it is unlikely that one identification method will be

universally effective. Hence, in this dissertation, multiple research problems related to the

infection strategies of malware authors have been studied in Chapter 1. These strategies

attempt to bypass the most popular malware detection method, which is based on fixed

code signatures. In this research, five broadly classified methods that have adopted the

potential techniques to counter such obfuscated malware strategies have been proposed.

They are:

236

1. Forensic analysis of the NTFS – to detect hidden malware in NTFS file system slack

space partitions,

2. Extract features out of executable binaries automatically to perform statistical

differentiation of the op-code and API calls frequencies of malware and benign

programs.

3. OP-code based detection – to detect anomalies and classify unknown malware based

on the extended x86 IA-32 binary assembly instructions' frequency statistics, using i)

Maximum Relevance (MR) filter heuristic, ii) Artificial Neural Net Input Gain

Measurement Approximation (ANNIGMA), and iii) combination of MR and

ANNIGMA.

4. API calls similarity based detection of unknown and obfuscated malware using

various distance measures of vector models to detect obfuscated malware families.

5. API call based detection- to effectively detect and classify malware using ten robust

supervised machine learning algorithms on API function call features.

All the above mentioned methods are fully automated and work on binary executables to

detect hidden and obfuscated malware effectively as well as efficiently to address the

zero-day malware problem.

7.3 Forensic Analysis of the NTFS

This research investigated the offline NTFS file systems and proposed effective digital

forensic techniques that could be used to analyse and acquire evidences of hidden

malware in NTFS disk images. An innovative methodology was proposed and evaluated

to effectively detect hidden malware in physical space of a computer. Since malware

237

attackers take advantage of the NTFS weaknesses and the inability of existing Anti-virus

to check the slack space, a guideline to investigate slack space for identifying known and

unknown malware forms a significant contribution of the study.

Recent methods adopted by computer intruders, attackers and malware are to target

hidden and deleted data so that they could evade from virus scanners and become

extremely difficult to be identified using existing digital forensic tools. This work has

attempted to explore the difficulties involved in digital forensics, especially in conducting

NTFS disk image analysis and to propose digital forensic analysis procedure or steps to

identify certain hidden malware effectively, while they reside in the system invisible to

popular anti-virus scanners.

Through this empirical study, it is observed that the boot sector of the NTFS file

system could be used as a vehicle to hide data by computer attackers as there is a

potential file system weakness. The knowledge of file systems is important for digital

forensics, as several techniques to hide data such as slack space and hidden attributes are

being recently adopted by attackers. This is a potential NTFS file system weakness to be

addressed and research in this domain area could lead to effective solution for the open

problem of detecting new malicious codes that make use of such an obfuscated mode of

attack. The results of the experiments conducted in this work show that the existing

forensic software tools are not competent enough to comprehensively detect all hidden

data in boot sectors.

As a first step to address this problem, a three-stage forensic analysis process

consisting of nine steps is proposed to facilitate the experimental study. The results

238

gathered by following these proposed steps are reported. By adopting such a

comprehensive process, this research could successfully identify all the unknown hidden

malware in the $Boot file that had previously escaped undetected when existing forensic

tools were used.

This pilot study has adopted a few forensic techniques and effective manual

inspections of the NTFS file image. With these observations an automated tool based on

the proposed process was developed to facilitate forensic analysis of the NTFS disk

image in an efficient and comprehensive manner. Future plan is to extract and

extrapolate malware signatures effectively as well as intelligently for any existing and

even new malware that use hidden and obfuscated modes of attack.

Verification and Validation: The utilities described above to perform the forensic

investigation steps have built-in MD5 hashing features. In digital forensic analysis, using

a hashing technique is important to ensure data integrity and to identify which values of

data have been maliciously changed as well as to explore known data objects. In

addition, the ‗Check the Data Integrity‘ step verifies the integrity of data again for test of

congruence. Hence, verification and validation method is a simple process of checking

the presence or absence of data in slack space, which determines the presence or absence

of hidden malware correctly.

7.4 OP-Code Based Detection

Malware that make use of obfuscation of extended x86 IA-32 operation codes (op-codes)

pose a great challenge for malware detectors as they can easily evade current signature-

239

based as well as heuristic-based detection engines. A novel approach has been proposed

that combines op-code frequency statistics and hybrid wrapper-filter based feature

selection technique in order to design a malware detector for identifying the anomalies of

malware infecting the logical space of a computer.

With evasion techniques such as packers, polymorphism and metamorphism,

recent malware is able to defeat current signature based detection techniques. In this

chapter, a novel signature-free method for the detection of such obfuscated malware was

proposed. Instead of using signature, we have used frequency statistics of op-codes with a

wrapper-induction algorithm. One of the main contributions of this research is the

development of a fully-automated algorithm to unpack, de-obfuscate and reverse engineer

the binary executable without any need for manual inspection of assembly codes, and

thereby we are able to find the op-code frequency statistics without any manual

intervention.

 To compute the frequency statistics for all op-codes each time for each executable

during the scanning process is a difficult task. Hence, a novel hybrid wrapper-filter based

signature-free approach to select the most important op-codes for this malware detection

task is used. The novelty of our approach is that this integrates knowledge (from the

intrinsic characteristics of data) obtained by the filter approach into the wrapper approach

and combines the wrapper‘s heuristic score with the filter‘s ranking score in the wrapper

stage of the hybrid. The main novelty is that this approach is signature-free and is able

detect the malware variants that are very hard to defect with signature-based approaches.

The combined heuristics in the hybrid (Maximum Relevance (MR) and Artificial Neural

Network (ANN) based wrapper approach, where Artificial Neural Network Input Gain

240

Measurement Approximation (ANNIGMA)) (MR-ANNIGMA) takes the advantages of

the complementary properties of the both filter and wrapper heuristics helps to guide the

wrapper to find optimal and compact op-code subsets. Experimental results on real world

malware and benign datasets show that our frequency statistics based approach achieves

an accuracy of 97.529% with a very compact set of op-codes. Some limitations of the

proposed approach could be avoided by applying other wrapper approaches and rule-

generation processes.

7.5 API Feature Based Detection

The op-code base detection approach for malware detection exhibited good performance

in detecting unkown malware. However, the behaviour patterns could not be studied.

Hence, the next research step involved extracting behaviour patterns for detecting

anomalies of such zero-day malware infecting the executables in the logical space of the

computer. It is a common practice to undergo manual unpacking or static unpacking of

executables using existing software tools, and to use human expertise in analysing the

application programming interface calls for malware detection. However, extracting

these features from the unpacked executables for reverse obfuscation is time consuming,

labour intensive, and requires deep understanding of kernel and low-level programming

such as assembly programming. Thus, security researchers and the anti-virus industry are

facing a herculean task in extracting payloads hidden within packed executables with

much human intervention.

241

7.5.1 API Behaviour Analysis

A statistical analysis of the Windows API calling sequence reflects the behaviour of a

particular piece of code. In this research project, the API calls from the binary of a

program are extracted to analyse the most common malware behaviour patterns and to

classify program executables as malicious or benign. The extracted calls are subjected to

a statistical test to determine the malware class based on suspicious behaviour. The entire

static detection process was a fully-automated system and a four-step methodology was

adopted for developing the system. Experimental tests were conducted using 21942

samples of malware and arrived at six main categories of suspicious behaviour of API

call features. These being i) Search files, ii) Copy/Delete files, iii) Get file information,

iv) Move Files, v) Read /Write files and vi) Change file attributes. Among these, API

calls for Read /Write files were predominantly used by malware as a vehicle to infect the

program.

In the research, the behavioural and structural features based on API calls are

automatically extracted from the binary of a program. The extracted features are

subjected to a statistical n-gram analysis to classify a program as either malicious or

benign effectively with the aid of a supervised SVM machine learning technique. In the

field of analysis the behavious of API finction calls four regions we covered. The first

and foremost one is, outlining of a methodology to extract behaviour features of API calls

that relate to various malware behaviour such as i) hooking of the system services,

ii) creating or modifying files, iii) getting information from the file for making changes

about the DLLs loaded by the malware. Second is providing a statistical analysis of the

242

API calls from the programs using n-gram model. The n-gram analyses the similarities

and the distance of unknown malware with known behaviour so that obfuscated malware

could be detected efficiently. Third developing a fully-automated tool to unpack, de-

obfuscate and reverse engineer the program codes without any need for manual

inspection of assembly codes. The last one is, applying SVM machine learning to train

the classifier for a robust identification of known as well as unknown malware. Our

experiments have shown the initial experimental result of 96.5% accuracy for unigrams is

still very promising as a benchmark for improvements in our future research work.

7.5.2 API Similarity based detection

The proposed similarity based detection of unknown and obfuscated malware using API

call features as an effective method in classifying and identifying zero day malware with

existing malware families. This dissertation has proposed an approach to use frequency of

occurrence of each Windows Application Programming Interface (API) calls with

similarity mining analysis to detect new malware based on the similarities of distance

measures. Different distance measures were implemented and similarity analysis were

performed by using eight commonly adopted distance measures in vector models, namely

Cosine, Bray-Curtis, Canberra, Chebyshev, Manhattan, Correlation, Euclidean, and

Hamming distance similarity measure for Nearest Neighbor (NN).

The experimental investigations of the similarity analysis on large datasets of recent

unknown malware and benign executables conclude that malware exhibit much similarity

of API call features that can be used to classify them into their families effectively, and

they are very much dissimilar from benign datasets. Also, the study reveals that there is

243

no similarity among benign files resulting in accurate identification of all benign files.

Our fully automated system implementing the proposed approach is fast and effective and

uses several similarity measures.

The experimental result of the similarity analysis aided in the malware classification and

was evaluated using very large real-life malware dataset. The Similarity distance system

used on our experiment was able to automatically identify all malware variants. We

showed how to detect as a variant of the original malware.

In order to provide an accurate result of the we have taken the mean values for 8 different

similarity measurements applied to the entire dataset, when the threshold for the

similarity ratio is less than or equal to 0.5. The overall results demonstrate that there is

low distance between malware variants but not with the benign programs. Also, the

results showed there is high distance between benign dataset.

Similarity analysis is very efficient and effective to detect Malware variants from the

same family or different families of Malware. Also, the experiments confirm that there is

no similarity among the benign files, which is logical and true. Another important

observation is that it is very hard to find similarity between Malware dataset and benign

dataset, thereby validating that the proposed system is able to clearly distinguish between

malware and benign datasets. In conclusion, Malware can be classified according to

similarity and further, similarly test can be applied to detect malware variants. The

proposed similarity based detection and classification of malware is further improved in

performance by using feature selection, especially when large datasets require more

computing memory and time for processing the extracted features.

244

7.5.3 Data Mining of API Call Features

Countermeasures such as antivirus detectors are unable to detect new malware and are in

search of employing effective techniques, since the latest new malware adopt

obfuscations to evade detection. With an exponential growth in unknown malware arising

from innumerable automated obfuscations, there is a need to establish malware detection

methods that are robust and efficient. In this thesis, we have proposed and developed a

machine learning framework using eight different classifiers to detect unknown malware

and to achieve high accuracy rate. In this work, iterative patterns based on Windows API

calls have been used and statistical measures have been adopted to further improve the

classification results. Our experiments conducted on large malware datasets have shown

very promising results achieving more than 98.5% accuracy rate.

The main objective of the research reported was to propose and develop a

machine learning framework to detect and classify unknown malware and to achieve high

accuracy rate and low false alarm rate. Signature based detection method used by

countermeasure is not enough to get an acceptable protection against the new malware.

Malware detection by using machine learning is very much required by anti-virus

vendors to detect unknown malware along with signature based detection for detecting

existing malware. Since most Anti-Virus engines manage to have a detection rate of over

90% (Gavrilut et al. 2009), the detection framework proposed to detect zero-day attack is

a very significant contribution. In this work, iterative patterns based on Windows API

calls have been used and statistical measures to further improve the classification results.

Overall, the salient achievements of the research reported in this chapter are:

245

- The proposed machine learning framework has resulted in high accuracies in

malware detection. This is attributed to the unique feature selection of API sequences

and the development of a fully-automated system used for evaluating data mining

algorithms on large datasets of unknown malware.

- The proposed system is efficient as it uses filter approaches to be able to successfully

detect malware with a smaller feature set. The term frequency of reduced API feature

set using SVM (normalised poly kernel) has performed the best among the nine

classifiers evaluated in this study.

- The system is signature-free and does not require knowledge or detailed study about

the API sequence of execution to classify a malware.

Code obfuscation techniques can modify the parent code to produce offspring copies

which have the same functionality but with different signatures to infect the logical space

of a computer in order to evade the ‗Signature-based‘ detection process easily. Since

there are many to generate new obfuscated code, new generations of evaluated signatures

are growing and the level of sophistication of unknown malware is also increasing.

However, data mining of the offspring copies through pattern recognition can detect the

obfuscated code. Hence, the in the final step of this research, data mining approach was

adopted for malware and benign classification.

Also, a data mining approach within a machine learning framework was proposed

to detect malicious programs, to learn from the behaviour of existing malicious and

benign database of very large data sets of obfuscated unknown malware and benign

programs. Supervised learning was performed using a dataset to train, validate and test,

246

an array of classifiers. The robust classifiers adopted were; The Naive Bayes (NB)

Algorithm, The k−Nearest Neighbor (kNN) Algorithm, The Sequential Minimal

Optimization (SMO) Algorithm with 4 differents kernels (SMO - Normalized

PolyKernel, SMO – PolyKernel, SMO – Puk, and SMO- Radial Basis Function (RBF)),

Backpropagation Neural Networks Algorithm, Logistic Regression, and J48 decision tree.

Experiments conducted on large malware datasets resulted in 98.5% accuracy rate of

malware detection.

7.6 Future Work and Final Thoughts

As future work, the following are the intended research possibilities:

NTFS File System versions: The investigations on malware infection in physical space

described in Chapter 3 has focused on NTFS file system While Windows XP and

Windows Server 2003 use the same NTFS version, Windows Vista uses the NTFS 3.1,

and currently there is NTFS 4.0 and NTFS 5.0 released in the market. Therefore, malware

detection in the physical space of the NTFS file system partition should cater to all the

NTFS versions.

Combine Features: Chapters 4, Chapter 5, and Chapter 6 Chapter 6 proposed signature-

free detection based on op-code and API calls, independently and future investigation

would be to combine the classifiers intelligently. Combining the output of different

classifiers instead of choosing the best one among them could be investigated in terms of

detection accuracy and ROC curve. Moreover, the classifiers could be trained on different

247

datasets and to combine the classifiers learned on op-code and API calls efficiently and

the final class output could be assigned using a voting strategy.

Time Complexity: Further improvements for real-time implementation of the fully-

automated malware detection systems would include integrating both physical space

forensic and logical space analysis, and taking into account the space-time complexity of

the various algorithms implemented in this research work.

New Methods to Improve Detection: It is imperative to keep employing new techniques

for studying the new polymorphic and metamorphic malware attacks in order to counter

them. There are ways that the proposed method could be bypassed such as using lengthy

loops or using run-time environment parameters in a polymorphic exploit. However, this

requires the attackers to carefully craft their exploit code. In such a case, it would be

worth further study of new techniques to detect these polymorphic exploits and the focus

would be on generalizing the method for less obvious sequences of byte decoding.

New Approaches to Enhance the Accuracy: In future studies on completely new

techniques or improving the proposed techniques to enhance the accuracy of static

analysis would be explored: Static analysis is the basis of the three works proposed in this

dissertation. In particular, it is the key to successfully characterizing program behaviours

for metamorphic malware detection. Therefore, it is important to enhance its accuracy

further to achieve near 100%. Through the investigations conducted in this research

work, several ideas have been generated to improve the proposed static analysis approach

that characterizes program behaviours based on system calls. These new ideas could be

explored further.

248

Combined Static and Dynamic Analysis: Combining localized dynamic analysis with

static analysis would be another prospective research worth exploring. Such

investigations could be used to detect live malware targeting web. Many techniques can

thwart static analysis such as using self-modifying code or indirect control transfer

instructions. Making obfuscated system calls is a technique that specifically bypasses the

static analysis approach. Using dynamic analysis techniques can address these problems.

For instance, techniques could be designed to ―locally" emulate instruction execution to

deal with self-contained behaviours such as self-modifying and the obfuscated system

calls. Static analysis could then be used to develop information to determine a ―local"

scope for a round of emulated instruction execution.

Modeling System Calls for Intrusion Detection: Another improvement in the proposed

approach of API call feature extraction is by incorporating more types of system call

parameters into pattern generation: This will improve the accuracy of pattern generation

and similarity analysis. Besides the target address of a system call, the function

argument(s) of a system call could also be used in pattern generation. The information on

what function argument(s) a system call is using can possibly be obtained in two ways: 1)

from system call specifications; 2) from instruction compilation heuristics: a parameter is

usually passed through specific registers, i.e., eax.

Characterize the Malicious Behavior of Applications: Another topic of interest would

be to investigate new approaches that characterize malicious program behaviours beside

the system call based ones. For instance, looping structure for processing various control

and commands in malicious bot binaries is a characteristic behaviour of bot software.

249

Combining Classifiers: In Chapters 4, 5, and 6 different classifiers were discussed and

compared, the results identified the best was SVM - Normalized Polynomial kernel,

based on classification accuracy and ROC curves. Future work could combine classifiers

as combining classifiers have given excellent results in other areas of application.

Combining the output of different classifiers instead of choosing the best one among

them could be investigated to achieve better accuracy. Also, in the current research,

classifiers were trained on the same dataset and future work would experiment on training

with different datasets. For different datasets, to combine the classifiers learned on op-

code features and API call features would be explored. In the case of training the same

dataset, several classifiers could be employed to result in a final class output assigned by

adopting a voting strategy.

More Classifiers: The machine learning data mining framework proposed in this

research could include more classification techniques. Several other classifiers could be

added to this list including random forest and bagging in future research.

Time and Space Complexity: The major limitation for real time implementation of such

a data mining framework in malware detection is the time and space complexity of the

machine learning and other algorithms involved. The disassembly, parsing and feature

extraction are time consuming processes and require a lot of memory space as well. In an

automated framework these processes need to be streamlined for better efficiency.

Real World Implementation: This work was focused on academic research and the

implementation of the proposed data mining framework for a real world malware

detection system that could be used commercially was not discussed.

250

Real World Commercialisation: This work has an academic research focus and hence

the commercialisation of the proposed malware detection methods and implementation

has not been discussed here.

251

Abbreviations

AIC Information Criterion

AIS Artificial Immune System

API Application Programming Interfaces

ATA/IDE AT Attachment interface

AV Anti-Virus

BE Backward Elimination

CFG Control Flow Graph

CFG Control Flow Graph Personal Computer

CFG Control Flow Graph

COFF Common Object File Format

COM Command file

CPL Control Panel Applets

CPU Control Processing Unit

CRC Cyclic Redundancy Check

DLL Dynamic Link Library

DOS Disk Operating System

EIDIP Enhanced Digital Investigation Process

FAT File Allocation Table

FN False Negative

FP False Positive

GLM generalized linear models

252

HMM Hidden Markov Model

IACIS

International Association of Computer Investigation

Specialists

IAT Import Address Table

IDA Pro Interactive Disassembler Pro

IDIP Integrated Digital Investigation Model

KB Kilobyte

kNN k-Nearest Neighbor

LMSW Load Machine Status Word

MC Malicious Code

MFT Master File Table

MI Mutual Information

MPCGEN Mass Code Generator

MR Maximum Relevance

NB Naive Bayes

NGVCK Next Generation Virus Creation Kit

NIJ National Institute of Justice

NN Neural Network

NOP No Operation Performed

NTFS Windows NT File System

OEP Original Entry Point

OS Operating System

PC Personal Computer

253

PCA principle component analysis

PDF Portable Document Format

PDG Program Dependence Graph

PE Portable Executable

PS-MPC Phalcon/Skism Mass Produced Code Generator

PUI Process Under Inspection

RAM Random Access Memory

RCFL Regional Computer Forensics Laboratory

ROC Receiver Operating Characteristic

SCR Screensavers

SCSI Small Computer System Interface

SDSC San Diego Supercomputer Center

SMO Sequential Minimal Optimization

SVM Support Vector Machine

SWGDE Scientific Working Group on Digital Evidence

TB Terabyte

TLS Thread Local Storage

TN True Negative

TP True Positive

VM Virtual Machine

254

Bibliography

Adankon, M. & Cheriet, M. (2011). 'Help-Training for semi-supervised support vector

machines', Computer Analysis of Images and Patterns - Pattern Recognition, vol. 44, no.

9, pp. 2220–2230.

Ahmad, A. (2002). 'The Forensic Chain-of-Evidence Model: Improving the Process of

Evidence Collection in Incident Handling Procedures', The 6th Pacific Asia Conference

on Information Systems: Citeseer, Tokyo, Japan.

Alazab, M. (2009). 'Effective forensic techniques for static analysis of NTFS file system

analysis', Annual Research Conference: 7 Nov, Ballarat, VIC, p. 23.

Alazab, M. (2010). 'Static Analysis of Obfuscated Malware', Annual Research

Conference: University of Ballarat, 14 Nov, Ballarat, VIC, p. 17.

Alazab, M. (2011). 'Static analysis for Anomaly and Similarity based detection', Annual

Research Conference: University of Ballarat, 4 Nov, Ballarat, VIC, p. 87.

Alazab, M., Layton, R., Venkataraman, S. & Watters, P. (2010). 'Malware Detection

Based on Structural and Behavioural Features of API calls', The 1st International Cyber

Resilience Conference: Security Research Centre, Edith Cowan University, Perth,

Western Australia, pp. 1-10.

Alazab, M., Venkataraman, S. & Watters, P. (2009). 'Effective digital forensic analysis of

the NTFS disk image', Ubiquitous Computing and Communication Journal, vol. 4, no. 1,

pp. 551- 558.

Alazab, M., Venkataraman, S. & Watters, P. (2010). 'Towards Understanding Malware

Behaviour by the Extraction of API Calls', Cybercrime and Trustworthy Computing

Workshop: IEEE Computer Society, 19-20 July, Ballarat, VIC, pp. 52-59.

Alazab, M., Venkatraman, S. & Watters, P. (2009). 'Digital forensic techniques for static

analysis of NTFS images', The 4th International Conference on Information Technology:

IEEE Computer Society, 3- 5 Jun, Amman- Jordan, pp. 1- 9.

Alazab, M., Venkatraman, S., Watters, P. & Alazab, M. (2011). 'Zero-day Malware

Detection based on Supervised Learning Algorithms of API call Signatures', P. Vamplew,

A. Stranieri, K.-L. Ong, P. Christen & P. Kennedy (eds), The 9th Australasian Data

Mining Conference: Australian Computer Society, 1- 2 Dec, Ballarat, VIC, vol. 121.

Alazab, M., Watters, P., Venkatraman, S., Alazab, A. & Alazab, M. (2011). 'Cybercrime:

Current Trends of Malware Threats', The International Conference in Global Security

255

Safety and Sustainability / International Conference on e-Democracy: Springer,

Thessaloniki, Greece, pp. 1- 7.

Aleskerov, E., Freisleben, B. & Rao, B. (1997). 'CARDWATCH: a neural network based

database mining system for credit card fraud detection', The IEEE/IAFE Computational

Intelligence for Financial Engineering: IEEE Computer Society, 23-25 Mar, New York,

USA pp. 220-226.

Alperovitch, D. D., T.; Greve, P.; Kashyap, R.; Marcus, D.; Masiello, S.; Paget, F. &

Schmugar, C. (2011). 'McAfee Labs - 2011 Threats Predictions', McAfee, Inc.

Alsagoff, S. (2011). 'Manual Removal of Malware – Is It Still Relevant?', International

Journal of Research and Reviews in Information Security and Privacy, vol. 1, no. 1.

Altunaya, M., Leyfferb, S., Linderothc, J. & Xieb, Z. (2011). 'Optimal response to attacks

on the open science grid', Computer Networks, vol. 55, no. 1, pp. 61-73.

Andrew, M. (2007). 'Defining a Process Model for Forensic Analysis of Digital Devices

and Storage Media', Systematic Approaches to Digital Forensic Engineering: IEEE

Computer Society, 10-12 Apr, Bell Harbor, WA, pp. 16 - 30.

Attaluri, S. (2007). 'Detecting metamorphic viruses using profile Hidden Markov

Models', Master Degree thesis, San Jose State University.

Attaluri, S. & McGhee, S. (2009). 'Profile hidden Markov models and metamorphic virus

detection', Journal in Computer Virology, vol. 5, no. 2, pp. 151-169.

Aycock, J. (2006). Computer Viruses and Malware, vol. 22, Advances in Information

Security, Springer.

Bakshi, A., Dixit, V. & Mehta, K. (2010). 'Virus: A Menace for Information Security',

Global Journal of Enterprise Information System, vol. 2, no. 1, pp. 58-70.

Balagani, K. S. & Phoha, V. V. (2010). 'On the Feature Selection Criterion Based on an

Approximation of Multidimensional Mutual Information', IEEE Transactions on Pattern

Analysis and Machine Intelligence, vol. 32, no. 7, pp. 1342-1343.

Balakrishnan, A. & Schulze, C. (2005). 'Code Obfuscation Literature Survey', vol. 19, pp.

1-10.

Ban, T., Ando, R. & Kadobayashi, Y. (2010). 'A Fast Kernel on Hierarchial Tree

Structures and Its Application to Windows Application Behavior Analysis', in K. Wong,

B. Mendis & A. Bouzerdoum (eds), Neural Information Processing. Models and

Applications, Springer Berlin / Heidelberg, vol. 6444, pp. 267-274.

256

Baryamureeba, V. & Tushabe, F. (2006). 'The Enhanced Digital Investigation Process

Model', Asian Journal of Information Technology, vol. 5, no. 7, pp. 790-794.

Bhattacharyya, S., Jha, S., Tharakunnel, K. & Westland, J. C. (2011). 'Data mining for

credit card fraud: A comparative study', Decision Support Systems, vol. 50, no. 3, pp.

602-613.

Bilar, D. (2007). 'Opcodes as predictor for malware', Int. J. Electron. Secur. Digit.

Forensic, vol. 1, no. 2, pp. 156-168.

Birrer, B., Raines, R., Baldwin, R., Oxley, M. & Rogers, S. (2009). 'Using Qualia and

Hierarchical Models in Malware Detection', Special Issue on Intrusion and Malware

Detection: Journal of Information Assurance and Security, vol. 4, no. 3.

Bitdefender Antivirus Technology (2010). White paper 'Bitdefender Antivirus

Technology', Bitdefender Antivirus Technology. Retrieved from

<http://www.bitdefender.com/files/Main/file/BitDefender_Antivirus_Technology.pdf>.

Blum, A. L. & Langley, P. (1997). 'Selection of relevant features and examples in

machine learning', Artif. Intell., vol. 97, no. 1-2, pp. 245-271.

Brown, P., deSouza, P., Mercer, R., Pietra, V. & Lai, J. (1992). 'Class-based n-gram

models of natural language', Computational Linguistics, vol. 18, no. 4, pp. 467-479.

Bruschi, D., Martignoni, L. & Monga, M. (2006). 'Detecting Self-mutating Malware

Using Control-Flow Graph Matching', in R. Büschkes & P. Laskov (eds), Detection of

Intrusions and Malware & Vulnerability Assessment, Springer Berlin / Heidelberg,

vol. 4064, pp. 129-143.

Camastra, F., Ciaramella, A. & Staiano, A. (2011). 'Machine learning and soft computing

for ICT security: an overview of current trends', Journal of Ambient Intelligence and

Humanized Computing, pp. 1-13.

Carrie, B. (2003). 'Defining Digital Forensic Examination and Analysis Tools Using

Abstraction Layer', International Journal of Digital Evidence, vol. 1, no. 4, pp. 1-12.

Carrier, B. (2005). File System Forensic Analysis, 1st edn, Addison-Wesley Professional.

The Autopsy Forensic (2010). 'The Autopsy Forensic', version: 2.24. Retrieved from.

The Sleuth Kit (TSK) (2011). 'The Sleuth Kit (TSK)', version: 3.2.2. Retrieved from.

Carrier, B. & Spafford, E. (2003). 'Getting Physical with the Digital Investigation

Process', International Journal of Digital Evidence, vol. 2, no. 2, pp. 1-20.

http://www.bitdefender.com/files/Main/file/BitDefender_Antivirus_Technology.pdf%3e

257

Casey, E. (2004). Digital evidence and computer crime: forensic science, computers and

the Internet, 2nd edn, Academic Press, London.

Cesare, S. & Xiang, Y. (2010). 'Classification of Malware Using Structured Control

Flow', The 8th Australasian Symposium on Parallel and Distributed Computing

Australian Computer Society Inc, Brisbane, Australia, vol. 107, pp. 61-70.

Chan, K. Y. & Loh, W. Y. (2004). 'An Algorithm for Building Accurate and

Comprehensible Logistic Regression Trees', Journal of Computational and Graphical

Statistics, vol. 13, no. 4.

Chandola, V., Banerjee, A. & Kumar, V. (2009). 'Anomaly detection: A survey', ACM

Computing Surveys (CSUR), vol. 41, no. 3, pp. 1-58.

LIBSVM - A Library for Support Vector Machines (2011). 'LIBSVM - A Library for

Support Vector Machines', version: 3.1. Retrieved from.

Chang, H. & Atallah, M. (2002). 'Protecting Software Code by Guards', in T. Sander

(ed.), Security and Privacy in Digital Rights Management, Springer Berlin / Heidelberg,

vol. 2320, pp. 125-141.

Chen, W.-H., Hsu, S.-H. & Shen, H.-P. (2005). 'Application of SVM and ANN for

intrusion detection', Computers and Operations Research, vol. 32, no. 10, pp. 2617-2634.

Choi, S., Park, H., Lim, H.-i. & Han, T. (2009). 'A static API birthmark for Windows

binary executables', Journal of Systems and Software, vol. 82, no. 5, pp. 862-873.

Chouchane, M. R. & Lakhotia, A. (2006). 'Using engine signature to detect metamorphic

malware', The 4th ACM workshop on Recurring malcode: ACM, Alexandria, Virginia,

USA, pp. 73-78.

Christodorescu, M. & Jha, S. (2003). 'Static analysis of executables to detect malicious

patterns', The 12th conference on USENIX Security Symposium USENIX Association,

Washington, DC, vol. 12, pp. 12-12.

Christodorescu, M. & Jha, S. (2004). 'Testing Malware Detectors', ACM SIGSOFT

Software Engineering Notes, vol. 29, no. 4, pp. 34-44.

Christodorescu, M., Jha, S., Seshia, S., Song, D. & Bryant, R. (2005). 'Semantics-Aware

Malware Detection', The IEEE Symposium on Security and Privacy: IEEE Computer

Society, 8-11 May, Oakland, USA, pp. 1-21.

Cifuentes, C. & Fraboulet, A. (1997). 'Intraprocedural static slicing of binary

executables', The 13th International Conference on Software Maintenance IEEE

Computer Society, Oct 1-3, Bari, Italy, pp. 188 - 195.

258

Cifuentes, C. & Gough, K. J. (1995). 'Decompilation of Binary Programs', Software:

Practice and Experience, vol. 25, no. 7, pp. 811-829.

Cohen, F. (1987). 'Computer viruses:: Theory and experiments', Computers & Security,

vol. 6, no. 1, pp. 22-35.

Cortes, C. & Vapnik, V. (1995). 'Support-Vector Networks', Machine Learning, vol. 20,

no. 3, pp. 273-297.

Crescenzo, G. D. & Vakil, F. (2006). 'Cryptographic hashing for virus localization',

Proceedings of the 4th ACM workshop on Recurring malcode: ACM, Alexandria,

Virginia, USA, pp. 41-48.

Danny, B. (2010). 'Digging up the hacking underground', Infosecurity, vol. 7, no. 5, pp.

14-17.

Daoud, E. A., Jebril, I. & Zaqaibeh, B. (2008). 'Computer Virus Strategies and Detection

Methods', International Journal of Open Problems in Computer Science and

Mathematics, vol. 1, no. 2.

Dasgupta, D. (1997). 'Artificial neural networks and artificial immune systems:

similarities and differences', The IEEE International Conference on Systems, Man, and

Cybernetics- Computational Cybernetics and Simulation: IEEE Computer Society, 12-15

Oct, Orlando, FL , USA vol. 1, pp. 873-878

Dayhoff, J. & DeLeo, J. (2001). 'Artificial Neural Networks Opening the Black Box',

Cancer Supplement, vol. 91, no. 8, pp. 1615-1635.

Desai, P. (2010). 'A highly metamorphic virus generator', International Journal of

Multimedia Intelligence and Security, vol. 1, no. 4, pp. 402-427.

Dinaburg, A., Royal, P., Sharif, M. & Lee, W. (2008). 'Ether: malware analysis via

hardware virtualization extensions', Proceedings of the 15th ACM conference on

Computer and communications security: ACM, Alexandria, Virginia, USA, pp. 51-62.

Do, T. M. T. & Artières, T. (2009). 'Learning mixture models with support vector

machines for sequence classification and segmentation', Pattern Recognition, vol. 42, no.

12, pp. 3224-3230.

Egele, M, Scholte, T, Kirda, E & Kruegel, C. (2012). 'A Survey on Automated Dynamic

Malware Analysis Techniques and Tools', ACM Computing Surveys, vol. 44, no. 2, pp.

1-49.

Eilam, E. (2005). Reversing: Secrets of Reverse Engineering, 1st edn, Wiley.

259

Eisner, A. (2003). PSINet Europe Study Reveals Massive Vulnerabilities, theWHIR.com,

retrieved 3 May 2010. Retrieved from <http://www.thewhir.com/web-hosting-

news/hackers>.

Elaiwat, S., Alazab, A., Venkatraman, S. & Alazab, M. (2010a). 'Applying Genetic

Algorithm for Optimizing Broadcasting Process in Ad-hoc Network', International

Journal of Recent Trends in Engineering and Technology, vol. 4, no. 1, pp. 68-72.

Elaiwat, S., Alazab, A., Venkatraman, S. & Alazab, M. (2010b). 'GOM: New genetic

optimizing model for broadcasting tree in MANET', The 2nd International Conference on

Computer Technology and Development: IEEE Computer Society, 2-4 Nov, Cairo, pp.

477-481.

Emigh, A. (2006). 'The Crimeware Landscape: Malware, Phishing, Identity Theft and

Beyond', Journal of Digital Forensic Practice, vol. 1, no. 6.

Farmer, D. & Venema, W. (2005). Forensic discovery, vol. 6, Addison-Wesley

Professional.

Ferrante, J., Ottenstein, K. J. & Warren, J. D. (1987). 'The program dependence graph

and its use in optimization', ACM Transactions on Programming Languages and Systems

(TOPLAS), vol. 9, no. 3, pp. 319-349.

Ferrie, P. & Szor, P. (2001). 'Zmist opportunities', Virus Bulletin, pp. 6–7.

FICO (2010). Fraud Predictor with Merchant Profiles FICO, retrieved Junne 22 2010.

Retrieved from <http://www.fico.com/en/Products/DMApps/Pages/Fraud-Predictor-with-

Merchant-Profiles.aspx>.

Frawley, W., Piatetsky-shapiro, G. & Matheus, C. (1992). 'Knowledge discovery in

databases: An overview', Al Magazine, vol. 13, no. 3, pp. 213–228.

Fukushima, Y., Sakai, A., Hori, Y. & Sakurai, K. (2010). 'A Behavior Based Malware

Detection Scheme for Avoiding False Positive', The 6th IEEE Workshop on Secure

Network Protocols: IEEE Computer Society, 5-5 Oct, Kyoto pp. 79 - 84

DD :Unix Command and Image Creation (1970). 'DD :Unix Command and Image

Creation', version: 2.4.23. Retrieved from

<http://www.softpanorama.org/Tools/dd.shtml>.

Gavrilut, D., Cimpoes, M., Anton, D. & Ciortuz, L. (2009). 'Malware Detection Using

Machine Learning', International Multiconference on Computer Science and Information

Technology: IEEE Computer Society, 12-14 Oct, Mragowo, Poland, pp. 735-741.

General Information Security Statistics (2004). Security Stats. Retrieved from

<http://www.securitystats.com/infos-ec.html>.

http://www.thewhir.com/web-hosting-news/hackers%3e
http://www.thewhir.com/web-hosting-news/hackers%3e
http://www.fico.com/en/Products/DMApps/Pages/Fraud-Predictor-with-Merchant-Profiles.aspx%3e
http://www.fico.com/en/Products/DMApps/Pages/Fraud-Predictor-with-Merchant-Profiles.aspx%3e
http://www.softpanorama.org/Tools/dd.shtml%3e
http://www.securitystats.com/infos-ec.html%3e

260

Ghosh, S. & Turrini, E. (2010). Cybercrimes: A Multidisciplinary Analysis, Springer

Verlag.

Govindaraju, A. (2010a). 'Although PHMM can detect malwares which are

metamorphic', Master Degree thesis, San Jose State University.

Govindaraju, A. (2010b). 'Exhaustive Statistical Analysis for Detection of Metamorphic

Malware', Master Degree thesis, San Jose State University.

Gu, G., Porras, P., Yegneswaran, V., Fong, M. & Lee, W. (2007). 'BotHunter: detecting

malware infection through IDS-driven dialog correlation', The 16th USENIX Security

Symposium on USENIX Security Symposium: USENIX Association, Boston, MA, pp. 1-

16.

Guo, T. & Li, G.-Y. (2008). 'Neural data mining for credit card fraud detection', Machine

Learning and Cybernetics, International Conference on: IEEE Computer Society, July

12-15 Kunming vol. 7, pp. 3630-3634.

Hand, D. J., Mannila, H. & Smyth, P. (2001). Principles of data mining, 1st edn, A

Bradford Book.

DCFLDD: Enhanced version of GNU dd (2006). 'DCFLDD: Enhanced version of GNU

dd ', version: 1.3.4-1. Retrieved from <http://dcfldd.sourceforge.net/>.

Hearst, M. A., Dumais, S. T., Osman, E., Platt, J. & Scholkopf, B. (1998). 'Support vector

machines', Intelligent Systems and their Applications, IEEE, vol. 13, no. 4, pp. 18-28.

Holz, T., Marechal, S. & Raynal, F. (2006). 'New Threats and Attacks on the World Wide

Web', IEEE Security and Privacy, IEEE Educational Activities Department, vol. 4, no. 2,

pp. 72-75.

Hu, Q., Liu, J. & Yu, D. (2008). 'Mixed feature selection based on granulation and

approximation', Journal Knowledge-Based Systems, vol. 21, no. 4, pp. 294-304.

Huda, S., Yearwood, J. & Strainieri, A. (2010). 'Hybrid wrapper-filter approaches for

input feature selection using Maximum relevance and Artificial Neural Network Input

Gain Measurement Approximation (ANNIGMA)', Fourth International Conference on

Network and System Security: IEEE Computer Society, 1-3 Sep, Melbourne, Australia,

pp. 442-449.

Huebner, E., Bem, D. & Wee, C. K. (2006). 'Data hiding in the NTFS file system', Digital

Investigation, vol. 3, no. 4, pp. 211-226.

http://dcfldd.sourceforge.net/%3e

261

Hung-Ju, C.-N., Huang, H.-J. & Schuschel, D. (2002). 'The ANNIGMA-wrapper

approach to fast feature selection for neural nets', IEEE Transactions on Systems, Man,

and Cybernetics, Part B, pp. 207-212.

IBM (2008). 'Improving Payments Fraud Detection and Prevention: ACI Proactive Risk

Manager with IBM System z10 '.

IDA Pro Disassembler and Debugger (2010). 'IDA Pro Disassembler and Debugger ',

version: 5.7. Retrieved from <http://www.hex-rays.com/idapro/overview.htm>.

IDAPython : Python Plugin for Interactive Disassembler Pro (2011). 'IDAPython :

Python Plugin for Interactive Disassembler Pro', version: 1.4.3. Retrieved from

<http://code.google.com/p/idapython/>.

Intel (2010a). 'Intel ® 64 and IA-32 Architectures Software Developer's Manuals : Basic

Architecture', vol. 1.

Intel (2010b). 'Intel ® 64 and IA-32 Architectures Software Developer's Manuals :

Instruction Set Reference, N-Z', vol. 2B.

Islam, R., Tian, R., Batten, L. & Versteeg, S. (2010). 'Classification of Malware Based on

String and Function Feature Selection', Cybercrime and Trustworthy Computing

Workshop: IEEE Computer Society, 19-20 July, Ballarat, pp. 9-17.

Jacob, G., Debar, H. & Filiol, E. (2008). 'Behavioral detection of malware: from a survey

towards an established taxonomy', Journal in Computer Virology, vol. 4, no. 3, pp. 251-

266.

Jacob, G., Filiol, E. & Debar, H. (2009). 'Functional polymorphic engines: formalisation,

implementation and use cases', Journal in Computer Virology, vol. 5, no. 3, pp. 247-261.

Jahankhani, H. & Al-Nemrat, A. (2008). 'Global E-Security', in H. Jahankhani, K. Revett

& D. Palmer-Brown (eds), Global E-Security: Communications in Computer and

Information Science, Springer Berlin Heidelberg, London, UK, vol. 12, pp. 3-9.

Jahankhani, H. & Al-Nemrat, A. (2010). 'Examination of Cyber-criminal Behaviour',

International Journal of Information Science and Management, Special Issue, pp. 41 - 48

James, D. (2007). 'Internet Security – the Threats Are Very Real', Educators' eZine.

Järvelin, A., Järvelin, A. & Järvelin, K. (2007). 's-grams: Defining generalized n-grams

for information retrieval', Information Processing & Management, vol. 43, no. 4, pp.

1005-1019.

John, G., Kohavi, R. & Pfleger, K. (1994). 'Irrelevant Features and the Subset Selection

Problem', Machine Learning: Proceedings of the Eleventh International, pp. 121-129.

http://www.hex-rays.com/idapro/overview.htm%3e
http://code.google.com/p/idapython/%3e

262

Kang, M. G., Poosankam, P. & Yin, H. (2007). 'Renovo: a hidden code extractor for

packed executables', Proceedings of the 2007 ACM workshop on Recurring malcode:

ACM, Alexandria, Virginia, USA, pp. 46-53.

Karim, M., Walenstein A., Lakhotia A. & Parida L. (2005). 'Malware phylogeny

generation using permutations of code'. Journal in Computer Virology, vol.1, no.1,

pp.13–23.

Keizer, G. (2007). Symantec false positive cripples thousands of Chinese PCs, retrieved 3

March 2010. Retrieved from

<http://www.computerworld.com/action/article.do?command=viewArticleBasic&articleI

d=9019958&intsrc=hm_list.>.

Khan, A., Wiil, U. K. & Memon, N. (2010). 'Digital Forensics and Crime Investigation:

Legal Issues in Prosecution at National Level', The 5th IEEE International Workshop on

Systematic Approaches to Digital Forensic Engineering: IEEE Computer Society, 20-20

May, pp. 133-140.

Frhed (2009). 'Frhed', version: 1.7.1. Retrieved from <http://frhed.sourceforge.net/en/>.

Kohavi, R. & John, G. H. (1997). 'Wrappers for feature subset selection', Artificial

Intelligence - Special issue on relevance, vol. 97, no. 1-2, pp. 273-324.

Kolter, J. Z. & Maloof, M. A. (2006). 'Learning to Detect and Classify Malicious

Executables in the Wild', Journal of Machine Learning Research, vol. 7, pp. 2721-2744.

Komisarczuk, P. (2010). 'Who Are We Fighting? Dealing with threats is one thing,

finding them is another', ISNOW: The magazine of the BCS security forum vol. 5, no. 1.

Kong, D., Jhi, Y.-C., Gong, T., Zhu, S., Liu, P. & Xi, H. (2010). 'SAS: Semantics Aware

Signature Generation for Polymorphic Worm Detection Security and Privacy in

Communication Networks', in S. Jajodia & J. Zhou (eds), Springer Berlin Heidelberg,

vol. 50, pp. 1-19.

Konstantinou, E. & Wolthusen, S. (2008). Metamorphic virus: Analysis and detection,

Royal Holloway, London.

Kou, Y., Lu, C.-T., Sirwongwattana, S. & Huang, Y.-P. (2004). 'Survey of fraud

detection techniques', The IEEE International Conference on Networking, Sensing and

Control: IEEE Computer Society, Taipei, Taiwan, vol. 2, pp. 749-754.

Krogh, A. (1998). 'An introduction to hidden Markov models for biological sequences', in

Computational Methods in Molecular Biology, Elsevier Science, pp. 45-63.

http://www.computerworld.com/action/article.do?command=viewArticleBasic&articleId=9019958&intsrc=hm_list.%3e
http://www.computerworld.com/action/article.do?command=viewArticleBasic&articleId=9019958&intsrc=hm_list.%3e
http://frhed.sourceforge.net/en/%3e

263

Kruegel, C., Robertson, W., Valeur, F. & Vigna, G. (2004). 'Static Disassembly of

Obfuscated Binaries', The 13th USENIX Security Symposium USENIX magazine, 11- 13

Aug, San Diego, CA, USA, pp. 255–270.

Kruse, W. & Heiser, J. (2001). Computer Forensics: Incident Response Essentials, 1st

edn, Addison-Wesley Professional.

Kuncheva, L. I. (2006). 'On the optimality of NaIve Bayes with dependent binary

features', Pattern Recognition Letters, vol. 27, no. 7, pp. 830-837.

Landwehr, C. E., Bull, A. R., McDermott, J. P. & Choi, W. S. (1994). 'A taxonomy of

computer program security flaws', ACM Computing Surveys (CSUR), vol. 26, no. 3, pp.

211-254.

Lawton, G. (2002). 'Virus Wars: Fewer Attacks, New Threats', IEEE Computer Society,

vol. 35, no. 12, pp. 22 - 24.

Layton, R., Brown, S. & Watters, P. (2009). 'Using Differencing to Increase

Distinctiveness for Phishing Website Clustering', Symposia and Workshops on

Ubiquitous, Autonomic and Trusted Computing: IEEE Computer Society, Jul 07-09,

Brisbane, Australia pp. 488-492.

Li, X., Loh, P. & Tan, F. (2011). 'Mechanisms of Polymorphic and Metamorphic

Viruses', The Intelligence and Security Informatics Conference: IEEE Computer Society,

12-14 Sep, Athens, pp. 149-154.

Linn, C. & Debray, S. (2003). 'Obfuscation of executable code to improve resistance to

static disassembly', 10th ACM conference on Computer and communications security

ACM, Oct 27–31, Washington, DC, USA, pp. 290-299.

Lobo, D., Watters, P. & Wu, X. (2010a). 'Identifying Rootkit Infections Using Data

Mining', The International Conference on Information Science and Applications: IEEE

Computer Society, 21-23 April, Seoul, pp. 1 - 7.

Lobo, D., Watters, P. & Wu, X. (2010b). ' RBACS: Rootkit Behavioral Analysis and

Classification System', The International Conference on Knowledge Discovery and Data

Mining: IEEE Computer Society, 9-10 Jan, Ballarat, pp. 75-80.

Lobo, D., Watters, P., Wu, X. & Sun, L. (2010). 'Windows Rootkits: Attacks and

Countermeasures', Cybercrime and Trustworthy Computing Workshop: IEEE Computer

Society, 19-20 July, Ballarat, pp. 69-78.

MacNamara, S., Cunningham, P. & Byrne, J. (1998). 'Neural networks for language

identification: a comparative study', Information Processing & Management, vol. 34, no.

4, pp. 395-403.

264

Malan, D. J. & Smith, M. D. (2005). 'Host-based detection of worms through peer-to-peer

cooperation', The ACM workshop on Rapid malcode: ACM, Fairfax, VA, USA, pp. 72-

80.

Manap, S. (2001). Rootkit: Attacker undercover tools, Retrieved from.

Maria, T. A. (2011). 'The Growing Global Threat of Cyber-crime given the Current

Economic Crisis: A Study regarding Internet Malicious Activities in Romania', Acta

Universitatis Danubius Economica, vol. 10, no. 1, pp. 179-190.

Martignoni, L., Christodorescu, M. & Jha, S. (2007). 'OmniUnpack: Fast, Generic, and

Safe Unpacking of Malware', The 23rd Annual Computer Security Applications

Conference: 10-14 Dec, pp. 431-441.

Marx, A. (2004). Antivirus outbreak response testing and impact, AV-test.org, retrieved

March 15 2010. Retrieved from

<http://www.virusbtn.com/conference/vb2004/abstracts/amarx.xml>.

McCombie, S., Pieprzyk, J. & Watters, P. (2009). 'Cybercrime Attribution: An Eastern

European Case Stud', The 7th Australian Digital Forensics Conference: School of

Computer and Information Science, Edith Cowan University, Perth, Western Australia,

pp. 41-51.

McGraw, G. & Morrisett, G. (2000). 'Attacking Malicious Code: A Report to the Infosec

Research Council', IEEE Software, vol. 17, no. 5, pp. 33-41.

MetaPHOR (2010). W32.Simile, Symantec Enterprise Security,. Retrieved from

<http://www.symantec.com/security_response/writeup.jsp?docid=2002-030617-5423-

99>.

Microsoft Developer Network (2011). Windows API Functions, Microsoft, retrieved

12/10 2010. Retrieved from <http://msdn.microsoft.com/en-us/>.

Microsoft WinDbg (2010). Microsoft Windows SDK for Windows 7 and .NET

Framework 4 Microsoft retrieved 5/2 2011. Retrieved from

<http://msdn.microsoft.com/en-us/windows/hardware/gg463009.aspx>.

Moshchuk, E., Bragin, T., Gribble, S. D. & Levy, H. M. (2006). 'A crawler-based study

of spyware on the Web ', The 13th Network and Distributed System Security Symposium:

February, pp. 17-33.

Naiqi, L., Zhongshan, W., Yujie, H. & QinKe (2008). 'Computer Forensics Research and

Implementation Based on NTFS File System', The International Colloquium on

Computing, Communication, Control, and Management: IEEE Computer Society, 3-4

Aug, Guangzhou, pp. 519 - 523.

http://www.virusbtn.com/conference/vb2004/abstracts/amarx.xml%3e
http://www.symantec.com/security_response/writeup.jsp?docid=2002-030617-5423-99%3e
http://www.symantec.com/security_response/writeup.jsp?docid=2002-030617-5423-99%3e
http://msdn.microsoft.com/en-us/%3e
http://msdn.microsoft.com/en-us/windows/hardware/gg463009.aspx%3e

265

Orr (2006). The Viral Darwinism of W32.Evol An In-depth Analysis of a Metamorphic

Engine.

Orr (2007). The Molecular Virology of Lexotan32 Metamorphism Illustrated.

Palmer, G. (2001). A Road Map for Digital Forensic Research, Utica, New York.

Park, H., Choi, S., Lim, H.-i. & Han, T. (2008a). 'Detecting code theft via a static

instruction trace birthmark for Java methods', International Conference on Industrial

Informatics: IEEE Computer Society, JuL 13-16 Daejeon pp. 551-556.

Park, H., Choi, S., Lim, H.-i. & Han, T. (2008b). 'Detecting Java Theft Based on Static

API Trace Birthmark', in K. Matsuura & E. Fujisaki (eds), Advances in Information and

Computer Security, Springer Berlin / Heidelberg, vol. 5312, pp. 121-135.

Passerini, E., Paleari, R. & Martignoni, L. (2009). 'How Good Are Malware Detectors at

Remediating Infected Systems?', in U. Flegel & D. Bruschi (eds), Detection of Intrusions

and Malware, and Vulnerability Assessment, Springer Berlin / Heidelberg, vol. 5587, pp.

21-37.

Patcha, A. & Park, J.-M. (2007). 'An overview of anomaly detection techniques: Existing

solutions and latest technological trends', Computer Networks, vol. 51, no. 12, pp. 3448-

3470.

Paul, N. (2008). 'Disk-Level Behavioral Malware Detection', Doctor of Philosophy thesis,

University of Virginia.

(2009). version: 1.99 R6. Retrieved from <http://www.heaventools.com/overview.htm>.

PEiD (2008). Detect most common packers, cryptors and compilers for PE files,

peid.info, retrieved 02/06 2010. Retrieved from <http://www.peid.info/>.

Perriot, F. & Ferrie, P. (2004). 'Principles and practise of x-raying', Virus Bulletin

Conference September, pp. 1- 17.

HexEdit (2010). 'HexEdit', version: 1.03. Retrieved from <http://www.hexedit.com/>.

Preda, M. D., Christodorescu, M., Jha, S. & Debray, S. (2008). 'A Semantics-Based

Approach to Malware Detection', ACM Transactions on Programming Languages and

Systems (TOPLAS), vol. 30, no. 5, pp. 1-54.

Purcell, D. & Lang, S.-D. (2008). 'Forensic Artifacts of Microsoft Windows Vista

System', in C. Yang, H. Chen, M. Chau, K. Chang, S.-D. Lang, P. Chen, R. Hsieh, D.

Zeng, F.-Y. Wang, K. Carley, W. Mao & J. Zhan (eds), Intelligence and Security

Informatics, Springer Berlin / Heidelberg, vol. 5075, pp. 304-319.

http://www.heaventools.com/overview.htm%3e
http://www.peid.info/%3e
http://www.hexedit.com/%3e

266

Rabek, J. C., Khazan, R. I., Lewandowski, S. M. & Cunningham, R. K. (2003).

'Detection of injected, dynamically generated, and obfuscated malicious code',

Proceedings of the 2003 ACM workshop on Rapid malcode: ACM, Washington, DC,

USA, pp. 76-82.

RCFL (2007). Annual report for fiscal year 2007.

RCFL (2008). Annual report for fiscal year 2008.

Reed, C. (1990-91). 'As quoted in Casey E., 2004. Digital evidence and computer crime:

forensic science, computers and the internet. 2nd ed. London: Academic press'.

Reed, C. & Angel, J. (2007). Computer Law: The Law and Regulation of Information

Technology, Oxford University Press, Inc. , New York, NY, USA.

Reith, M., Carr, C. & Gunsch, G. (2002). 'An Examination of Digital Forensic Models',

International Journal of Digital Evidence, vol. 1, no. 4, pp. 1-12.

Richard, G. & Roussev, V. (2006). 'Next-generation digital forensics', Communications of

the ACM, vol. 49, no. 2, pp. 76-80.

Rogers, M. & Seigfried, K. (2004). 'The future of computer forensics: a needs analysis

survey', Computers & Security, vol. 23, no. 1, pp. 12-16.

Royal, P., Halpin, M., Dagon, D., Edmonds, R. & Lee, W. (2006). 'PolyUnpack:

Automating the Hidden-Code Extraction of Unpack-Executing Malware', The 22nd

Annual Computer Security Applications Conference: IEEE Computer Society, Dec 26

Miami Beach, FL, USA pp. 289-300.

RSA (2011). 'The Current State of Cybercrime and What to Expect in 2011', RSA 2011

cybercrime trends report.

NTFSINFO (2006). 'NTFSINFO', version: 1.0. Retrieved from

<http://technet.microsoft.com/en-us/sysinternals/bb897424>.

Strings (2009). 'Strings', version: 2.41. Retrieved from <http://technet.microsoft.com/en-

us/sysinternals/bb897439>.

Santos, I., Penya, Y. K., Devesa, J. & Bringas, P. (2009). 'N-grams-based file signatures

for malware detection', pp. 317–320.

Seewald, A. K. & Gansterer, W. N. (2010). 'On the detection and identification of

botnets', Computers & Security, vol. 29, no. 1, pp. 45-58.

http://technet.microsoft.com/en-us/sysinternals/bb897424%3e
http://technet.microsoft.com/en-us/sysinternals/bb897439%3e
http://technet.microsoft.com/en-us/sysinternals/bb897439%3e

267

Shabtai, A., Moskovitch, R., Elovici, Y. & Glezer, C. (2009). 'Detection of malicious

code by applying machine learning classifiers on static features: A state-of-the-art

survey', Information Security Technical Report, vol. 14, no. 1, pp. 16-29.

Shafiq, M. Z., Khayam, S. A. & Farooq, M. (2008). 'Embedded Malware Detection Using

Markov <i>n</i> -Grams', in D. Zamboni (ed.), Detection of Intrusions and

Malware, and Vulnerability Assessment, Springer Berlin / Heidelberg, vol. 5137, pp. 88-

107.

Shankarapani, M., Kancherla, K., Ramammoorthy, S., Movva, R. & Mukkamala, S.

(2010). 'Kernel machines for malware classification and similarity analysis', The 2010

International Joint Conference on Neural Networks: IEEE Computer Society, Jul 18-23

Barcelona pp. 1-6.

Sharif, M., Yegneswaran, V., Saidi, H., Porras, P. & Lee, W. (2008). 'Eureka: A

Framework for Enabling Static Malware Analysis', in S. Jajodia & J. Lopez (eds),

Computer Security - ESORICS 2008, Springer Berlin / Heidelberg, vol. 5283, pp. 481-

500.

Shetty, S. (2004). Protocol-level malware scanner, Google Patents, patent, 6772345, US.

Singh, N. (2007). 'Online Frauds in Banks with Phishing', Journal of Internet Banking

and Commerce, vol. 12, no. 2, pp. 1-27

Skoudis, E. & Zeltser, L. (2003). Malware: Fighting Malicious Code, Prentice Hall PTR.

SPAMfighter News (2011). 'Alliance of ZeuS-SpyEye Resulting in the Publication of

First Toolkit in the Underground Market'.

Stabek, A., Watters, P. & Layton, R. (2010). 'The Seven Scam Types: Mapping the

Terrain of Cybercrime', Cybercrime and Trustworthy Computing Workshop: IEEE

Computer Society, 19-20 July, Ballarat, VIC, pp. 41-51.

Stang, D. (2010). Detection Errors and Scanner Performance, retrieved 1 March 2011.

Retrieved from <http://www.upublish.info/Article/Detection-Errors-and-Scanner-

Performance/343804>.

Staniford, S., Moore, D., Paxson, V. & Weaver, N. (2004). 'The top speed of flash

worms', The ACM workshop on Rapid malcode ACM, October 29-29, Washington DC,

USA

Stolfo, S., Wang, K. & Li, W.-j. (2005). Fileprint analysis for malware detection,

Columbia Univesrity.

Stolfo, S., Wang, K. & Li, W.-J. (2007). 'Towards stealthy malware detection', in

Malware Detection, vol. 27, pp. 231-249.

http://www.upublish.info/Article/Detection-Errors-and-Scanner-Performance/343804%3e
http://www.upublish.info/Article/Detection-Errors-and-Scanner-Performance/343804%3e

268

Sun, L., Versteeg, S., Boztaş, S. & Yann, T. (2010). 'Pattern Recognition Techniques for

the Classification of Malware Packers', in R. Steinfeld & P. Hawkes (eds), Information

Security and Privacy, Springer Berlin / Heidelberg, vol. 6168, pp. 370-390.

Sung, A. H., Xu, J., Chavez, P. & Mukkamala, S. (2004). 'Static analyzer of vicious

executables (SAVE)', 20th Annual Computer Security Applications Conference, : IEEE

Computer Society, Dec 6-10, Tucson, AZ, USA, pp. 326-334.

SWGDE (2000). 'Proposed Standards for the Exchange of Digital Evidence', Forensic

Science Communications, Digital Evidence:Standards and Principles, vol. 2, no. 2.

Symantec Enterprise Security (1997). 'Understanding Heuristics: Symantec‘s

Bloodhound Technolog', Virus Bulletin, vol. XXXIV.

Symantec Enterprise Security (2007). Trojan.Vundo, Symantec Enterprise Security,.

Retrieved from.

Symantec Enterprise Security (2009a). 'Symantec Global Internet Security Threat Report

Trends for 2008', Symantec Enterprise Security, vol. XIV.

Symantec Enterprise Security (2009b). Trojan.Vundo.B, Symantec Enterprise Security,.

Retrieved from <http://www.symantec.com/security_response/writeup.jsp?docid=2005-

042810-2611-99>.

Symantec Enterprise Security (2010). 'Symantec Internet Security Threat Report: Trends

for 2009', Symantec Enterprise Security, vol. XV.

Symantec Enterprise Security (2011a). 'Symantec Internet Security Threat Report: Trends

for 2010', Symantec Enterprise Security, vol. 16.

Symantec Enterprise Security (2011b). Symantec Report on Attack Kits and Malicious

Websites, Symantec Enterprise Security White paper, Retrieved from.

Szor, P. (2005). The Art of Computer Virus Research and Defense, Addison-Wesley

Professional.

Tamada, H., Okamoto, K., Nakamura, M., Monden, A. & Matsumoto, K.-i. (2006).

'Dynamic software birthmarks based on API calls', IEICE Transactions on Information

and Systems, vol. 89, no. 8, pp. 1751-1763.

Tang, K., Zhou, M.-T. & Zuo, Z.-H. (2010). 'An Enhanced Automated Signature

Generation Algorithm for Polymorphic Malware Detection', Journal of Electronic

Science and Technology, vol. 8, no. 2, pp. 114-121.

Technology, B. A. (2006). White paper, BitDefender Antivirus Retrieved from.

http://www.symantec.com/security_response/writeup.jsp?docid=2005-042810-2611-99%3e
http://www.symantec.com/security_response/writeup.jsp?docid=2005-042810-2611-99%3e

269

Tian, R., Islam, R., Batten, L. & Versteeg, S. (2010). 'Classification of Malware Based on

String and Function Feature Selection', The International Conference on Malicious and

Unwanted Software (MALWARE), : IEEE Computer Society, 19-20 July, Nancy,

Lorraine, pp. 23-30.

Townsend, K. (2010). 'Anti-virus: a technology update', Infosecurity, vol. 7, no. 6, pp. 28-

31.

TreadwellZhou, S. & Zhou, M. (2009). 'A heuristic approach for detection of obfuscated

malware', Intelligence and Security Informatics ISI09 IEEE International Conference on:

IEEE Computer Society, June 8-11, Richardson, TX, USA, pp. 291-299.

Trusteer (2009). Measuring the in-the-wild effectiveness of Antivirus against Zeus, New

York, NY.

Turville, K., Yearwood, J. & Miller, C. (2010). 'Understanding Victims of Identity Theft:

Preliminary Insights', Cybercrime and Trustworthy Computing Workshop: IEEE

Computer Society, 19-20 July, Ballarat, VIC, pp. 60 - 68.

Vacca, J. (2005). Computer forensics: computer crime scene investigation, Networking

Series, Charles River Media; 2 edition.

Varol, C. & Bayrak, C. (2011). 'Estimation of quality of service in spelling correction

using Kullback-Leibler divergence', Expert Systems with Applications, vol. 38, no. 5, pp.

6307-6312.

Vassil, R. (2009). 'Hashing and Data Fingerprinting in Digital Forensics', vol. 7, pp. 49-

55.

Vasudevan, A. & Yerraballi, R. (2006). 'Spike: Engineering malware analysis tools using

unobtrusive binary-instrumentation', The 29th Australasian Computer Science

Conference: Australian Computer Society, Inc., Hobart, Australia, vol. 48, pp. 311-320.

Venkatraman, S. (2009). 'Autonomic Context-Dependent Architecture for Malware

Detection', e-Tech 2009, International Conference on e-Technology: International

Business Academics Consortium, 8-10 Jan, Singapore, pp. 2927-2947.

Venkatraman, S. (2010). 'Self-Learning Framework for Intrusion Detection', The

International Congress on Computer Applications and Computational Science: 4-6 Dec,

Singapore, pp. 517-520.

Venkatraman, S. (2011). 'A Framework for ICT Security Policy Management', in E.

Adomi (ed.), Frameworks for ICT Policy: Government, Social and Legal Issues, IGI

Global Publishers, Hershey, New York, pp. 1- 14.

270

VX Heavens (2011). VX Heavens Site, retrieved 2/3 2011. Retrieved from

<http://vx.netlux.org/>.

Wang, C., Pang, J., Zhao, R., Fu, W. & Liu, X. (2009). 'Malware Detection Based on

Suspicious Behavior Identification', First International Workshop on Education

Technology and Computer Science: IEEE Computer Society, Mar 07-08, Wuhan, Hubei,

China, vol. 2, pp. 198-202.

Wang, C., Pang, J., Zhao, R. & Liu, X. (2009). 'Using API Sequence and Bayes

Algorithm to Detect Suspicious Behavior', The International Conference on

Communication Software and Networks: IEEE Computer Society, 27-28 Feb, Macau,

China pp. 544-548.

Wang, H., Bell, D. & Murtagh, F. (1999). 'Axiomatic Approach to Feature Subset

Selection Based on Relevance', IEEE Transactions on Pattern Analysis and Machine

Intelligence, vol. 21, no. 3, pp. 271-277.

Wang, X. G., Tang, Z., Tamura, H., Ishii, M. & Sun, W. D. (2004). 'An improved

backpropagation algorithm to avoid the local minima problem', Neurocomputing, vol. 56,

pp. 455-460.

Watters, P. (2009). 'University incorporated: implications for professional information

security education', Corporate Governance, vol. 9, no. 5, pp. 564 - 572.

Watters, P. & McCombie, S. (2011). 'A methodology for analyzing the credential

marketplace', Journal of Money Laundering Control, vol. 14, no. 1, pp. 32 - 43.

Wing Wong (2006). 'Analysis and detection of metamorphic computer viruses', Master

Degree thesis, San Jose State University.

Data mining: Practical machine learning tools and techniques (2010). 'Data mining:

Practical machine learning tools and techniques', version: 3.6.4. Retrieved from

<http://www.cs.waikato.ac.nz/ml/weka/>.

Wolf, L. & Shashua, A. (2005). 'Feature Selection for Unsupervised and Supervised

Inference: The Emergence of Sparsity in a Weight-Based Approach', J. Mach. Learn.

Res., vol. 6, pp. 1855-1887.

WinHex Hex Editor (2010). 'WinHex Hex Editor', version: 12.8. Retrieved from.

Xiao, J., Liu, B. & Wang, X. (2007). 'Exploiting Word Positional Information in Ngram

Model for Chinese Text Input Method', Journal of Information and Computing Science,

vol. 2, no. 3, pp. 215-222.

http://vx.netlux.org/%3e
http://www.cs.waikato.ac.nz/ml/weka/%3e

271

Xu, J., Sung, A., Chavez, P. & Mukkamala, S. (2004). 'Polymorphic malicious executable

scanner by API sequence analysis', The Fourth International Conference on Hybrid

Intelligent Systems: 5-8 Dec, vol. 378-383.

Yanfang, Y., Tao, L., Qingshan, J. & Youyu, W. (2010). 'CIMDS: Adapting

Postprocessing Techniques of Associative Classification for Malware Detection',

Systems, Man, and Cybernetics, Part C: Applications and Reviews, IEEE Transactions

on, vol. 40, no. 3, pp. 298-307.

Yang, L., Karim, R., Ganapathy, V. & Smith, R. (2010). 'Improving NFA-Based

Signature Matching Using Ordered Binary Decision Diagrams Recent Advances in

Intrusion Detection', in S. Jha, R. Sommer & C. Kreibich (eds), Springer Berlin /

Heidelberg, vol. 6307, pp. 58-78.

Yao, D. & Liu, X. (2011). 'Research on the Cyber Terrorist Attacks and its Impacts on

Information Infrastructure Security', Advanced Materials Research, Computational

Materials Science, vol. 268 - 270, pp. 2108-2115.

Ye, Y., Wang, D., Li, T. & Ye, D. (2007). 'IMDS: intelligent malware detection system',

Proceedings of the 13th ACM SIGKDD international conference on Knowledge discovery

and data mining: ACM, San Jose, California, USA, pp. 1043-1047.

You, I. & Yim, K. (2010). 'Malware Obfuscation Techniques: A Brief Survey',

International Conference on Broadband, Wireless Computing, Communication and

Applications: IEEE Computer Society, pp. 297-300.

Zhang, F., Qi, D. & Hu, J. (2010). 'Using IRP for malware detection', The 13th

international conference on Recent advances in intrusion detection: Springer-Verlag,

Ottawa, Ontario, Canada, pp. 514-515.

Zhu, Z., Ong, Y.-S. & Dash, M. (2007). 'Wrapper-Filter Feature Selection Algorithm

Using a Memetic Framework', IEEE transactions on systems man and cybernetics Part B

Cybernetics, vol. 37, no. 1, pp. 70-76.

Zitouni, I. (2007). 'Backoff hierarchical class n-gram language models: effectiveness to

model unseen events in speech recognition', Computer Speech & Language, vol. 21, no.

1, pp. 88-104.

