
Purdue University
Purdue e-Pubs

Open Access Dissertations Theses and Dissertations

Fall 2013

Automated Failure Explanation Through Execution
Comparison
William Nicholas Sumner
Purdue University

Follow this and additional works at: https://docs.lib.purdue.edu/open_access_dissertations

Part of the Computer Sciences Commons

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for
additional information.

Recommended Citation
Sumner, William Nicholas, "Automated Failure Explanation Through Execution Comparison" (2013). Open Access Dissertations. 67.
https://docs.lib.purdue.edu/open_access_dissertations/67

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Purdue E-Pubs

https://core.ac.uk/display/77939738?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://docs.lib.purdue.edu?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F67&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/open_access_dissertations?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F67&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/etd?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F67&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/open_access_dissertations?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F67&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F67&utm_medium=PDF&utm_campaign=PDFCoverPages
https://docs.lib.purdue.edu/open_access_dissertations/67?utm_source=docs.lib.purdue.edu%2Fopen_access_dissertations%2F67&utm_medium=PDF&utm_campaign=PDFCoverPages

Graduate School ETD Form 9
(Revised 12/07)

PURDUE UNIVERSITY
GRADUATE SCHOOL

Thesis/Dissertation Acceptance

This is to certify that the thesis/dissertation prepared

By

Entitled

For the degree of

Is approved by the final examining committee:

 Chair

To the best of my knowledge and as understood by the student in the Research Integrity and
Copyright Disclaimer (Graduate School Form 20), this thesis/dissertation adheres to the provisions of
Purdue University’s “Policy on Integrity in Research” and the use of copyrighted material.

Approved by Major Professor(s): ____________________________________

Approved by:
 Head of the Graduate Program Date

William Nicholas Sumner

Automated Failure Explanation Through Execution Comparison

Doctor of Philosophy

Xiangyu Zhang

Jan Vitek

Suresh Jagannathan

Dongyan Xu

Xiangyu Zhang

Sunil Prabhakar / William J Gorman 12 August 2013

AUTOMATED FAILURE EXPLANATION

THROUGH EXECUTION COMPARISON

A Dissertation

Submitted to the Faculty

of

Purdue University

by

William N. Sumner

In Partial Fulfillment of the

Requirements for the Degree

of

Doctor of Philosophy

December 2013

Purdue University

West Lafayette, Indiana

ii

ACKNOWLEDGMENTS

My thanks to my advisor Dr. Xiangyu Zhang for serving as my mentor for the past sev-

eral years, for always engaging in debate, and for pushing me to explore new problems. My

thanks also to Dr. Dongyan Xu for helping to guide me in my development as an academic

and for many interesting research discussions. And I of course owe a debt to my other com-

mittee members, Professors Vitek and Jagannathan, without whom this dissertation could

not have happened.

I also owe a debt to all the friends who have helped me or supported me both at Purdue

and from afar. To Ian and Alicia, to Kristina, to Henry, to Jayaram, to all of my lab mates,

I simply would not have gotten this far without their support, their critiques, and their

friendship.

iii

TABLE OF CONTENTS

Page

LIST OF TABLES . vi

LIST OF FIGURES . vii

ABSTRACT . x

1 INTRODUCTION . 1

2 EXPLAINING SOFTWARE FAILURES . 6

2.1 Slicing . 6

2.2 Localization . 8

2.3 Concise Explanations via Execution Comparison 9

3 IDENTIFYING EXECUTION POINTS . 16

3.1 Existing EPID Techniques . 19

3.1.1 Calling Contexts . 19

3.1.2 Software Instruction Counters 21

3.1.3 Structural Execution Indexing 22

3.1.4 STAT Ordering . 25

3.1.5 Lightweight Execution Indexing 28

3.2 Precise Execution Point IDs . 29

3.2.1 Which Points Correspond? . 30

3.2.2 Efficiently Computing PEPIDs 32

3.2.3 Handling Irreducible Loops . 34

3.3 Analytical Comparison . 36

3.4 Empirical Evaluation . 39

3.4.1 Runtime Efficiency . 39

3.4.2 Space Overhead . 41

3.4.3 Client Impact . 42

3.5 Related Work . 44

3.6 Conclusion . 44

4 IDENTIFYING AND REPLACING MEMORY ACROSS EXECUTIONS . . . 45

4.1 Motivation . 47

4.2 Problem Statement and Overview . 49

4.3 Semantics . 52

4.3.1 Online Semantics . 52

4.3.2 Lazy Semantics . 55

iv

Page

4.4 Design and Optimizations . 57

4.5 Robust Memory Comparison and Replacement 59

4.6 Evaluation . 63

4.6.1 Efficiency . 63

4.6.2 Trace Canonicalization . 65

4.6.3 Cause Transition Computation 66

4.7 Related Work . 70

4.8 Conclusions . 71

5 EXPLAINING WHY EXECUTIONS DIFFER 73

5.1 Causal State Minimization in Delta Debugging 75

5.2 Comparative Causality . 79

5.2.1 Property One: Relevance . 79

5.2.2 Property Two: Sufficiency . 81

5.3 Realizing Comparative Causal Inference 83

5.3.1 Background: Dual Slicing . 83

5.3.2 Dual Slices Are Relevant but Not Ideal 86

5.3.3 The Basic Algorithm . 87

5.3.4 Confounding Free Execution Model 88

5.4 Evaluation . 92

5.4.1 Full Explanation Comparison 92

5.4.2 Why and How CSM fails . 95

5.4.3 Example of Resulting Explanations 97

5.4.4 Threats and Limitations . 99

5.5 Related Work . 99

5.6 Conclusions . 100

6 FINDING APPROXIMATELY CORRECT EXECUTIONS 102

6.1 Selecting Executions . 105

6.1.1 Input Isolation . 105

6.1.2 Spectrum Techniques . 107

6.1.3 Symbolic Execution . 109

6.1.4 Predicate Switching . 112

6.1.5 Value Replacement . 114

6.2 Analytical Comparison . 115

6.3 Experiment . 116

6.3.1 Measuring Execution Similarity 118

6.3.2 Results . 120

6.4 Related Work . 129

6.5 Conclusions . 131

7 RELATED WORK . 132

7.1 Comparison Based Debugging . 132

7.2 Interactive Debugging Interfaces . 133

v

Page

7.3 Structuring Slice Information . 134

7.4 Explanations from Distance Metrics . 135

8 CONCLUSIONS . 136

8.1 Contributions . 136

8.2 Future Work . 138

LIST OF REFERENCES . 140

VITA . 152

vi

LIST OF TABLES

Table Page

3.1 Analytical properties of the different EPID techniques. 37

3.2 LOV identification for SPEC CINT2006. 40

3.3 Worst case memory overhead of EPID techniques. 42

4.1 Instrumentation and allocation. 64

4.2 Cause transition computation for failures. 68

5.1 Comparison of full explanations. Averages are arithmetic except for P & R,

which are geometric. - means that the root cause could not be captured. . . 94

5.2 CSM difficulties. This includes symptoms: (M)issing causes, (E)xtra causes,

and complete (F)ailure. It also lists reasons why: control and data flow con-

founding (CFC/DFC) or (O)mission. 96

6.1 Common features among peer selection approaches. 115

6.2 Bugs used in the study along with their failures and the faults that cause them. 121

6.3 Peer selection work for each bug. For each technique, Tests holds the number

of reexecutions of the program required by a technique before finding a peer.

Time is the total time required to find a peer in seconds. *Average and StdDev

for Predicate Switching without the infinite loop outlier are 119 and 101. . . 122

6.4 Peer selection similarity scores for each bug. For each selection technique,

Path denotes the path similarity score for each bug. Data denotes the data

similarity score for each bug. 124

vii

LIST OF FIGURES

Figure Page

2.1 An example of explaining a bug using a dynamic slice and a more concise

explanation. 10

2.2 An abstract technique for explaining why two executions differ. 12

3.1 A program that prints odd numbers and two executions of the program with

additional bookkeeping to identify execution points. 17

3.2 (a) An annotated call graph that encodes all calling contexts into unique inte-

gers. (b) Example instrumentation of the function b(). 21

3.3 (a) The program from Figure 3.1 instrumented for computing SEIs. The con-

secutive pushes at 9 and 10 are discussed in the text below. (b) EPIDs for

potential calls to action(). 23

3.4 (a) A simple program where structural execution indexing is dependent upon

the execution path. (b) The CFG with two paths to action(). (c) EPIDs for the

call to action(). 25

3.5 Example of using STAT to identify EPIDs at the calls to process int() and

process node(). 27

3.6 A loop with linear SEI growth. 28

3.7 (a) A small program. (b) The program with calls logically inlined. (c) The

program with calls inlined and loops unrolled. 31

3.8 Instrument takes in a program P and modifies it to maintain a PEPID online.

This is the unoptimized instrumentation. 33

3.9 (a) A natural loop. (b-c) Irreducible loops. 34

3.10 Median runtime overhead normalized against the uninstrumented benchmark

of the different EPID techniques on SPEC CINT2006 benchmarks. Error bars

show the 95% confidence intervals for the mean of each technique. 41

3.11 (a) A program that can lead to bad dual slices using SEI. (b) A trace where a is

True. (c) A trace where b is True. (d) A dual slice using SEI. (e) A dual slice

using PEPID. 43

4.1 Pointer comparison. Linked lists represent the snapshots of different execu-

tions. Each node has two fields: val and next. 47

viii

Figure Page

4.2 Destructive state mutation. (a) Snapshot in run one. (b) In run two. (c) Mutat-

ing (a) to (b). 48

4.3 Lost mutation. 49

4.4 Overview of memory indexing. 50

4.5 Graph matching may be undesirable. 51

4.6 Online semantics. A memory index MI(a) represents the memory index of

an address a, which is a pair comprising a region identifier and an offset. CS

represents the current call stack. pc represents the program counter. EPID rep-

resents the EPID of the current execution point. PV(p) represents the memory

index of the address value stored in p. 53

4.7 Example for heap indexing. The code constructs a linked list of three nodes

with values of 0, 1 and 3. Initially, the three pointers h, p, and r all point to the

head of list. There is a regression bug at line 4 in computing the predicate. As a

result, the failing run takes the false branch, making p point to its second node.

Pointer p further advances to the third node at line 10. In contrast, the passing

run takes the true branch, eventually resulting in both p and r pointing to its

third node. The failure is observably wrong output. The memory snapshots are

before the failure at statement 11. 54

4.8 Lazy semantics. 56

4.9 The advantage of the online semantics. 56

4.10 Tree based indexing in lazy semantics. 58

4.11 Apply a heap difference. 61

4.12 Normalized runtime and space overheads of memory indexing with and with-

out optimizations. 64

4.13 Percent of corresponding memory accesses w. and w/o MI. 66

4.14 Heap accesses and control flow trace similarity after state mutation in the exe-

cution of make. 69

5.1 (a) A program. (b-c) executions with differing input. (d) CSM. (e) dual slice.

Symbols3 and _ denote the cause point and effect point, respectively. The set

in (d) represents the causal state set. 75

5.2 Missing causes by execution omission. (a) program. (b-c) executions with

differing input. (d) CSM result. 77

5.3 Data flow confounding example. (a) program. (b-c) executions with differing

input. (d) confounded explanation. 82

ix

Figure Page

5.4 Dual slicing . 84

5.5 (a) program. (b-c) two runs. (d) program from the dual slice. (e) dual slice. (f)

CC explanation. 85

5.6 Minimizing causes . 87

5.7 Semantics of E[]. 89

5.8 Semantics of the approximate execution model. 91

5.9 Example of a derived explanation using our technique 98

6.1 (a) A trivial faulty program. The x>1 on line 5 should instead be x>2. This

causes the program to fail when the input is 2. (b) Example executions of the

program on different inputs. Input 2 yields a failing execution; the others are

correct. 103

6.2 Delta debugging can produce two minimally different inputs, yielding an exe-

cution to use as a peer. 106

6.3 The nearest neighbor model’s peer finding approach. Basic blocks (identified

by the numbers inside the boxes) are sorted by frequency (circled numbers),

then the test profile with the lowest edit distance to that of the failure belongs

to the peer. 108

6.4 Buggy code snippet. The last print statement should print “odd”. 110

6.5 A test generation algorithm directed by the objective function selectNextTest(). 111

6.6 Buggy code snippet. Index 3 is invalid when accessing the array x. 113

6.7 Matching of instructions across executions and program versions. Matches are

denoted by , while mismatches are denoted by #. 119

6.8 Bug 8 requires unsound techniques to get a strong peer. 125

6.9 Execution synthesis on bug 17 yields an erroneous patch. 126

6.10 Bugs 17, 18, and 19 are related. 127

x

ABSTRACT

Sumner, William N. Ph.D., Purdue University, December 2013. Automated Failure Ex-

planation through Execution Comparison. Major Professor: Xiangyu Zhang.

When fixing a bug in software, developers must build an understanding or explanation

of the bug and how the bug flows through a program. The effort that developers must put

into building this explanation is costly and laborious. Thus, developers need tools that can

assist them in explaining the behavior of bugs. Dynamic slicing is one technique that can ef-

fectively show how a bug propagates through an execution up to the point where a program

fails. However, dynamic slices are large because they do not just explain the bug itself; they

include extra information that explains any observed behavior that might be connected to

the bug. Thus, the explanation of the bug is hidden within this other tangentially related

information. This dissertation addresses the problem and shows how a failing execution

and a correct execution may be compared in order to construct explanations that include

only information about what caused the bug. As a result, these automated explanations are

significantly more concise than those explanations produced by existing dynamic slicing

techniques.

To enable the comparison of executions, we develop new techniques for dynamic anal-

yses that identify the commonalities and differences between executions. First, we devise

and implement the notion of a point within an execution that may exist across multiple exe-

cutions. We also note that comparing executions involves comparing the state or variables

and their values that exist within the executions at different execution points. Thus, we

design an approach for identifying the locations of variables in different executions so that

their values may be compared. Leveraging these tools, we design a system for identifying

the behaviors within an execution that can be blamed for a bug and that together compose

an explanation for the bug. These explanations are up to two orders of magnitude smaller

xi

than those produced by existing state of the art techniques. We also examine how differ-

ent choices of a correct execution for comparison can impact the practicality or potential

quality of the explanations produced via our system.

1

1 INTRODUCTION

Faulty software is pervasive. It resides in the phones people use to communicate [92], in

the cars that people drive [31, 91], and in the medical devices that people rely upon to sur-

vive [55]. When the faults or bugs in programs cause those programs to fail or produce

unexpected results, the costs can be extensive. A National Institute of Standards and Tech-

nology (NIST) report from 2002 found that the financial costs of software failures could

reach $60 billion each year [118]. For software that controls devices like cars or pacemak-

ers, these bugs can not only have financial costs but can also cause fatalities [31].

However, fixing bugs to prevent these failures is itself a costly and nontrivial process.

The same NIST report estimated that 30-90% of the costs and up to 70% of the time re-

quired for successful software projects were spent in testing and debugging. The primary

reason reported for this was that the tools available to developers simply were not effec-

tive [118]. As a result, there is a desire and a need for new tools to help developers under-

stand the bugs within programs and to correct those bugs.

When trying to fix or debug a fault within a program, developers search through the

source code of a program, trying to understand the relationships between different pieces

of code [75]. Facing some incorrect output, they reason about the values that the output

producing statement depended upon or used and search back through the program to see

where those values came from [75]. When they find the statements that produced the in-

correct values, the developers repeat the process on these new statements to see why they

produced incorrect values, as well. Developers continue this process backward, building

an understanding of why the program produced incorrect output, until they reach and un-

derstand the original fault or incorrect behavior within the program. Once they understand

how the fault propogates through the program, they can start to fix it.

Assisting and automating this searching and understanding process is one of primary

goals of research into debugging and debugging tools. In particular, dynamic slicing tech-

2

niques identify the those instructions that influenced the behavior of another instruction

during the execution of a program [76]. Developers can use these dynamic slices to au-

tomatically identify which instructions affected the incorrect output and avoid trying to

reason about these instructions themselves. Furthermore, prior research has shown that

slicing allows developers to better understand how a program behaves and to identify and

correct faults within small programs more quickly than they otherwise could [47, 74]. We

describe these slicing techniques in more detail in Chapter 2.

Dynamic slices can illustrate the relationships between instructions, but they face ob-

stacles. Although prior work has made strides in improving their efficiency, such slices

can still be prohibitively large. Thus, even though they show how individual instructions

may influence others, they still require the developer to examine too many instructions to

realistically help a developer to understand a bug [135]. In part, this happens because many

instructions may influence an observed failure even if those instructions are correct them-

selves. Thus, developers can spend their time searching through these instructions that

are irrelevant to the debugging task instead of those that help to explain how the fault pro-

pogated through the failing execution [75]. Furthermore, traditional dynamic slicing can

only help to explain why something incorrect happened within a failing execution. It cannot

help to explain why some missing behavior did not happen within an execution [5, 54].

To avoid searching backward through irrelevant instructions within an execution, an-

other approach known as fault localization computes a list of the most suspicious state-

ments in a program [29, 34, 67, 100]. These statements are the ones deemed most likely to

contain the fault itself, so the developer can potentially identify the fault without necessarily

searching through irrelevant instructions of an execution. However, because fault localiza-

tion techniques do not help developers build an understanding of how a fault propogates

through an execution, these techniques require developers to recognize and understand a

bug upon simply seeing a faulty statement. Studies show that this is uncommon in prac-

tice [95]. Chapter 2 also provides further background on fault localization.

The focus of this dissertation is on techniques for explaining how a fault propagates

through a failing execution of a program to an observed failure. These explanations should

3

precisely show not only how a failing execution behaved incorrectly but also how the fault

propogated via missing behaviors that the incorrect execution should have performed. Simi-

lar to dynamic slicing, such a technique needs to show how some instructions can influence

others within an execution to propogate the fault. However, dynamic slices include informa-

tion about instructions that do not cause the observed failure and can impede a developer’s

ability to understand and fix the program. These instructions that do not help to explain the

bug should be omitted from resulting explanations. Furthermore, the explanations should

also highlight instructions that were not performed by the failing execution but should have

been to produce correct behavior.

The primary challenge, then, is to identify which instructions within the failing execu-

tion helped to cause the failure, so that they can be included in the explanation. This disser-

tation explores how a failing execution may be compared and contrasted with an execution

that does not fail in order to aid in identifying which instructions caused and thus explain

the failure. To realize this approach, we identify and address core problems that arise when

analyzing relationships across executions. We use these solutions as a platform for dy-

namic program analysis and derive a means for identifying the instructions that should be

included within an explanation for a bug as well as the relationships between these instruc-

tions. We then examine the practicality of comparing a buggy execution against a correct

execution and examine how the choice of a correct execution could influence the quality

of an explanation. Comparing executions enables the efficient automated construction of

concise explanations for software failures.

In particular, this dissertation makes the following contributions:

• We note that examining or comparing relationships that exist within or across multi-

ple executions can require a way to identify corresponding instructions across ex-

ecutions, as well. These identities are necessary for determining whether or not

a relationship between two instructions in one execution also holds between the

same instructions in another execution. Prior research has looked into approaches

for identifying instructions within a single execution, but we demonstrate that these

approaches are insufficient for comparing multiple executions. This dissertation

4

presents the design and implementation of a technique for efficiently and scalably

identifying corresponding instructions.

• Comparing executions can employ not only examining which instructions execute

but also the values of variables present within an execution. However, dynamically

allocated variables do not have names and may be allocated within different portions

of memory in different executions. This impedes identifying the memory that corre-

sponds across different executions and thus makes comparing the values within this

dynamically allocated memory difficult. This dissertation further presents a mecha-

nism for identifying such corresponding memory within different executions.

• Using these primitives, we present an approach for contrasting two executions to de-

termine which portions of them behaved differently and then determine which of the

differences can be blamed for causing a failing execution to behave differently than

a correct execution. Prior work has also examined ways of identifying differences

between executions that can be blamed for causing one execution to fail. We iden-

tify shortcomings in these approaches and further show that the approach presented

within this dissertation does not succumb to these same problems.

• Comparing a failing execution against a correct execution to create explanations will

produce different results depending on precisely which correct execution the tech-

nique contrasts with the failing execution. Some correct executions may produce

desirable explanations that show how the fault propogates through the program and

to the failure. Other correct executions will simply produce explanations that reflect

the different intent of the correct and incorrect executions. Selecting a correct exe-

cution in such a way as to explain the failure and not the different intents of the two

executions is thus crucial to the overall effectiveness of comparing two executions

to explain failures. This dissertation presents an empirical study of techniques that

can select correct executions when given a failing execution as input and examines

the costs and benefits of the different techniques that could affect how developers use

them in practice.

5

Building upon these technical contributions, this dissertation shows that contrasting a

failing execution with a passing execution can produce concise explanations that illustrate

how a fault propogates through an execution. These explanations are more precise than

prior techniques for explaining failures while capturing not only the observed buggy behav-

ior of the failing execution but also any missing correct behavior that the failing execution

omitted.

Chapter 2 presents additional background and illustrates both what an explanation for

a failure is and how the techniques presented in this dissertation may fit together to help

construct such explanations. Chapter 3 examines how correspoding or aligning instructions

across multiple executions may be identified. Chapter 4 similarly shows how to identify

corresponding regions of memory across executions and how the values of variables in one

execution may be inserted into another. Chapter 5 examines what it means for one instruc-

tion within an execution to cause another when comparing two executions and shows how

these causal relationships can be used to build explanations for bugs in software. Chapter 6

then looks at how the correct execution used in comparison may be selected and how it

may or may not be a good execution to use for building an explanation for a failure. Fi-

nally, Chapter 7 and Chapter 8 look at related work and the conclusions that may be drawn

from this dissertation, as well as potential directions for future work.

6

2 EXPLAINING SOFTWARE FAILURES

Fixing a faulty program first requires understanding why that program is faulty. Developers

usually gain this understanding by searching through a program’s code and observing how

a fault propagates through the program during its execution until that fault becomes an

observable failure [75]. However, understanding the behavior of a running program by

examining its source code is difficult because it requires developers to execute the code

mentally [38,83]. In order to help developers with this task, researchers have put substantial

effort into tools that can help developers to explain and understand program behavior [4,

32, 50, 74]. These tools focus primarily on two techniques known as slicing and fault

localization. In this chapter, we examine the existing work in these areas designed to

help explain software failures, and we present a design for a new technique for explaining

failures that the following chapters shall explore.

2.1 Slicing

Static program slicing was originally introduced by Weiser as an approach for elimi-

nating irrelevant or uninteresting parts of a program when trying to understand program

behavior [126]. His technique use dataflow equations to determine which statements in a

program were necessary for computing a criterion, or the value for a variable at a particu-

lar statement. Because the slice captured all statements that could influence the criterion,

when the criterion was a buggy value, the static slice represented the possible locations of

the bug within the original program. Weiser also noted that developers intuitively computed

the slice manually when attempting to understand software failures on their own [127].

Successive work refined and redefined the notion of static slicing through the use of

program dependence graphs (PDGs) [44, 59, 93]. These graphs comprise each instruction

of a program as a node and the ways that instructions may influence each other as directed

7

edges or dependences between nodes. These dependences may capture either data depen-

dence, where an instruction at a target node uses a value produced by the instruction at a

source node, or control dependence, where the instruction at the source node can directly

determine whether or not the instruction at the target node executes. The refinements to

static slicing examined both how to compute slices by determining whether one node in

the graph is reachable from another and how to define slices in terms of subgraphs of the

PDG [59, 78, 93, 110].

While static slices allow developers to narrow the amount of code that must be looked

at in order to understand a program, they still pose two substantial challenges. Static slices

contain all instructions that might influence a criterion within any possible execution of a

program. This can be more information than a developer needs to understand one specific

execution [76]. In addition, the burden of understanding how that code behaves at runtime

still falls upon developers, but understanding the dynamic behavior of static code is diffi-

cult [38,83]. Thus, Korel and Laski introduced dynamic slicing to help explain the behavior

of a single concrete execution of a program [76]. Whereas static slices comprise instruc-

tions and dependences from the original program, dynamic slices comprise instructions

and dependences from a trace of a concrete execution of the program. A trace is simply

the sequence of instructions performed by a particular execution of a program. Unlike the

original program, a single static instruction may appear multiple times as different instruc-

tion instances within the trace, and only the executed instructions occur in the trace. The

dependences within dynamic slices are the control and data dependences between those

individual instruction instances within the trace. Thus, dynamic slices include only in-

formation from a particular execution of interest, and they also show why the execution

behaves as it does through the dependences within the trace. Following the original paper,

additional work also showed how to improve efficiency and correctness when computing

dynamic slices from traces [3,136,138] An extensive survey by Tip contains further details

and history on the development of static and dynamic slicing [119].

User studies have shown that dynamic slices provide an effective means of explaining

the faulty behavior of executions during the debugging process [74]. However, these stud-

8

ies examine small programs with short traces, e.g., 500 lines of code (LOC). In practice,

programs may be tens of thousands to millions of lines of code, and traces may easily in-

clude hundreds of thousands, millions, or even more instructions. As a result, dynamic

slices themselves may be long and complex because each instruction can depend on multi-

ple other instructions, thus transitively including them in the slice. The size and complexity

of dynamic slices precludes their utility in practice, so additional approaches aim to heuris-

tically organize and prioritize which portions of a slice to examine in order to make slicing

more practical [80, 111, 124, 135]. Nonetheless, for these approaches, the developer may

have to examine the entire slice in order to understand a bug. Furthermore, understanding a

failure may require explaining why some missing behavior does not occur in an execution

and thus is not captured by the slice [5, 54, 140]. These slicing techniques do not help to

explain such failures.

2.2 Localization

In contrast to slicing, fault localization does not seek to explain how a fault leads to

a failure. Instead, localization focuses on identifying possible locations, or root causes,

for a bug within a program [29, 34, 67, 100]. The onus is then put upon the developer for

interpreting the results to understand which of these possible locations is a real bug and

how. Fault localization techniques return a list of possible root causes to the developer,

often ranked by the suspected likelihood that each individual statement is the actual cause

of the bug, also known as the suspiciousness of the statement [33, 67, 100]. Ideally, the list

of potentially buggy statements is small and thus practical for the developer to examine. In

practice, the developer can choose a priori the number of statements to return or examine.

There are a variety of categories of techniques for identifying such root cause candi-

dates [128]. For instance, spectra or profile based techniques look at the passing and failing

executions within a test suite. In general, they identify properties like statement coverage,

execution frequency, likely invariants, and return values that seem to correlate more with

failing tests than passing ones [2, 8, 33, 66, 67, 100, 103, 104]. Related to spectra based ap-

9

proaches are techniques that build more detailed statistical models from spectra to refine

the ranking process [10, 11, 43, 49, 82, 84]. In contrast to both of these categories, some ap-

proaches modify either the source of the program or the values of variables at runtime and

then reason about the effects these changes have on program behavior in order to identify

possibly buggy statements [24,28,63,134]. Yet another category of localization techniques

focus instead on symbolic execution and compare the constraints generated by passing and

failing executions [14, 68, 97, 123].

In spite of the extensive research in fault localization, it still faces obstacles. Fault local-

ization focuses on returning potential root causes to developers, yet user studies show that

developers do not recognize buggy statements when localization tools present them [95].

Also understanding the context of a bug and how it propagates through a program is crucial

to understanding and fixing a bug [47, 74, 75, 95]. In addition, a desirable fix for a bug

may not always occur at the root cause because of other engineering concerns [88]. As a

result, understanding how the faulty behavior propagates through a program is crucial for

identifying and applying alternative corrections for faulty program behavior.

2.3 Concise Explanations via Execution Comparison

The advantages and limitations of these approaches to explaining failures are comple-

mentary. While dynamic slicing is able to explain how a fault propagates through a buggy

execution, the slices produced can be prohibitively large in practice. In contrast, fault local-

ization techniques are concise; they can produce small lists of statements for the developer

to examine. However, the returned candidates may not relate to the actual cause of the bug,

and even if they are, the developer still bears the burden of recognizing the bug and un-

derstanding how it propagates through the program. Contrary to both of these approaches,

a desirable explanation for a failure should both be concise and show how a fault propa-

gates through an execution. This section presents a general approach for producing such

explanations that the remainder of this dissertation examines in detail.

10

1 inventory = [(Shoes,5); (Hats,0); (Ties,1)]
2 bought = 0
3 for (item, available) in inventory:

4 if bought < 3 and available >= 0 :
5 buy(item)
6 bought += 1
7 print ”Bought:”,bought

(a)

1 inventory = . . .
2 bought = 0
3 for (i, a) = (Shoes,5):
4 if True:
5 buy(Shoes)
6 bought = 1
7 for (i, a) = (Hats,0):

8 if True :
9 buy(Hats)

10 bought = 2
11 for (i, a) = (Ties,1):
12 if True:
13 buy(Ties)

14 bought = 3

15 print ”Bought:”, 3

(b)

inventory = . . .
bought = 0
for (i, a) = (Shoes,5):

if True:
buy(Shoes)
bought = 1

for (i, a) = (Hats,0):

if False :

for (i, a) = (Ties,1):
if True:

buy(Ties)

bought = 2

print ”Bought:”, 2

(c)

1
2
3
4

6
7
8

10
11
12

14

15

(d)

8

10

14

15
bought= 3 2

bought= 2

True False

(e)

Figure 2.1.: An example of explaining a bug using a dynamic slice and a more concise

explanation.

One key insight to computing such explanations is that dynamic slices include more

information than necessary or desirable to explain a specific bug. Consider the example

program in Figure 2.1a. This program maintains an inventory of items in a store along with

the available quantities of those items. It iterates through the inventory and buys one of each

available item in the inventory. Note that there is a bug on line 4. When checking to see

whether an item is available, the program checks whether available >= 0, but this should

actually be available > 0. As a result, the program will buy an item even if none of that

11

item is available in the inventory. Figure 2.1b-c present the trace of the buggy execution and

the trace of the intended correct execution respectively. Note that in the buggy execution,

the program buys Hats even though no Hats are available in the inventory. Thus, the buggy

execution prints that it bought three items when it should only have bought two. The correct

execution, in contrast, yields False on the check for whether Hats are available, so it prints

that two items were bought.

Figure 2.1d presents a dynamic slice of the buggy trace in (b) using the printed value

of bought as the criterion. Note that most of the statement instances in the trace are also in

the slice. In this case, the slice was not able to substantially winnow down the list of state-

ments to examine. Furthermore, because statement instances depende on multiple other

statements in the trace, it is difficult to decipher from the slice which dependences were

actually buggy versus which were correct. For example, statement 14 in the trace is depen-

dent upon both statement 12 and statement 10. While statement 10 incorrectly increases the

value of bought and leads to the failure, statement 12 is actually correct and executed no

differently than in the correct execution. Traditional dynamic slicing techniques cannot dis-

tinguish between these dependences and must include both of them in the slice, increasing

its size and complexity.

Contrasting the traces of the buggy and correct executions, we can identify and elide

those dependences that do not help to explain the buggy behavior. That is, we elide stat-

ments that behave the same way in both the buggy and the correct traces. This produces

an explanation like that presented in Figure 2.1e. This explanation directly identifies the

buggy statement instance 8 in the second iteration of the loop. The program incorrectly

takes the True branch of the if statement when checking whether Hats are available. Be-

cause of this, it incorrectly increments bought, and this incorrect value propagates throught

the next iteration until it is printed out at the end of the execution. Each step of the explana-

tion shows how the fault propagates through the program until the observed failure, and the

explanation only presents dependences that help to explain the failure. Contrasting the two

executions provided a means of pruning the dynamic slice into a clearer and more concise

12

form. Thus, this explanation for why the buggy and correct executions differ serves as a

concise explanation of the bug itself.

explain(τ, τ’)
Input: τ & τ’ - buggy / correct traces of the program

Output: An explanation of why τ differs from τ’

1: output ← outputDifferences(τ,τ’)

2: criteria ← getDependences(output)

3: explanation ← ∅

4: failurePoint ← ⊥

5: while criteria , ∅ do

6: last ← getLastDefinition(criteria)

7: causePoint ← alignedPointThrough(τ,τ’, last)

8: possibleCauses ← cutSliceAt(τ,τ’, criteria, causePoint)

9: causes ← findCauses(τ,τ’, causePoint, failurePoint, possibleCauses, criteria)

10: explanation ← explanation ∪ causes

11: failurePoint ← causePoint

12: criteria ← causes ∪ preceding(criteria, causePoint)

13: return explanation

Figure 2.2.: An abstract technique for explaining why two executions differ.

Using this underlying intuition as a model, we then need a means of computing these

explanations. In practice, we do not have the corresponding correct execution available, as

that would defeat the need for debugging, but we shall first assume the correct execution

is available and then revisit this assumption. At a high level, we can compute these expla-

nations by modifying traditional algorithms for dynamic slicing as presented in Figure 2.2.

Using the observable output differences in the two executions as slice criteria, lines 1-2,

the remainder of this framework works backward through the two executions to produce an

explanation containing only those dependences in the slice that explain why the buggy and

correct executions produced the differing results in the criteria. Line 3 starts the process

with an empty explanation. Line 4 sets the failure point, the execution point or dynamic in-

struction instance for which each iteration of the algorithm examines the criteria and finds

the smallest set of dependences that can explain them.

The last starting point or definition for any dependence in the criteria is the first point

in a backward traversal of the slice that we may prune the explanation, so line 6 jumps

13

back to that execution point. Note, however, that we can only compare two executions at

an execution point that exists within both executions. For example, if one execution takes

the True branch of an if statement and the other does not, we cannot sensibly compare how

the executions differ at a statement within the True branch. Thus, line 7 finds the cause

point or the closest point before or at the definition that corresponds or aligns across the

two executions. The algorithm then identifies the set of dependences in a slice backward

from the failure point that are live at the cause point and are sufficient for explaining why

one execution failed and one did not. Line 8 first identifies the live dependences in a slice

from the failure point. These comprise the possible causes for the criteria at the cause point.

Line 9 contrasts and analyzes the two executions two find the minimal set of these possible

causes sufficient for explaining why the executions behaved differently. Line 10 adds this

pruned set of dependences to the full explanation. Lines 11 and 12 then prepare for the next

step backward along the slice by setting the next failure point to the current cause point and

by setting the criteria to the identified causes as well as any output differences that preceded

the cause point. In this way, each iteration of the algorithm works backward along the cause

points, finding the smallest sets of dependences in the slice that are sufficient to explain the

bug. Finally, once the slice has been traverse, the loop on line 5 ends, and the algorithm

returns the complete explanation on line 13.

Consider again the failing and correct executions in Figure 2.1b-c. The algorithm starts

by identifying the output difference on line 15 of both executions as a slice criterion and

the print statement itself as the first cause point. The findCauses procedure determines

that if the correct execution had the value 3 for bought at line 15, it would have produced

identical output to that of the failing execution. Thus, the technique identifies the differing

values of bought as an explanation for the bug at line 15. The algorithm then proceeds

backward to the definition of bought at line 14. Having the incorrect value of bought at

this point is sufficient to produce the incorrect value at line 15, so the different values of

bought explain the failure here, as well. The algorithm then jumps back to the incorrect

value of bought at line 10. This True branch exists only in the buggy execution, so the

process proceeds back to line 8. Here, we find that the had the correct execution produced

14

True for the if condition, it would have reproduced the buggy value of bought at line 14.

Thus, the differing conditions explain the failure at line 8, and there are no more relevant

dependences to traverse back because there are no execution differences before line 8. Thus,

the algorithm produces the desired explanation like that present in Figure 2.1e

While this provides a general framework for explaining failures, there remain miss-

ing details that must be addressed. Lines 7, 8, and 9 of the algorithm explicitly rely on

the notion of corresponding execution points that align across multiple executions. This

alignment is necessary in order to contrast the two executions at a point that meaningfully

corresponds, yet prior work does not solve the problem. In Chapter 3, this dissertation ex-

amines the problem and devises a technique for efficiently labeling every execution point in

any execution of a program. These labels are equal for instructions in different executions

only if the instructions meaningfully align.

Lines 8 and 9 of the algorithm identify possible causes for the criteria at an execution

point and then contrast the buggy and correct executions of a program to winnow these

down into only those sufficient for explaining the bug. In practice, this winnowing pro-

cess in findCauses works by (1) running the correct execution up to the cause point, (2)

replacing a portion of the execution’s state, or variables and values, with those from the

buggy execution, and (3) continuing the execution in order to find out whether the replaced

program state was able to reproduce the failure within the correct execution. Two key prob-

lems must be addressed in order to perform this task. First, we must be able to identify

the memory containing different variables across different executions in order to replace

the state of one execution with the state of another. Chapter 4 examines the problem in

detail and proposes a solution that enables this state replacement. Prior work explored the

process of replacing program state and continuing an execution to identify causes [132],

but subtleties in the problem cause existing techniques to yield both inefficient techniques

and incorrect results. Chapter 5 explores the problem in detail and derives a new solution

that avoids the pitfalls of previous approaches.

We also made the assumption that the correct execution was somehow available so that

we could contrast it with the failing one. In practice, this is not the case, as it would obviate

15

the need for debugging. Instead we need to find an execution that behaves approximately

as the correct one should have. We can then contrast against these approximately correct

executions instead in order to explain bugs. The difficulty, then, lies in finding an approxi-

mately correct execution. Chapter 6 explores different possible techniques for finding these

executions and compares the quality of the approximations they create.

Together, these techniques enable the algorithm in Figure 2.2 to produce concise expla-

nations of real world bugs. The remainder of this dissertation examines these techniques in

detail.

16

3 IDENTIFYING EXECUTION POINTS

Dynamic analyses help developers to identify interesting program behaviors within an ex-

ecution of a program. As a result, these analyses can simplify or speed up common de-

velopment tasks like debugging, as presented within this dissertation, and verification [52].

One fundamental task in dynamic analyses is identifying a point within an execution of

a program. Such execution points are sometimes used to provide feedback to develop-

ers [106, 107]. For example, when a tool like Memcheck within Valgrind [107] identifies

an invalid memory access, it can provide an execution point that shows the developer where

inside the execution this invalid access occurred. The developer can then use this informa-

tion to help create a fix for the bug. These execution points can also be used as input to

additional analyses over executions. For instance, dual slicing uses execution points to

identify commonly executed instructions across multiple executions [125]. These common

behaviors are then used to prune out irrelevant dependences from specialized slices that

concisely explain concurrency bugs. The algorithm for explaining bugs in Figure 2.2 uses

execution points similarly.

In spite of this pervasiveness, dynamic analyses are inconsistent and imprecise in how

they identify and compute these execution points. Many dynamic analyses create their own

formulations of execution point IDs (EPIDs) without understanding the approaches taken

by prior work, and even among the existing techniques, different types of EPIDs have

properties that have not been explored. Thus, their strengths and weaknesses are poorly

understood and can lead to unexpected limitations of precision or scalability when used by

a dynamic analysis. In addition, one definition of execution point may be preferable in one

context but undesirable in another, yet these trade offs between the different techniques are

presently not well understood.

Consider the program in Figure 3.1a. This program reads in three numbers from the user.

If a number is odd, as checked on line 7, then the program calls action() to print the number

17

1 def action(x):
2 print(x)
3

4 def main():
5 for i in range(3):
6 x = input()
7 if x % 2:
8 action(x)

for i = 0:
x = 2
if False:

for i = 1:
x = 4
if False:

for i = 2:
x = 5
if True:

action(5)
print(5)

SIC+=1

SIC+=1

SIC+=1

for i = 0:
x = 1
if True:

action(1)
print(1)

for i = 1:
x = 4
if False:

for i = 2:
x = 5
if True:

action(5)
print(5)

SIC+=1

SIC+=1

SIC+=1

SIC+=1

(a) (b) (c)

Figure 3.1.: A program that prints odd numbers and two executions of the program with

additional bookkeeping to identify execution points.

out. Notice that line 2 can execute many times because it is called from within the loop. As

a result, simply using the line number to identify the execution point is ambiguous because

the same ID may appear multiple times within the same execution. This is undesirable for

many dynamic analyses, as it yields imprecise or incorrect results [26, 116].

One approach, commonly used in the context of record and replay techniques [26, 72,

102, 122], is the Software Instruction Counter (SIC). An SIC uses a single integer counter

that increments at function calls and loop backedges during the execution of a program.

Combining the current counter with the current line number yields a pair (counter, line) that

can uniquely identify an execution point within one execution. For example, the instances

of the if statement on line 7 of execution (b) are identified by (0,7), (1,7), and (2,7) because

of the counter increments on back edges as shown in Figure 3.1b.

Note, however, that these identifiers only work within a single execution. That is, the

SICs used for execution (b) do not work for the instructions of execution (c). This is

because the executions behave differently. In particular, the SIC is incremented at the call

to action() in the first iteration of execution (c), so the identifiers for the if statements are

(0,7), (2,7), and (3,7). Because the SIC was incremented at the first call in (c) but not in (b),

18

the SICs of the two executions diverge and cannot be compared after this point. This is a

substantial problem for dynamic analyses that wish to compare information across multiple

executions [65, 114, 116, 125] because SICs can only precisely identify points within one

execution.

To address this problem, and enable comparison across executions, other EPID tech-

niques exploit program structure [6, 130]. Using this information, they are often able to

align the corresponding instructions across multiple executions. Unfortunately, these tech-

niques also have limitations that create ambiguous or meaningless relationships when iden-

tifying the instructions that align across executions. They also have substantial limitations

in usability. In particular, Structural Execution Indexing [130] has difficulties scaling to

longer executions, while STAT [6] requires a program core dump at each point that requires

an EPID. In addition, SEI can fail to identify useful relationships between EPIDs.

In this chapter we survey five existing approaches used to compute EPIDs for dynamic

analyses. The surveyed techniques range in their precision and purpose from only being

able to imprecisely identify points even in one execution to uniquely identifying points

across multiple executions even in the presence of concurrency and nondeterminism. They

range in runtime overhead from none, using only postmortem analysis, to several times the

cost of the original execution. Based on the limitations of the existing techniques for cross-

execution EPIDs, we observed a need for a new technique that provides meaningful and

unambiguous relationships in execution alignment and without the usability and scalability

limitations of existing approaches. We introduce a new technique for Precise Execution

Point IDs (PEPIDs) that addresses these goals and has a runtime overhead only slightly

higher than using calling contexts [117].

We have implemented all of these techniques, those surveyed along with PEPID. We

evaluated them empirically on SPEC CINT2006 to illustrate their performance. We also

provide the first analytical comparison of these different approaches, weighing their costs,

their benefits, and the scenarios where one may be more desirable than another. Using this

information, a dynamic analysis designer can know in advance which techniques are most

19

appropriate for his or her purposes and avoid inventing or reinventing an approach with

known problems. In summary, the contributions of this chapter are:

1. We surveyed and implemented existing techniques for computing EPIDs for dynamic

analyses. We analytically examine all of the different techniques and compare them

along several spectra in order to weigh their relative costs, merits, and limitations.

2. We observed problems with producing meaningful, unambiguous relationships be-

tween EPIDs as well as with usability and scalability in existing techniques for cross-

execution EPIDs. To address these problems, we introduce a new cross-execution

technique (PEPID) and show that it avoids the limitations of existing work while

also having lower runtime overhead.

3. We empirically compare the runtime and space overheads introduced by the different

techniques, those surveyed as well as PEPID, and we show that for cross execution

EPIDs, PEPID is the most efficient with 25% average overhead. For intra-execution

techniques, SICs are the most efficient, with 9% overhead.

4. We illustrate how missing meaningful relationships between inter-execution EPIDs

can result in undesirable or incorrect results for dynamic analyses.

3.1 Existing EPID Techniques

In this section, we review the different approaches for computing EPIDs that have ap-

peared historically in the context of dynamic analyses. We consider the intended use cases,

design, and requirements of each technique.

3.1.1 Calling Contexts

One of the traditional representations of EPIDs is the calling context at a point within

an execution. The calling context consists of the list of active functions currently on the call

stack. Note, similar to using the line number or program counter as an EPID in Figure 3.1,

20

the calling context is an ambiguous representation. The same calling context may appear

multiple times even within one execution. As a result, calling contexts are potentially

ambiguous EPIDs, but they provide a more detailed representation of the static program

behavior than just a line number. In spite of this, calling contexts are already familiar

to developers and can be easily collected by walking over the call stack [90, 107]. As a

result, many dynamic analysis tools use calling contexts during analysis or while generating

reports for developers [94, 106, 107, 132].

In spite of their familiarity, calling contexts were traditionally costly to collect. Walking

over the call stack at every point of interest can be costly, which has forced some dynamic

analyses to resort to sampling techniques that only analyze portions of an execution [141].

More recently, efforts have focused on efficient means of encoding calling contexts. These

include approaches that can probabilistically encode contexts in constant space [18,19,89]

as well as approaches that can precisely encode calling contexts but can require a flexible

encoding size and a slightly higher runtime overhead [117].

In the context of dynamic analysis, more precise information is usually preferred, so in

this chapter we only consider the latter work, Precise Calling Context Encoding (PCCE)

[117]. PCCE works on the principle that calling contexts are equivalent to paths through

the call graph of a program. The technique examines the call graph during compilation

and numbers all of the acyclic paths present in the graph. It then annotates every edge, or

call site, with an arithmetic operation that computes the numerical ID of the current path

in the call graph at runtime, similar to Ball-Larus path profiling [12]. Combined with the

current instruction, these comprise a calling context. PCCE handles recursion by pushing

and popping the acyclic path IDs onto a calling context stack as necessary.

For example, consider the call graph presented in Figure 3.2a. The circle annotations

on the call edges denote the amount added to the context ID before each call and subtracted

from the ID upon return. Figure 3.2a illustrates this instrumentation for the function b().

Using this example, the calling context main→b→c is captured by the pair (c,2). This

reflects the currently executing function, c(), and the numerical ID representing the path in

the call graph, 2.

21

Computing these IDs using PCCE requires that a program be instrumented at compile

time, which requires forethought and time not applicable for all dynamic analyses. For

instance, if a developer wishes to analyze an already compiled program with a tool that

uses PCCE, they have to compile the program again to have the necessary instrumentation

added. In addition, the efficiency results achieved by PCCE, 1-3.5% runtime overhead,

exploit profile guided instrumentation and additional optimizations for compressing repet-

itive and recursive calling contexts. Both of these requirements can be avoided by using

stack walking to extract the calling context, but, as mentioned before, this induces a higher

overhead [19].

main()

a() b() c()

1 3

1

def b():
...
contextID += 1
c()
contextID −= 1
...

(a) (b)

Figure 3.2.: (a) An annotated call graph that encodes all calling contexts into unique inte-

gers. (b) Example instrumentation of the function b().

3.1.2 Software Instruction Counters

Mellor-Crummey and LeBlanc introduced Software Instruction Counters (SICs) to pro-

vide a more precise notion of execution point for profiling and debugging [86]. SICs have

since been used in a variety of dynamic analyses, especially in the context of nondetermin-

istic recording and replay [26, 72, 102, 122, 131]. SICs provided the first representation of

execution points that was able to uniquely and scalably identify every instruction within

a single execution of a program. They work by maintaining a monotonic counter that in-

dicates the progress through an execution. This gives SICs the advantage of only adding

a single counter and sparse increment operations to an execution, thus yielding low over-

head. While the EPIDs defined by SICs are unambiguous within a single execution, the SIC

22

for a point may change across different executions, and the same SIC may even represent

different execution points in two different executions as seen in Figure 3.1 and Section 3.

Computing SICs involves incrementing a counter at every function call and back edge

in the control flow graph (CFG) of a program. Figure 3.1b-c show the executions of Fig-

ure 3.1a with instrumentation for computing SICs (where print, range, and input are built-

in commands). For any point within an execution of a program, the SIC instrumentation

creates a pair, (counter,current line) such that the pair uniquely identifies that execution

point. The counter maintains a notion of forward progress within the execution, and it is

only incremented at those features within an execution that may cause an instruction to

execute multiple times (loops and function calls).

Accurately placing instrumentation on back edges requires static analysis or some ad-

ditional dynamic analysis to detect loops within individual functions. This mandates either

forethought for the static analysis, just like PCCE, or additional runtime, space, and com-

plexity overhead for dynamic loop detection. Instead of instrumenting back edges in the

CFG, many analyses alternatively instrument the branch points within a program [72,122].

For executions that terminate or have side effects, these are equivalent and have the advan-

tage that branch instructions can be easily identified and instrumented by dynamic instru-

mentation or virtualization tools [85, 107].

3.1.3 Structural Execution Indexing

While the EPIDs provided by SIC suffice for intra-execution analyses, we saw in Sec-

tion 3 that an EPID defined by SIC might correspond to the first iteration of a loop in one

execution and the last iteration of a loop in another execution. Indeed, the alignment that

SICs create between the instructions of two different executions can match instructions

at the beginning of one execution with instructions at the end of a second. For dynamic

analyses that perform inter-execution analysis, e.g. execution comparison, this can lead to

meaningless results. Intuitively, when there is no relationship between instructions with the

same EPIDs across the two executions, comparing them is uninformative.

23

1 def action(x):
2 print(x)
3

4 def main():
5 for i in range(3):
6 push((5, 14))
7 x = input()
8 if x % 2:
9 push((8, 13))

10 push((11, 12))
11 action(x)
12 pop(12)
13 pop(13)
14 pop(14)

Possible Calls to action():

〈(5, 14)(8, 13)(11, 12), 11〉

〈(5, 14)(5, 14)(8, 13)(11, 12), 11〉

〈(5, 14)(5, 14)(5, 14)(8, 13)(11, 12), 11〉

(a) (b)

Figure 3.3.: (a) The program from Figure 3.1 instrumented for computing SEIs. The con-

secutive pushes at 9 and 10 are discussed in the text below. (b) EPIDs for potential calls to

action().

This provided the motivation for Structural Execution Indexing (SEI) from Xin et

al [130]. They observed that some dynamic analyses compare execution points across

executions, but the way that analyses identified execution points led to meaningless cor-

respondences, like those established by SIC in Section 3 [114, 130]. They instead sought

to use the semantic structure of underlying programs to determine which program points

corresponded. They observed that the control structures of a program along with the dy-

namic control dependence [44] at runtime established a semantic identity for execution

points even across different executions, so they used these to uniquely identify instructions

at runtime. The technique maintains a stack that keeps track of the currently active control

structures while a program executes. This stack then acts as the EPID.

The process of computing an SEI based ID for an execution point is similar to manually

maintaining a call stack at runtime, except that dynamic control dependence information is

also included in the stack. At every branch (or call) instruction, the instruction ID is pushed

onto an indexing stack along with the ID of its postdominator (or return instruction). This

(ID, postdominator) pair identifies the region of code that is control dependent upon the

branch (or call) instruction. Upon encountering a postdominator (or return), all entries in

24

the stack postdominated by that instruction are popped from stack. Applying this process

to the code from Figure 3.1 yields the new program in Figure 3.3a. Note, for each dynamic

iteration of the loop, an (ID, postdominator) token is pushed on the stack at line 6. As seen

in Figure 3.3b, showing the EPIDs for each call to action(), these tokens track the mono-

tonic progress of an execution through a loop until the loop finishes and all iteration tokens

are popped at line 14. The pop(x) operation removes all tokens with the postdominator

x. The push and pop on lines 9 and 13 bound a region of code control dependent upon

line 8 [44], while those on lines 10 and 12 identify the call on line 11. Uniquely identifying

function calls is crucial because the same function may be called multiple times, and not

differentiating the call sites would lead to ambiguous EPIDs.

The complete algorithm also contains additional operations for optimizing simple loops

using counters and for eliminating pushes onto the stack that can be inferred based purely

on where an instruction lies within the CFG. For example, the push for each loop iteration

on line 6 can be replaced by a counter increment, since the loop has a single conditional

guard. Also, executing the body of the if statement in Figure 3.3 automatically implies that

the if statement on line 8 was executed and the True branch taken. Thus, the pushes and

pops on lines 9 and 13 can be safely elided.

The intuition that control dependence creates a semantic relationship across executions

had previously been used for trace similarity metrics [53] and has proven effective enough

that SEI has gained traction in analyses that examine inter-execution relationships. It has

since been used for tasks ranging from automated debugging [116] to concurrent profil-

ing [139] to identifying causes of security vulnerabilities [65]. In spite of this, tracking

control dependence can require O(N) space where N is the length of an execution, which

does not scale for some programs. The aforementioned optimization heuristics can mitigate

this problem in practice, but they do not eliminate it. We explore the space and runtime

overheads in Section 3.4. In addition SEI requires that a program be instrumented at com-

pile time to accurately identify postdominators.

As previously noted, SEI was designed to guarantee EPIDs across executions could

only be equal for execution points that correspond across the executions. In some cases it

25

1 if a || b:
2 action()

if a

if b

action()

EXIT

Calls to action():

〈(1a,EXIT)(2,EXIT), 2〉

〈(1a,EXIT)(1b,EXIT)(2,EXIT), 2〉

(a) (b) (c)

Figure 3.4.: (a) A simple program where structural execution indexing is dependent upon

the execution path. (b) The CFG with two paths to action(). (c) EPIDs for the call to

action().

is too aggressive in achieving this goal and can create different EPIDs even when execution

points meaningfully correspond across executions. Consider the code in Figure 3.4a. A

short-circuiting or operation creates the CFG in Figure 3.4b with two branches and two

paths to action() on line 2. Note that the paths through the program split based on the values

of a and b, but the paths that call action() merge together again before this call. Intuitively,

the calls to action() occur at the same execution point even in different executions, so

their EPIDs should be the same. In spite of this, because SEI bases EPID construction on

the control dependence of the execution point, different paths to the same point can have

different EPIDs. In this case, as Figure 3.4c shows, one EPID encodes a path where a is

True and the call is control dependent on 1a. The other encodes the path where just b is

True, and the call is depends first on 1b which transitively depends on 1a [44]. We show

later in Section 3.4.3 that this counterintuitive relationship leads to undesirable results for

dynamic analyses.

3.1.4 STAT Ordering

The techniques presented thus far have all required either static or dynamic program

instrumentation. In some cases however, such as when analyzing a deployed program or

when analyzing a program whose behavior changes when it is instrumented, it is necessary

to avoid any instrumentation whatsoever. This motivated the EPID technique presented by

Ahn et al. as a part of their Stack Trace Analysis Tool (STAT) [6]. STAT was designed

26

for debugging high performance computing applications with multiple processes. In order

to better classify and group equivalent processes that represented failures, they developed

a technique for analyzing core dumps of programs in order to extract the execution point

where a program failed. These core dumps are essentially snapshots of program memory

and contain not only the call stack of the execution at the point of failure but also the

values of all variables on the stack or heap at that point. In addition to producing an EPID

from the core dumps, STAT produced a partial ordering of execution points across different

executions. This partial order was particularly important in the context of analyzing parallel

code that involved multiprocess communication. STAT was the first EPID technique we are

aware of that observed that a partial ordering of EPIDs could be useful for analyses.

EPIDs produced by STAT are also stack based, similar to those produced by SEI. How-

ever, STAT does not have any of the control dependence or postdominance information

used by SEI. Instead, STAT infers as much as possible about the identity of an execution

point from the core dump. In particular, EPIDs from stat interleave (1) the call stack of the

execution point and (2) values of certain local variables that show the monotonic progress

of an execution through loops. The call stack of an execution point can be extracted from

the core dump using stack walking methods previously mentioned in Section 3.1.1, but

finding variables that show loop progress is more difficult. Indeed, such variables do not

even always exist, so STAT makes no guarantee that EPIDs it produces are unambiguous.

To approach the problem pragmatically, STAT defines loop order variables (LOVs) that can

easily be recognized and extracted as indicators of loop progress when present. LOVs must

(1) be defined at least once each iteration, (2) be given strictly increasing or decreasing

values over a loop’s lifetime, and (3) be given an identical value each particular iteration

across all possible executions. Informally, these variables are given a strictly ordered and

predefined sequence of values. STAT also defines a static analysis for identifying when

these variables are available.

Consider the simple program in Figure 3.5a. This program contains two loops, one that

iterates over a fixed range of integers on lines 1 & 2 and another that iterates over a linked

list on lines 3 & 4. Suppose that the linked list contains two elements. The EPIDs computed

27

1 for i in range(3):

2 process int(i)

3 for node in linkedList:

4 process node(node)

Possible Calls to

process int() and process node():

〈(1, i 7→ 0)→ (2, process int)〉

〈(1, i 7→ 1)→ (2, process int)〉

〈(1, i 7→ 2)→ (2, process int)〉

〈(4, process node)〉

〈(4, process node)〉

(a) (b)

Figure 3.5.: Example of using STAT to identify EPIDs at the calls to process int() and

process node().

by STAT for each call to process int() or process node() are shown in Figure 3.5b. For the

first loop, STAT is able to identify that i is a LOV, so its value inside the loop is extracted

and included in the EPID of each function call. This makes the EPID for each call to

process int() unique. However, for the second loop, there is no LOV, as the loop iterates

over a linked list. As a result, the EPID contains only the call to process node(), and the

EPIDs are ambiguous.

In contrast to previous techniques, STAT does not require program instrumentation

and thus does not induce additional overhead on an analyzed application. However, it

can only extract an EPID at a location where the program produced a core dump, e.g. a

crashing failure. In practice, this meant that STAT was strictly a post-mortem technique;

it could not produce EPIDs on the fly as a program was executing. While this limitation

can be worked around by explicitly producing core dumps, both the runtime and space

overhead of producing core dumps can be prohibitive. Also note that STAT makes use of

static analysis for identifying the LOVs whose values it captures. Performing this analysis

precisely requires access to the CFG and variable information available at compile time,

but it can also be approximated through binary static analysis, thus avoiding the need for

any compile time information.

28

3.1.5 Lightweight Execution Indexing

While SEI offers an approach for computing EPIDs online at runtime, the potential

overhead can cause scalability problems and interfere with the program being analyzed.

This occurs when loops have multiple guarded exits. Consider the loop in Figure 3.6. SEI

pushes a token onto the stack every time lines 1 or 3 execute because they branch the control

flow, but those tokens will not be popped off the stack until the loop finishes because the

branches are postdominated by a statement outside the loop. In order to avoid the overhead

of SEI, some analyses instead use information about the number of times an instruction has

been seen within a particular calling context, a particular function invocation, or invocations

at a certain depth of the call stack [28, 69]. A canonical example of this is Lightweight

Execution Indexing (LEI), which was used to identify allocated objects in order to help

expose potential deadlocks in concurrent Java programs [69].

1 while a:
2 . . .
3 if b: break
4 . . .

(d)

Figure 3.6.: A loop with linear SEI growth.

The approach of LEI is to maintain a counter for each depth of the call stack. This

counter keeps track of how many times a particular method has been called at that depth.

For instance, the first time that the method foo() is called at a depth of 3 on the stack, its

hit counter for the depth 3 is 0. The next time it is called at the depth of 3 on the stack, its

hit counter for that depth is 1. The counter for each method at each depth is maintained

independently. The LEI for a given execution point then comprises the current calling

context along with the hit counts of every call site within the context as well as the hit

count and identity of the currently executing statement.

This approach bounds the size of the an EPID to twice the size of the calling context. In

addition, it maintains a notion of forward progress through depth counters, and this notion

of progress is structured by the call stack. As a result, each EPID is unique and unam-

29

biguous within one particular execution. Unfortunately, exactly as with SIC, the values of

counters seen in one execution have no guaranteed relationship with the counters seen in

other executions. As a result, Lightweight execution indexing can provide EPIDs within

one execution, but it cannot provide meaningful EPIDs across executions.

Also similar to SIC, LEI does not inherently require that a program be analyzed or

rewritten at compile time. The counters associated with each function and statement of

interest at every depth of the call stack can be entirely constructed using dynamic instru-

mentation without a need for prior planning.

3.2 Precise Execution Point IDs

Dynamic analyses comparing multiple executions are increasingly common [65, 116,

125], so having a robust, efficient EPID technique that works across executions is important.

Such inter-execution techniques create EPIDs that are only equal when their corresponding

execution points are equivalent. Prior work has called this the execution correspondence

criterion [130]. In spite of this problem’s importance, we see that there are only two existing

techniques that can provide EPIDs across executions: SEI and STAT. Both techniques have

limitations that can prevent them from being practical or useful for particular dynamic

analyses. In particular, we desire an inter-execution EPID technique that is:

• Online - An analysis should be able to construct the EPID for the current point in the

execution and as often over the lifetime of an execution as necessary.

• Low Overhead - An execution running with an EPID technique should require as

little additional runtime and memory as possible.

• Scalable - Neither the duration of an execution nor the size of its workload should

significantly affect the runtime or space requirements of the EPID technique.

• Unambiguous - Every instruction or statement within an execution should have a

unique EPID.

30

• Comprehensive - As a dual to satisfying the execution correspondence criterion,

equivalent execution points should also yield equal EPIDs.

Neither SEI nor STAT is able to satisfy all of these requirements. SEI is not low over-

head, scalable, or comprehensive, and STAT is not online, unambiguous, or comprehensive.

In this section, we introduce a new EPID technique, Precise Execution Point IDs (PEPID),

that targets all of these criteria. We start by building an intuition about which points should

correspond across executions in order to provide unambiguity and comprehensiveness. We

then devise a technique for computing EPIDs that produces this correspondence efficiently

online.

3.2.1 Which Points Correspond?

Because we desire an inter-execution EPID technique, we must first decide which exe-

cution points should correspond or align across executions. The intuition used by SEI was

that the path taken by an execution helped to determine which execution points were equiv-

alent, and SEI used control dependence to codify this relationship. STAT, in contrast, used

the intuition that loop control variables captured a notion of forward progress through the

loop iterations of an execution. But, as we saw before, control dependence prevents com-

prehensiveness, and focusing on loop control variables leads to ambiguity. In contrast, we

base PEPID on the idea that execution points at the same position in a sufficiently inlined

and unrolled CFG are equivalent.

Consider a simple program with an acyclic CFG and no function calls. Each instruc-

tion inside the program can be executed at most once, so an instruction’s position within the

CFG can unambiguously identify the instruction within an execution. In addition, the same

instruction will trivially have the same EPID across all possible executions, thus guarantee-

ing comprehensiveness. Unfortunately, this model is unrealistic in general; real programs

have both function calls and back edges in their CFGs, both of which can cause instruc-

tions to execute more than once and thus introduce ambiguity. However, we can extend the

intuition of equivalent points in the CFG to handle those cases as well.

31

1 def action(x):

2 print(x)

3
4 def main():

5 while notDone:

6 . . .

7 action(x)

8 action(x)

def main():

while notDone:

. . .

action(x)

action(x)

print(x)

print(x)

if notDone:

. . .

action(x)

if notDone:

. . .

action(x)

if notDone:

. . .

print(x)

if notDone:

. . .

action(x)

if notDone:

. . .

print(x)

if notDone:

. . .

def main():

action(x)

print(x)

(a) (b) (c)

Figure 3.7.: (a) A small program. (b) The program with calls logically inlined. (c) The

program with calls inlined and loops unrolled.

First, consider programs that also include function calls. A function may be called from

multiple locations, thus executing its body multiple times and making the CFG location an

ambiguous EPID. A simple solution to this in most cases would be to inline every function

call. If every call were inlined, then function bodies would be duplicated at every call site,

once again ensuring uniqueness. Thus, the position of an instruction within this fully inlined

CFG serves as an unambiguous EPID (ignoring loops). This can be seen in Figure 3.7a-b.

This simple program makes calls to action() both inside and outside of the loop. Using the

position in the CFG alone would make these calls to print() on line 2 ambiguous, however,

once action() is inlined, the calls from inside the loop are clearly distinguished from those

outside of the loop. Of course, this cannot be done in practice because (1) recursive calls

would require an undecidable degree of inlining and (2) inlining every function call would

simply increase a program’s size too much to be pragmatic. However, we only need to

perform this operation logically for now. We shall later show that the same correspondence

can be computed without actually inlining any functions at all.

Next, we must handle back edges in the CFGs of a program’s functions. Back edges

create loops or general cycles in a CFG and can thus cause instructions to execute multiple

32

times, again making an instruction’s position in the CFG ambiguous as an EPID. One ap-

proach used by bounded model checkers is to unroll the loops of a program [15, 27]. Each

iteration of a loop is peeled of into the guarded body of an if statement, and each succes-

sive iteration is nested within the body of the preceding iteration. Figure 3.7c illustrates this

unrolling in combination with the inlining of function calls. Again, unrolling a loop suffi-

ciently for all executions is not possible in practice, but we shall show that this limitation

is irrelevant in the next section.

Using this combination of unrolling and inlining, we are able to define how execution

points relate across executions:

Definition 3.2.1 (Alignment) Given two execution points, p1 and p2 from executions e1

and e2 of program p respectively, let G be CFG of p sufficiently unrolled and inlined to

contain both execution points. Points e1 and e2 align iff they occur at the same instruction

in G.

This alignment of execution points determines exactly which points are equivalent and

must have equal EPIDs even across different executions. Observe, in this transformed

program G, execution points p1 and p2 can each be performed at most once in any exe-

cution, as guaranteed by the acyclic structure of the unrolled and inlined CFG. Thus, the

transformed program guarantees that the position in the control flow graph of the program

provides an unambiguous EPID, and the control flow graph correspondence maintains com-

prehensiveness as before. This means that PEPID avoids the problems with SEI presented

in Figure 3.4 and Figure 3.6.

3.2.2 Efficiently Computing PEPIDs

As discussed in the last section, inlining all function calls and unrolling all loops is

impractical and even undecidable in general, so we must compute this equivalence another

way. Instead of actually performing these program transformations, PEPID executes the

original program without any extra inlining or unrolling but at the same time keeps track

of the inlining and unrolling operations that would have occurred in order to identify the

33

Instrument(P)
Input: A program P

1: for each loop l in P do

2: insert pushLoopCounter before the loop header of l

3: insert incrementLoopCounter before loop latches of l

4: insert popLoopCounter on loop exits of l.

5: for each call c in P do

6: insert pushCallSiteID before c

7: insert popCallSiteID after c

Figure 3.8.: Instrument takes in a program P and modifies it to maintain a PEPID online.

This is the unoptimized instrumentation.

current execution point. We keep track of these operations on an ID stack, similar to those

used in SEI and STAT. This stack is then what PEPID uses to produce EPIDs.

In particular, we push an entry onto the stack to identify the call site of every function

invocation, popping it as the function returns (or unwinds for exceptional control flow).

This tracks the inlining operations for all function invocations. We also need to track all

unrolling operations for backedges. We first consider only natural loops, loops with a single

entry node or loop header, but we extend this to irreducible loops in the next section. We

compactly record the unrolling of natural loops by pushing a counter for the loop upon

loop entry and popping the counter upon loop exit. We increment the counter upon every

iteration of the loop by instrumenting the loop latches, or the edges in the CFG that lead

back to the loop header. The stack also naturally handles nested loops.

Figure 3.8 shows a naı̈ve instrumentation algorithm for PEPID. It does not cover excep-

tional control flow, but we handle exceptions by saving the ID stack height before a call that

might throw an exception and pruning the stack to that height if an exception was thrown.

Note that the entries in the stack related to inlining and the entries related to unrolling may

be maintained independently because they can be unambiguously recombined. This stems

from the fact that, given an instruction i, the number of static loops containing i may be

readily identified. As a result, a PEPID can be broken down into (1) the inlining ID stack,

(2) the unrolling ID stack, and (3) the current instruction ID. Observe, though, the inlining

ID stack is precisely equal to the calling context. PCCE already provides a means of en-

coding the calling context that is more efficient than explicitly pushing and popping at each

34

call site, so we can exploit this to make PEPID computation more efficient. At any point

during the execution, a dynamic analysis can call getCurrentPEPID() to yield an EPID of

the form:

〈PCCE calling context, unrolling ID stack, current instruction〉

This tuple comprises an EPID that provides comprehensiveness and uniqueness based on

the prior construction.

Like SEI and STAT, PEPID requires compile-time knowledge about a program. In

particular, efficiently computing PCCE calling contexts requires the call graph, and the un-

rolling stack requires loops to be identified. For programs with only natural loops, it is also

relatively compact. The PCCE context is bounded in the worst case by the calling context

depth, and the loop unrolling stack is bounded by the number of nested loops that may

be active at one time within a program. We show in Section 3.4 that this instrumentation

scheme allows PEPID to scale with low overhead.

3.2.3 Handling Irreducible Loops

A

B
C

D

E

A

B
C

D

E

A

B

C

D

E
(a) (b) (c)

Figure 3.9.: (a) A natural loop. (b-c) Irreducible loops.

Counting iterations is effective for natural loops, which have a unique headers or entry

nodes. In that context, unrolling loops is well defined and corresponds to actions upon

the unrolling ID stack. Programs can also have unnatural or irreducible loops, which have

multiple entry points. Indeed, half the SPEC CINT2006 benchmarks have such loops. Fig-

ure 3.9 shows some natural and unnatural loops. With multiple headers, distinguishing a

35

loop body from a nested loop is difficult. We use Steensgaard’s generalized loop forest

recognition to identify irreducible loops and their bodies [112]. Steensgaard’s approach is

preferable to other loop extraction techniques in that it produces consistent results regard-

less of how a CFG is traversed [98]. Both (b) and (c) are individual (irreducible) loops

under this approach with headers B and D for (b) and B, C, and D for (c).

Sometimes, using an iteration counter can still work for irreducible loops. Given a loop,

if there exists a header h of the loop such that every path from each header h′ through the

loop body back to h′ must pass through h, then we say that the header h naturalizes the

loop. This is because there exists a traversal of the CFG such that every backedge in the

loop has h as its destination. Thus, we can use a counter as before and simply increment it

on every loop edge that targets h. An alternative intuition is that breaking only edges to h

would destroy all cycles in the loop, so a counter incremented on h will uniquely identify

instances of this acyclic subregion. Node B in loop (b) is one such naturalizing header.

Note that this is just a generalization of natural loops, where the unique header always

naturalizes the loop body. We identify naturalizing headers using simple static analysis.

Without a naturalizing header, edges to multiple headers must increment the counter

to avoid ambiguity. Conservatively, all headers may need to increment. This can yield

unintuitive results. For example, the path ABDCDCDC in loop (c) would have the EPID

〈Entry, {6},C〉 if edges to header nodes increment the loop counter, but so would the path

ABCBCBDC. Here, Entry is the calling context, and {6} is the unrolling ID stack. Techni-

cally, there exists an unrolling of (c) that produces these IDs, but it is unclear how mean-

ingful this is in practice. Alternatively, we can use the same approach as SEI for only this

small portion of the program. We push the IDs of predicates in the loop that the headers are

control dependent upon and pop them upon their postdominators. This produces the EPIDs

〈Entry, {(B, E)(D, E)(C, E)(D, E)(C, E)(D, E)},C〉 and 〈Entry, {(B, E)(C, E)(C, E)(C, E)

(B, E)(D, E)},C〉, which show the different paths. Both approaches produce unambiguous

inter-execution EPIDs. They merely use different approaches for unrolling these degener-

ate irreducible loops. In fact, an analysis can correctly select either. If overhead is more

important, then incrementing on the edges to all headers is preferable. If disambiguating

36

the different paths through these loops is important, then using the localized pushing and

popping from SEI is preferable.

3.3 Analytical Comparison

In this section, we examine some of the analytical properties of the different techniques

surveyed and how they impact which techniques are preferable in different situations. Fig-

ure 3.1 summarizes the results, and we discuss them in detail below.

Availability- Many dynamic analyses require that EPIDs be available online, e.g. for

identifying events like allocation or synchronization during an execution. Most of the tech-

niques provide EPIDs online, although STAT does not. However, for analyses that are

interested in execution points at the point a program crashes, STAT can still be a useful

choice because it alone avoids the need for any program instrumentation.

Requirements & Instrumentation- The requirements and time of instrumentation for

the techniques can sometimes create more work for analyses or developers that depend on

EPIDs. For example, STAT places the lowest instrumentation burden on users and client

analyses because it does not modify the underlying program. As a result, it is easy for STAT

to be used with an already compiled program. Because it imposes no overhead, it could

even be used on deployed software. Techniques like SIC and LEI that use local counters

can be implemented using runtime instrumentation alone, so they also impose little burden

on users, but they may not be appropriate for deployed software. Finally, the remaining

techniques all require that programs are recompiled with additional static instrumentation.

This requires the most work and planning on the part of the developer or client analysis.

Independent of instrumentation, the techniques can also require additional source level

information to be precise. PCCE, SEI, and PEPID all require additional compilation infor-

mation, which is expected since they also require static instrumentation. However, STAT

also requires some compile time information in order to identify LOVs. This requirement

holds in spite of the fact that STAT performs no instrumentation.

3
7

Table 3.1: Analytical properties of the different EPID techniques.

Properties PCCE SIC SEI STAT LEI PEPID

Availability online online online offline online online

Requirements Call Graph None
Control Dependence

Loops
Loop Order

Variables
None

Call Graph

Loops
Instrumentation static dynamic static none dynamic static

Ambiguous yes no no yes* no no

Inter-execution no no yes no* no yes

Comprehensive no no no no* no yes

Ordering none intra inter inter intra inter

Space Overhead O(call stack) O(1) O(path length) none O(call stack) O(call stack + unrolling stack)

38

Ambiguousness & inter-execution IDs- Ambiguous EPIDs do not necessarily confer

much information about where an execution point occurs temporally. Thus, ambiguous

techniques may be useful for attaching a lightweight notion of local execution context to an

execution point, but they cannot be used for more fine grained execution comparison based

techniques [125]. Note, though, that while both PCCE and STAT are listed as ambiguous,

STAT is unambiguous for programs in which all loops have identifiable LOVs (hence the

‘*’ in the table).

The major differentiating feature of inter-execution techniques is that they are able to

align loop iterations across different executions. As a result, techniques that do not track

the progress through each loop independently are unable to provide inter-execution IDs.

This effectively leaves only SEI and PEPID as viable techniques for analyses requiring

such EPIDs. Note, however, that STAT can also provide this under the same assumptions

of LOVs as before (*).

Comprehensiveness- One of the large limitations of SEI was that it was not compre-

hensive. While its EPIDs always established a correspondence across executions, it also

created different EPIDs for execution points that did correspond (see Figure 3.4). Note, for

programs with LOVs (*), STAT actually is comprehensive. However, in contrast to both,

PEPID provides comprehensive inter-execution EPIDs in general, making it a preferable

choice when instrumentation is possible.

Ordering- Some analyses require that EPIDs be ordered. For example, record and

replay techniques require that EPIDs be ordered within one execution (intra) [102]. Some

analyses require stricter orders, where EPIDs are partially ordered even across executions

(inter) [6, 116, 125]. Most of the techniques are able to provide intra-execution ordering

among EPIDs, except for calling contexts with PCCE. SEI, STAT, and PEPID provide

stronger inter-execution ordering as well through happens-before relationships among their

EPIDs [79].

Space overhead- The size of EPIDs is also an important concern. The required space

ranges from none or a constant word, STAT and SIC respectively, to proportional to the

length of an execution in the worst case for SEI. All other techniques, however, have EPIDs

39

that grow roughly proportional to the size of the call stack. We examine later how the sizes

of the EPIDs produced by these techniques compare in practice.

3.4 Empirical Evaluation

In order to compare these different EPID techniques in practice, we implemented all

of them using LLVM 3.2 as a program instrumentation platform and compared them on

the SPEC CINT2006 benchmarks. The implementations cover all basic program behavior

covered by these benchmarks, including exceptional control flow. In this section, we look

closely at the compile time properties as well as the runtime and space overheads induced

by these techniques. We conclude by looking at a particular case study that illustrates why

comprehensiveness is important in practice.

Note that neither the runtime nor space overhead comparisons include STAT. This is

because STAT performs no instrumentation and thus has no overhead. However, the effec-

tiveness of STAT, as discussed in the last section, depends heavily on the ability to produce

core dumps and identify LOVs. To gauge whether or not these variables can be found in

practice, we compiled the SPEC benchmarks and counted the total number of static loops as

well as the number of static loops for which a LOV could be identified. Table 3.2 contains

the results.

Overall, a median of 34% of loops had identifiable LOVs across the different bench-

marks, and 31% of all loops had such variables. This indicates that relying on LOVs may

not be practical in general. However, STAT was originally designed for analyzing high per-

formance computing programs. For programs in that domain, the structure of the programs

may make relying on LOVs practical [6].

3.4.1 Runtime Efficiency

For each of the techniques except STAT, we ran the SPEC CINT2006 benchmarks using

‘reference’ workloads 5 times and computed the median and 95% confidence interval for

the mean. We ran all experiments on a 64-bit Intel i5 machine with 8GB RAM running

40

Table 3.2: LOV identification for SPEC CINT2006.

Program # Loops # LOVs % with LOVs

400.perlbench 2151 251 12%

401.bzip2 324 80 25%

403.gcc 7344 1816 25%

429.mcf 57 8 14%

445.gobmk 1444 1090 75%

456.hmmer 425 218 51%

458.sjeng 364 140 38%

462.libquantum 78 60 77%

464.h264ref 1526 1192 78%

471.omnetpp 913 280 31%

473.astar 101 65 64%

483.xalancbmk 8637 1938 22%

total 23364 7138 31%

Ubuntu 13.04. Figure 3.10 presents the normalized median of each technique compared to

uninstrumented trials of the benchmark suite. We also present the geometric means of the

normalized results for each technique. Error bars indicate the 95% confidence intervals of

the means.

PCCE and SIC usually have the lowest overhead on average, 8% and 9% respectively.

The next closest is PEPID with 25%, then LEI with 70% and SEI with 314%. We imme-

diately see that in comparison to the other inter-execution technique, SEI, PEPID consis-

tently produces lower overhead. The original SEI paper produced overhead near 42% on

average, which differs the results we find. While we used clang, SEI used Diablo/FIT

with link time optimization [121], yielding optimization differences. The original evalua-

tion of SEI also used SPEC CPU95 and CPU2000 benchmarks with smaller workloads than

those present in the 2006 benchmarks. When we used the ‘test’ workload, the smallest that

SPEC provides, SEI improved to 90% overhead. This illustrates that scalability was indeed

a problem for SEI. One of the benchmarks, 471.omnetpp, would not even run using SEI

on the reference workload because the stack used for EPIDs consumed all memory and

41

40
0.p

erl
be
nch

40
1.b

zip
2

40
3.g

cc

42
9.m

cf

44
5.g

ob
mk

45
6.h

mm
er

45
8.s
jen

g

46
2.li
bq
ua
ntu

m

46
4.h

26
4re

f

47
1.o

mn
etp

47
3.a

sta
r

48
3.x

ala
ncb

mk

ge
om

ean

1.0

1.2

1.4

1.6

1.8

2.0

No
rm

al
iz
ed

 O
ve

rh
ea

d

Base PCCE SIC SEI LEI PEPID

8%
9%

314%

70%

25%

Figure 3.10.: Median runtime overhead normalized against the uninstrumented benchmark

of the different EPID techniques on SPEC CINT2006 benchmarks. Error bars show the

95% confidence intervals for the mean of each technique.

crashed the program before completion. In contrast, PEPID’s overhead was always closer

to SIC and PCCE, in spite of the fact that it provides a more informative form of EPID.

We also note that the original PCCE paper reports overhead closer to 3%. The work

used profile guided instrumentation to achieve low runtime overhead, but we did not use

profile guided instrumentation in our LLVM based implementation. Also, while we used

clang to compile programs, PCCE used gcc, which optimizes programs differently. This

does not affect our comparison because all techniques in this chapter were compiled using

clang. In addition, using profile guided optimizations for PCCE would just strengthen the

results of PEPID, since PEPID relies on PCCE as a subtask.

3.4.2 Space Overhead

Maintaining the current EPID consumes memory for each technique except STAT. Ta-

ble 3.3 lists the maximum memory overhead for each benchmark and technique as well

as the mean across all benchmarks. SIC and STAT require a single word or no overhead,

respectively, which may be preferable if memory must be conserved. Even though PCCE

compactly encodes the calling context, it still takes 51.1KiB on average because some

benchmarks have deeply nested calls. For instance, 403.gcc has a maximum depth of 21100

42

Table 3.3: Worst case memory overhead of EPID techniques.

Program PCCE SIC SEI STAT LEI PEPID

400.perlbench 197KiB 8B 59.8MiB 0 110KiB 262KiB

401.bzip2 8B 8B 238MiB 0 5KiB 112B

403.gcc 165KiB 8B 885MiB 0 1.1MiB 496KiB

429.mcf 232B 8B 626MiB 0 5.3KiB 488B

445.gobmk 2.7KiB 8B 16.3MiB 0 126KiB 5.4KiB

456.hmmer 32B 8B 255KiB 0 6.1KiB 96B

458.sjeng 368B 8B 21.3KiB 0 20.4KiB 856B

462.libquantum 8B 8B 40MiB 0 5.2KiB 48B

464.h264ref 24B 8B 121KiB 0 9.7KiB 168B

471.omnetpp 1.9KiB 8B >7GiB 0 22.4KiB 1.9KiB

473.astar 8B 8B 1.3MiB 0 5.6KiB 64B

483.xalancbmk 246KiB 8B 2.86GiB 0 12.6MiB 431KiB

mean 51.1KiB 8B 436MiB 0 1.2MiB 99.9KiB

calls. Profile guided instrumentation can help reduce this. However, even the worst case

overhead of PEPID, which uses PCCE, is relatively low, around 100 KiB on average. It is

almost always smaller than LEI and is orders of magnitude smaller than SEI in spite of its

precision. This makes PEPID a preferable technique for analyses needing inter-execution

EPIDs.

3.4.3 Client Impact

We now show how a comprehensive technique like PEPID is preferred over a non-

comprehensive technique like SEI for a particular dynamic analysis. We consider an anal-

ysis known as dual slicing. Dual slicing is a backward slicing technique that contrasts two

executions [125]. Instead of including all backward dependences for a slice criterion, it

includes only those dependences that either (1) exist in only one of the executions or (2)

exist in both executions but define different values. In this way, dual slicing produces a no-

tion of explanation for why two executions differ, which can be useful for debugging [125]

or for security analysis [65]. Backward slicing techniques traditionally include too many

43

1 x = input()
2 . . .

3 if a || b:
4 print(x)

x = 5
. . .

if True || . . .:
print(5)

x = 3
. . .

if False || True:
print(3)

(a) (b) (c)

1

3a

3b

4

. 1

3a

3b

4
(d) (e)

Figure 3.11.: (a) A program that can lead to bad dual slices using SEI. (b) A trace where

a is True. (c) A trace where b is True. (d) A dual slice using SEI. (e) A dual slice using

PEPID.

dependences to be practical [135], so dual slicing is particularly useful because it prunes

away irrelevant dependences as it contrasts two executions.

EPID techniques like SEI form the foundation of dual slicing. EPIDs determine whether

a dependence in one execution exists in another. Unfortunately, when noncomprehensive

EPIDs are used, they can include unnecessary dependences in the slice, defeating one of

the main goals of the technique.

Consider the program in Figure 3.11a. This program reads an integer x from the user

and prints it if either a or b is True. Suppose there are two different executions of the

program, one where the program prints 5, and the other prints 3 as shown in Figure 3.11b-

c. Note that a is True in one execution, but only b is True in the other. This matches

the case we considered earlier in Section 3.1.3, meaning that the print statements in the

two executions have different EPIDs under SEI. Because the EPIDs differ, dual slicing

considers them different statements and also includes their control dependences. The dual

slice includes the different values of a and b via control dependence, even though they do

not actually affect the output differences. These irrelevant dependences get in the way and

impede the user’s ability to understand why the executions printed different numbers as

shown in Figure 3.11d. Here, the arrows denote dependences in the dual slice. In contrast,

44

a comprehensive technique like PEPID is able to identify that the print statements occur at

the same execution point and identify that the differing user input for x caused the different

output. Figure 3.11e shows the dual slice when using PEPID and clearly identifies how the

input difference directly caused the output difference.

3.5 Related Work

We examined several approaches from literature that compute EPIDs for dynamic anal-

yses [6, 69, 86, 117, 130]. Each of these techniques has been used to solve real problems

in dynamic analysis ranging from informing replay techniques [102] to fine-grained exe-

cution comparison [125]. The comparison of these techniques along with our new EPID

computation technique, PEPID, is one of the core contributions of this work.

In developing PEPID, we based our system around the notion that the position within an

unwound and unrolled CFG provides a notion of identity for execution points. This was in-

spired in part by bounded model checking [27], but model checkers do not need to consider

the alternative high-level semantics for unrolling degenerate irreducible loops. Similar no-

tions of identifying execution points also exist within static analysis, where k-CFA provides

a statically bounded approximation of execution points using a similar intuition [109].

3.6 Conclusion

In this chapter, we examined several techniques for computing execution point IDs

(EPIDs) and considered their strengths, weaknesses, and limitations. To address limita-

tions of inter-execution EPIDs, we introduced a new technique, PEPID, that is able to

comprehensively compute inter-execution EPIDs with significantly less space and runtime

overhead than existing techniques. PEPID also produces more meaningful relationships

between EPIDs in different executions. We also showed that establishing these meaning-

ful relationships is useful in the context of real world dynamic analyses. PEPID forms a

foundation for contrasting instructions across two executions and thus drives the debugging

techniques presented within this dissertation.

45

4 IDENTIFYING AND REPLACING MEMORY ACROSS EXECUTIONS

The SEI and PEPID introduced in Chapter 3 provide ways to identify the instructions that

align across different executions. This alignment allows analyses to compare different ex-

ecutions. Comparing executions is a fundamental challenge in dynamic program analysis

with a wide range of applications. For instance, comparing executions of two versions of a

program with the same input can be used to isolate regression faults [57] and analyze the

impact of code changes [99]. Comparing program state at different points within execu-

tions can also be used to normalize and cluster execution traces, simplifying analyses that

use those traces as input [37]. Comparison also provides unique advantages in program de-

obfuscation [42] and debugging compiler optimizations, where aggressive transformations

make static comparison less effective. Two executions from the same concurrent program

can be generated with schedule perturbations to confirm harmful data races [130], and real

deadlocks [70].

However, EPIDs only solve one dimension of the problem – aligning corresponding

instructions or control flow. The algorithm in Figure 2.2 requires more. The other un-

solved dimension, orthogonal to control flow, is memory. In the presence of program differ-

ences, input differences, or non-determinism, corresponding memory regions or structures

in the heap are allocated in different places across runs. Therefore, although executions are

aligned along control flow paths, if memory regions are not also aligned, comparing the

values of variables is not meaningful.

Existing techniques rely on sub-optimal solutions [99, 114, 132], such as identifying

memory using symbolic names. In particular, to compare memory states of two executions,

reference graphs [17] are first constructed in which global and local variables are roots,

and memory regions, especially heap regions, are connected by reference edges. Roots

align by their symbolic names, and other memory regions align by their reference paths,

which consist of variable and field names. We call this approach symbolic alignment. How-

46

ever, symbolic alignment of memory is problematic in the presence of aliasing. A detailed

discussion of the issue can be found in Section 4.1.

In this chapter, we propose a technique called memory indexing (MI). The central idea

is to canonicalize memory addresses such that each memory location is associated with

a canonical value called its memory index. Memory locations across multiple executions

align according to their indices. Pointers are compared by comparing the indices of their

values. Memory indices are maintained along an execution such that they can be directly

accessible or computable.

Overall, we make the following contributions.

• We formally present the memory indexing problem. We identify key properties of

valid solutions.

• We discuss two semantics for memory indexing. The first one is an online semantics

that computes indices on the fly during execution and handles pointer arithmetic. The

second is a lazy semantics that computes indices on demand. It has lower cost and is

more suitable for languages without pointer arithmetic.

• We introduce a practical design that uses a tree to allow multiple indices to share their

common parts. Optimizations remove redundant tree construction and maintenance.

• We illustrate how memory indexing facilitates computing cause transitions for fail-

ures. Novel memory comparison and substitution primitives resolve limitations of

existing solutions. They allow robust mutation of a passing run to a failing run by

copying state across runs.

• We evaluate the proposed MI scheme. It causes a 41% slow down and 213% space

overhead on average. The results of two client studies show that MI is able to canon-

icalize address traces across runs, and it scales cause transition computation to pro-

grams with complex heap structures.

The ideas presented in this chapter have been previously published by the author in the

proceedings of FSE 2010 [115].

47

4.1 Motivation

Execution comparison not only requires alignment of the control flow of executions, but

also the memory. Aligning and comparing memory snapshots across runs is a key challenge.

Previous techniques do not provide satisfactory solutions to the following challenges.

0 1 2 0 1 2

p p

(a) Pointer difference

0 1 2 1 1 2

p =0x0D04CF80 p =0x0DA10030

(b) Field value difference

Figure 4.1.: Pointer comparison. Linked lists represent the snapshots of different execu-

tions. Each node has two fields: val and next.

Support for Pointer Comparison. Many applications require the ability to compare

pointers across runs. For example, regression debugging [57] and computing cause transi-

tions [132] rely on contrasting variable values in a passing run and a failing run to identify

faulty values. For pointer related failures, it is critical to identify when a pointer contains

a faulty value. However, due to semantic differences or non-determinism, even pointers

that point to the same data structure can have different values across runs, so they are not

directly comparable. Most existing techniques do not support pointer comparison. Instead,

non-pointer field values, such as p→ val and p→ next→ val in Figure 4.1, are compared

following their symbolic reference paths. For the case in Figure 4.1 (b), such compari-

son yields the right result. That is, only p → val has different values across executions.

Whereas in case (a), the conclusion is that p → val and p → next → val have different

values, implying the definitions to these fields are faulty in a debugging application, which

is not true. A more appropriate conclusion is that only the pointer p has different values,

all other differences are manifestations of the pointer difference.

48

(a) 0 1 2 3

p t

(b) 0 1 2 3

p t

(c) 1 2 3 3

p t

Figure 4.2.: Destructive state mutation. (a) Snapshot in run one. (b) In run two. (c)

Mutating (a) to (b).

Destructive State Mutation. Uses of execution comparison such as computing cause

transitions [132] compare memory snapshots from a passing run and a failing run. A vari-

able having different values in the two respective runs is called a difference. In order to

reason about the causal relevance of differences with the failure, values of difference sub-

sets are copied from the failing run to the passing run to see if the failure is eventually

triggered in the mutated passing run. However, using symbolic alignment causes a destruc-

tive mutation problem in the presence of aliasing. In particular, a memory location may

have multiple reference paths. It may be classified as a difference when it is compared

under one path but not along another path. Mutation along one path destroys the semantic

constraints along other paths and can lead to undesirable effects. Consider the example in

Figure 4.2. Two snapshots are shown in (a) and (b) with p pointing to different locations

in each. With symbolic alignment, the root p is aligned first, followed by nodes along

paths from p. As a result, the first node in (a) is aligned with the second node in (b), the

second node in (a) with the third node in (b), and so on. Comparing the non-pointer fields

of the aligned nodes yields the following reference paths denoting differences: p → val,

p→ next→ val and p→ next→ next→ val. They are fields in (b) having values different

than those in (a). Suppose we try to mutate (a) to (b) by copying values from (b) to (a)

following the paths of differences. The resulting state is shown in (c). Observe that t’s

value is undesirably destroyed.

49

Lost Mutation. If multiple differences alias, they may result in lost mutation when

they are applied together. Specifically, the differences applied earlier may be overwritten

undesirably by differences applied later. This may lead to incorrect conclusions about the

relevance of differences. Consider the example in Figure 4.3. Assume the failure is that

(p→ val)+(t → val) has the wrong value. Pointer t points to the wrong place, and the node

pointed to by p has the wrong value. These together cause the failure. Symbolic alignment

and non-pointer value comparison identifies two differences denoted by their reference

paths: p → val and t → val. However, as p and t alias in (a), when the differences are

applied to (a) in the order of p first and then t, the rightmost leaf first has the value 2 and

then 1. The mutated state does not lead to the expected failure. Hence, we mistakenly

conclude that the two differences are not relevant to the failure.

0

t p

21

t p

(a) Passing (b) Failing

Figure 4.3.: Lost mutation.

4.2 Problem Statement and Overview

To overcome the aforementioned problems and provide robust support for memory com-

parison and mutation, we propose a novel technique called memory indexing. The basic

challenge is to associate each memory location with a canonical value such that locations

across runs are aligned by their canonical values; pointers can be compared by their canon-

ical values. Such values are also called memory indices because they essentially provide

an indexing structure for memory.

The idea is illustrated by Figure 4.4, which revisits the example in Figure 4.3. Focus on

the parts inside the boxes for now. Each node is associated with a canonical value (index)

circled at a corner. Nodes are aligned by their indices. Hence, we can see the root nodes

50

Passing Failing

0

t p

α

γ β

π 21

t p

α

γ β

πδ

α

β

π

α

β

δ

π

Figure 4.4.: Overview of memory indexing.

align as they have the same index α. The node with index δ on the right does not align

with any node on the left. Besides its concrete value, pointer p also has a canonical value

π in both runs. Pointer t has π on the left but δ on the right. With memory indexing, the

differences of the two states can be correctly identified: pointer t has a different pointer

value and the nodes pointed to by p have different field values. When mutation occurs, t is

set to the location with index δ, which is not present in the passing run and thus requires

allocation. p’s field value is changed to 2. Such mutation properly induces the failure.

A valid memory indexing scheme should have the following property: at any execution

point, each live memory location must have a unique index. We call this the uniqueness

property. If this property is not satisfied, multiple locations may share the same index or one

location may have multiple indices, which makes proper alignment across runs impossible.

Symbolic alignment does not always satisfy this property and is thus not a good indexing

scheme.

A good indexing scheme should have the following additional feature: locations across

runs that semantically correspond to each other should share the same index. We call

this property alignment. Using the concrete address of a memory location is an indexing

scheme that provides uniqueness, but it does not deliver good alignment.

Inappropriateness of Graph Matching. Finding the most appropriate memory align-

ment concerns program semantics and is thus, in general, not a concretely knowable prob-

lem. As pointed out in [132], one possible approximate solution in the general case is to

51

represent the memory snapshots under comparison as reference graphs and formulate the

alignment problem as a graph matching problem [20]; the goal of which is to produce a

match with the minimal number of graph differences. However, this solution is too ex-

pensive (NP complexity) to be practical [132]. More important, we observe that it fails

to deliver desirable alignment in many cases because it does not capture semantic differ-

ences. Consider the example in Figure 4.5. The failure in (b) occurs because the value field

passed to the node constructor is incremented by one. With a graph matching algorithm,

to minimize graph differences, the second node in (a) aligns with the first node in (b), the

third node in (a) aligns with the second node in (b), and so on. As highlighted in the figure,

the graph differences, namely the graph operations needed to mutate (a) to (b), are: add

(b)’s tail to (a); add the edge to the added node; remove the head in (a). However, such

differences imply that the shape of the linked list is faulty, which is not true. The most

appropriate alignment matches the corresponding nodes in the lists, resulting in four field

value differences that precisely reflect the semantic differences.

0 1 2 3 1 2 3 4

(a) Snapshot one (b) Snapshot two

... = new Node(v, NULL) ... = new Node(v+1, NULL)

Figure 4.5.: Graph matching may be undesirable.

Our Indexing Scheme. We propose to use the execution point where the allocation

of a memory region occurs as the index of the region. We leverage the observation that

semantic equivalence between executions often manifests itself through control flow, as

used by EPIDs. Hence, semantically equivalent memory regions are often allocated at

corresponding execution points. Figure 4.4 presents an overview. The two lines in the

middle represent the control flows of the executions. The memory indices of regions in

memory are essentially canonical representations of the allocation points. For instance, the

root nodes share the memory index α, indicating they are allocated at the same point α. In

contrast, index δ’s presence in only the failing run means that the allocation does not occur

52

in the passing run. Our indexing scheme satisfies the uniqueness property and provides

high quality alignment of memory regions in practice.

4.3 Semantics

In this section, we present two semantics for memory indexing. The first is for low level

languages such as C. It supports pointer arithmetic by updating indices on the fly. This is

called the online semantics. The other semantics computes indices on demand and does

not need interpretation of pointer arithmetic. We call this the lazy semantics.

Our semantics canonically represents each memory location by a pair (region, offset),

with region as the canonical representation its containing allocated region and offset as its

offset inside the region. The canonical representation of a region is captured when the

region is allocated and serves as a birthmark of the region during its lifetime. We provide

a function MI() that maps a concrete address to its index. We also maintain a function

PV() that maps a pointer variable to the index of the value stored in the pointer. In the lazy

semantics, PV(p) is lazily computed from MI(p), whereas in the online semantics PV(p)

is updated on the fly through pointer manipulations on pointer p. Hence, PV(p) may be

different than MI(p) in the online semantics. As we later show, separating PV from MI

allows us to precisely handle pointer arithmetic, which is desirable for certain uses.

4.3.1 Online Semantics

In this subsection, we discuss the online semantics for memory indexing.

Indexing Global Memory. We consider global memory locations as part of a global

region. Hence, the memory index of a global location is its offset in the global region (Rule

5 of Figure 4.6). In our terminology, &g denotes the concrete address of a variable g. If

executions from different program versions are considered, e.g. in comparing regressing

executions, symbolic names of variables are used instead of their offsets. It is easy to see

the uniqueness property is satisfied.

53

Rule Event Instrumentation

(5) Prog. starts for each global variable g:

MI(&g)= (nil, global offset(g))

(6) Enter proc. X for each local variable lv of X:

MI(&lv)= (CS, local offset(lv))

(7) pc: p = malloc(s) for i=0 to s-1:

MI(p + i)= ([EPID, pc], i)

PV(p)=MI(p)

(8) p = &v PV(p)=MI(&v)

(9) p = q PV(p)= PV(q)

(10) p = q ± o f f set PV(p)=(PV(q).first,

PV(q).second± o f f set)

Figure 4.6.: Online semantics. A memory index MI(a) represents the memory index of an

address a, which is a pair comprising a region identifier and an offset. CS represents the

current call stack. pc represents the program counter. EPID represents the EPID of the

current execution point. PV(p) represents the memory index of the address value stored

in p.

Indexing Stack Memory. We consider stack memory to be allocated upon function

entry. The allocated region is the stack frame of the function. Hence, we use a stack frame

identifier and the stack frame offset of a location to represent its index. Recursive calls allow

multiple instances of the same function to exist in the call stack at an execution point so that

we have to use the call path of a stack frame as its id. Such stack indices trivially satisfy

the uniqueness property and provide meaningful alignment. This is presented in Rule 6 of

Figure 4.6. Some programs perform dynamic allocation on the stack, which makes stack

variables have varying offsets. We identify such variables through static analysis and use

our own IDs to replace the offsets.

Indexing Heap Memory. The essence of our technique is to create a birthmark of a

memory location as its canonical representation. The birthmarks of heap locations are more

tricky. Using the program counter (PC) of the allocation point is not sufficient because

multiple live heap regions may be allocated at the same PC. The calling context of the

allocation point is not sufficient either. For example, the code in Figure 4.7 (a) creates a

linked list in the loop on lines 1 and 2. All allocations occur in the same context (statement

54

2 inside F()). Adding an instance count does not help either because different executions

may take different paths so that the same count does not imply correspondence.

def F():
1 for i in 0 to 2:
2 h = new Node(..., next=h)
3 p = r = h

4 C = (p−>val > 0) # Should be >= 0
5 if C:
6 r = r−>next
7 h = new Node(val=0, next=h)
8 else:
9 p = p−>next

10 p = p−>next
11 print(p−>val + r−>val)

(a) Code

indexing tree edge memory indexing edge points to leaf

Trace: 1 2 1 2 1 2 1 3 4 5 6 7 1011 1 2 1 2 1 2 1 3 4 5 9 1011

F

11 12 13 14

F

11 12 13 14

Memory: 0 0 1 3 0 1 3

h p r h pr
(b) Passing (c) Failing

Figure 4.7.: Example for heap indexing. The code constructs a linked list of three nodes

with values of 0, 1 and 3. Initially, the three pointers h, p, and r all point to the head of

list. There is a regression bug at line 4 in computing the predicate. As a result, the failing

run takes the false branch, making p point to its second node. Pointer p further advances

to the third node at line 10. In contrast, the passing run takes the true branch, eventually

resulting in both p and r pointing to its third node. The failure is observably wrong output.

The memory snapshots are before the failure at statement 11.

To index heap memory, we use the EPID of the allocation point as the id of an allocated

region to compose the memory index. The uniqueness of EPIDs ensures the uniqueness

of heap indices. The alignment of the memory indexing scheme also originates from the

fact that EPIDs identify equivalent allocation points across executions. In particular, heap

55

indices are set when a region is allocated (Rule 7 in Figure 4.6). A heap index consists of

the current EPID and the allocation site pc. Besides setting the memory indices, the rule

also sets the canonical value of the pointer variable, i.e. PV(p), to the memory index of

the head of the region. Such a canonical value will be used in pointer manipulation. For

example, in the second iteration of the loop in Figure 4.7, after the allocation in statement 2,

PV(h)= (〈F, {2}, 2〉, 0)

Memory locations across multiple runs are aligned by their indices. By this criterion, in

Figure 4.7, the head of the list in (b) does not align with anything, but the remaining three

nodes align with the list in (c).

A key feature of memory indexing is pointer value comparison across runs. Besides

a concrete memory address, a pointer variable is also associated with a canonical value.

Canonical pointer values are updated on the fly in the online semantics, as specified by

Rules 8-10. For brevity, we assume a simple syntax for pointer operations. In particular, if

the address of a variable v is retrieved and assigned to a pointer, the canonical value of the

pointer is the memory index of v’s address (Rule 8). If a pointer variable is copied to another

variable, the canonical value gets copied too (Rule 9). For pointer arithmetic expressions

p = q ± o f f set, variable p’s canonical value is computed by copying the region identifier

of q and adding r to the offset of q (Rule 10). For brevity, our semantics assumes type

information has been processed so that offset variables are identified at the unit of bytes.

4.3.2 Lazy Semantics

For high level languages in which pointer arithmetic is not permitted, or when client

applications do not require considering the effects of pointer arithmetic, we can derive PV

values on demand to allow a more efficient implementation. The semantics is called the

lazy semantics. The observation is that canonical values of pointers can be lazily inferred

from their concrete values. That is, given a pointer p, PV(p)=MI(p). Recall that in the

online semantics, PV is computed by interpreting pointer arithmetic (Rule 10) and hence

PV(p) is not necessarily equivalent to MI(p).

56

Rule Event Instrumentation

(11) pc: p = malloc(s) MI(p)=([EPID, pc], 0)

(12) Query the index t = a

of heap address a while (MI(t)≡ nil) t=t-1

return (MI(t).first, a-t)

Figure 4.8.: Lazy semantics.

The new rules are presented in Figure 4.8. On the fly computation is only needed upon

heap allocation (Rule 11): the current EPID is assigned to the region base address, but not

to the other cells in the region. When the MI value of a heap address is queried (Rule

12), the algorithm scans backwards from the given address to find the first address with

a non-empty index. Alternatively, a binary search tree can be used to track the addresses

with indices. The memory index of the given address consists of the region denoted by the

non-empty index and the offset inside the region. For large heap regions, we can set the MI

for a number of addresses at set intervals besides the base address such that a linear scan

can quickly encounter a non-empty MI. No on-the-fly computation is needed for global and

stack memory. The MI values of global and stack addresses can similarly be computed on

demand.

Precision Lost in the Lazy Semantics. In languages with pointer arithmetic, the lazy

semantics does not instrument pointer operations or track the original regions of pointers.

The looser coupling with program semantics may lead to undesirable imprecision in certain

applications.

def F():

1 s = 100 # should be 500
2 A = malloc(s)
3 B = malloc(200)
4 . . .
5 p = A
6 p = p + 200

Figure 4.9.: The advantage of the online semantics.

57

Consider the example in Figure 4.9. It is a simplification of a real bug in bc-1.06.

Assume there is a regression error in the program; variable s should be 500 whereas it is

100 in the faulty version. For simplicity, we also assume the A and B regions are adjacent

in memory. In the failing run, buffer A has size 100 and pointer p points to a location in B

due to overflow, although it originally points to A. According to the lazy semantics, at the

end of the failing execution, PV(p)= MI(p)=(〈F, {}, 3〉, 100), which is offset 100 in the B

region. In the passing run, PV(p)= (〈F, {}, 2〉, 200), which is offset 200 in the A region and

hence pointer p is considered a difference. In contrast, following the online semantics, both

the passing and the failing runs have PV(p)= (〈F, {}, 2〉, 200), and hence p is not considered

a difference. Instead, the online semantics only reports variable s to be a difference, which

precisely reflects that the program is faulty in the allocation size instead of the pointer

arithmetic.

In practice, one can choose the right semantics based on the application. For instance,

the online semantics is more desirable when out-of-bound accesses are involved, such as

when debugging a segmentation error. It also handles dangling pointers better because a

PV value has the same lifetime as the pointer regardless of the status of the deallocated

memory, whereas in the lazy semantics a dangling pointer is no longer dangling when the

memory is re-allocated.

4.4 Design and Optimizations

The semantics in the previous section are conceptual. They model an index as a se-

quence of symbols (the region) and an integer (the offset). This is too expensive to operate

with in practice. In our design, we explicitly maintain an index tree for heap memory and

represent a heap region as a reference to some leaf in the tree. The full index of a heap loca-

tion can be acquired by traversing bottom-up from the leaf. Rules 15 and 16 show the tree

based instrumentation for the lazy semantics. Upon heap allocation (Rule 15), a leaf node

representing the allocation is created and inserted into the tree by calling Tree Insert(). The

function first checks if the current EPID is part of the tree. If not, it adds the EPID to the

58

tree before it inserts the leaf node. At the end, the instrumentation sets the MI of the region

base address to the leaf. Upon deallocation (Rule 16), Tree Remove() is called with the

leaf node corresponding to the to-be-freed region. We perform recursive tree elimination,

meaning that removing a leaf node may lead to removing its ancestors if they have no other

children. Shaded subtrees in Figure 4.7 are example heap index trees. Dotted edges link

leaf nodes to memory regions. We have the following optimizations to make our design

practical.

Rule Event Instrumentation

(15) pc: p = malloc(s) l=new Leaf(pc, p, s)

Tree Insert (EPID, l)

MI(p)=(l, 0)

(16) free (p) Tree Remove (MI(p).first)

Figure 4.10.: Tree based indexing in lazy semantics.

Removing Redundant Instrumentation. We have two observations that help remove

redundant instrumentation. The first one is that we only need a partial indexing tree to index

heap allocations. Hence we can avoid instrumentation that maintains irrelevant EPIDs. If

a function does not allocate heap memory, it is not necessary to compute EPIDs inside that

functions. More formally, a function or a loop is relevant to heap allocation if and only if a

heap allocation can directly or transitively occur in its body. Irrelevant functions and loops

are not instrumented.

The second observation is that we do not need to instrument all relevant functions or

loops. More specifically, given a relevant function other than main (loop) n, if all index

paths from any of n’s parents to a heap allocation inside n’s body have to go through n,

we don’t need to instrument n. We call n a dominant function (loop). Intuitively, we

do not need to instrument if we can infer the presence of n on an index path given the

allocation site and the parent node. We have developed static analyses to identify relevant

but not dominant functions and predicates. They are analyses on call graphs and control

59

flow graphs. Details are elided. Note that such optimizations are not applicable to general

computation of EPIDs because they leverage heap allocation information.

The space consumption is dominated by the tree, whose size depends on its shape and

the number of live heap regions. A pessimistic bound is O(maximum tree depth ×maximum

live heap regions). In theory, the tree depth is unbounded because it is tied to the depth of

recursion. In practice, because we are only interested in the partial tree for allocations, the

tree depth is well bounded such that the space overhead is feasible (see Section 4.6).

4.5 Robust Memory Comparison and Replacement

Cause transition computation [28, 132] produces a possible causal explanation for a

software failure. The technique takes two executions: one failing and the other passing

that closely resembles the failing one. The passing run can be generated by selecting an

input similar to the failing input. The overall idea is to compare memory snapshots of the

two runs at selected execution points. The technique constructs a reference graph [17] to

represent a snapshot and reduces memory comparison to graph comparison driven by sym-

bolic reference paths. It then performs causality testing to isolate a minimal subset of graph

differences relevant to the failure. More specifically, it enumerates subsets of graph differ-

ences through the delta debugging algorithm. A subset is considered relevant if replacing

the program state specified by the subset in the passing run with the corresponding values

in the failing run produces the failure. The minimal subsets computed at the selected

execution points are chained together to form an explanation. Memory comparison and

replacement is driven by symbolic paths, so it faces the issues mentioned in Section 4.1.

Consider the example in Figure 4.7. Using symbolic alignment and comparing only

non-pointer values, if only heap memory is considered, the set of differences (failing -

passing) ∆={p→ val, r → val, r → next→ val, r → next→ next→ val, h→ next→ val,

h → next → next → val}. None of the subsets, including the ∆ set itself, can induce the

same failure. For instance, applying subset {p → val, r → val } does not work due to

the lost mutation problem. As a result, the delta debugging algorithm terminates without

60

finding the minimal failure inducing subset. Since aliasing is very common in general

programs, we need to perform robust memory comparison and replacement.

With MI, we are able to develop two robust primitives: comparison of memory snap-

shots with Mem Comp() and application of a memory difference with Diff Apply(), i.e.,

copying a value from one memory snapshot to the other across executions.

For the comparison primitive, we first align snapshots via their indices and then con-

duct value comparison at aligned memory locations. Memory locations with non-pointer

types are compared by their concrete values. Locations with pointer types are compared by

their canonicalized values. Differences are presented as a set of indices, denoting that the

corresponding locations are different.

Consider the two snapshots in Figure 4.7. Global variables C, h, p, and r align across

the executions. Since C has a boolean type, we compare its values and classify them as

differences. In contrast, we conduct canonical value comparison for pointer variables h, p

and r. It is easy to see that they are different. We compare heap memory is compared via

the index trees. The region pointed to by h in (b) is identified as the only tree difference.

Hence, if we compute the difference set (passing - failing), the result is {(nil, offset(C)), (nil,

offset(h)), (nil, offset(p)), (nil, offset(r)), (〈F, {}, 7〉, *)}. The symbol ‘*’ in the last index

signifies that the entire region is different. It is smaller than the symbolic results.

The second primitive is the application of a unit difference1 represented as an index,

from which the corresponding concrete memory location in both snapshots can be iden-

tified. The value is copied from the source snapshot to the target snapshot. If the value

is a pointer, we cannot simply copy the concrete address. Instead, we identify the proper

concrete address in the target snapshot following the canonical value of the pointer. If the

region is not present in the target snapshot, it is first allocated.

Function Diff Apply() in Figure 4.11 describes how to apply a heap unit difference.

In the algorithm, the source and target heaps are indexed by trees rooted at T ′ and T ,

respectively. Variable δ represents the unit difference. Lines 3 and 4 identify the heap

region denoted by δ in T ′ and T . In lines 5 and 6, the concrete addresses are computed.

1A unit difference is a difference regarding a specific memory location instead of a region.

61

Diff Apply(T , T ′, δ)
Input: T - source execution T ′ - target execution δ - difference to apply

Description: Copy the value in location δ from T ′ to T . Leaf node is of the type (pc, base, size).

1: let δ be (path, offset)

2: let (-, base′, -) be the leaf node in T ′ along path

3: let (-, base, -) be the leaf node in T along path

4: a ← base + offset

5: a′ ← base′ + offset

6: if *(a′)T ′ is NOT a pointer then

7: ∗(a)T ← ∗(a′)T ′

8: else

9: let PV(a′)T ′ be (p′, f ′)

10: if T does not have path p′ then

11: Region Copy (T , T ′, p′)

12: let (-, b, -) be the leaf node in T following p′

13: ∗(a)T ← b + f ′

Region Copy(T , T ′, path′)
Input: T - source execution T ′ - target execution path′ - region to copy

Description: Copy region path′ in T ′ to T .

1: let (-, base′, size′) be the leaf in T ′ along path′

2: r ← allocate(size′) in the run denoted by T

3: insert path′ to T

4: set the leaf node following path′ in T to (-, r, size′)

5: for i=0 to size′ − 1 do

6: Diff Apply(T , T ′, (path′,i))

Figure 4.11.: Apply a heap difference.

At line 7, the algorithm tests if the computed address is a pointer (the superscript specifies

where the dereference occurs). If not, the algorithm copies the value (line 8). If so, it tests if

the region pointed-to is present in T (line 11). If not, it copies the region (line 12). Finally

at line 14, the concrete address stored to the pointer is set to a location in the region (in T)

aligned with the source region (in T ′).

Function Region Copy() copies a region denoted by the parameter path′ from T ′ to T .

It first locates the region in T ′ (line 2) and allocates a region of the same size in T (line 3).

The path′ is inserted to T and a leaf node is created to represent the allocated region (lines

4-5). This avoids allocating the same region again. Finally, individual fields are copied

62

from T ′ to T by calling Diff Apply() (lines 6-7). Note that this process may transitively

copy more regions from T ′ to T through line 11 of Diff Apply().

Applying stack and global differences is similarly defined.

Example. Consider the example in Figure 4.7. Assume we want to apply the differences

of p and r to the passing run. Observe that p points to the third node in the failing run

and PV(p)fail= (〈F, {2}, 2〉, 0). During the p difference application, following the path, the

concrete address of the fourth node in the passing run is identified and assigned to p. Simi-

larly, after applying the r difference, r holds the concrete address of the second node in the

passing run. Note that, by applying these two differences, the same failure can be produced.

Applying other differences, such as C, at this point (before statement 11) has no impact on

the failure. The minimal failure inducing difference subset including p and r is emitted as

one cause transition.

The same memory comparison and difference minimization is further performed at

aligned instructions 10 and 5; it stops at 4 as no state difference is identified. The chain

of cause transitions is: C has the incorrect value false at 5, then p and r point to the wrong

places at 10 and 11, and finally the failure. These transitions compose a failure explanation.

Next, we define the composability property and show that it holds for the proposed

primitive.

Definition 4.5.1 (Composability) A scheme for memory differencing and replacement is

composable iff given a set of unit differences ∆={δ1, δ2, ..., δn} and the universal set U of

all differences, after applying the differences in ∆ from T ′ to T , the differences between T ′

and the mutated T isU − ∆.

Composability is very important for cause transition computation, it ensures that the

delta debugging algorithm is able to make progress, because it mandates that the effect

of applying a set of differences must subsume the effect of applying a subset of the dif-

ferences [132]. If a replacement scheme is not composable, applying the universal set of

differences may even fail to convert T to T ′. The symbolic path based scheme is not neces-

sarily composable. As shown in Figure 4.7, applying the two differences of p → val and

63

r → val from the failing run to the passing run results in a state in which p → val still

manifests itself as a difference.

Property 1 The proposed MI based memory differencing and replacement primitive is

composable.

From Figure 4.11, we observe that for non-pointers, the primitive faithfully copies val-

ues; hence the property is trivially true. For pointers, the primitive either allocates a region

when it is not present in the index tree or simply assigns the address if the region is present.

Such behavior does not lead to additional differences that were not present in the original

difference set or mask any other existing differences.

4.6 Evaluation

The implementation consists of both semantics and two client studies. It is based on

the CIL infrastructure and has 3500 lines OCaml, 3500 lines C and 3000 lines Python. For

these experiments, we used the SEI implementation of EPIDs.

4.6.1 Efficiency

The first experiment focuses on cost. The evaluation is on SPECint 2000 benchmarks.

We excluded 252.eon and 253.perlbmk because they were not compatible with whole

program analysis in CIL. All experiments were executed on an Intel Core 2 2.1GHz ma-

chine with 2 GB RAM and running Ubuntu 9.04.

Table 4.1 shows the instrumentation needed and characteristics of allocations. All exe-

cutions are acquired on reference inputs. The second column shows the number of instru-

mented functions (after optimizations) and their percentage over all functions. The third

column shows the same data for predicates. The fourth column shows the numbers of static

allocation sites and dynamic allocations. The fifth column shows the average size of each

allocation. The last column shows the maximum depth of the memory index tree. We ob-

serve that some programs make a lot of allocations with various sizes (gcc and twolf) and

64

Table 4.1: Instrumentation and allocation.

program instmt. instmt. # of alloc avg. alloc tree

func branch stat/ dyn. size dep.

164.gzip 11 (12%) 17 (1.8%) 5 / 436k 28 KB 130

175.vpr 100 (37%) 202 (7.5%) 3 / 107k 481 B 59

176.gcc 1282 (57%) 17774 (24.9%) 236/ 10.2m 5 KB 700

181.mcf 5 (19%) 6 (2%) 4 / 3 33 MB 8

186.crafty 8 (7.3%) 158 (2.9%) 12 / 37 23 KB 6

197.parser 2 (0.6%) 41(1.3%) 1 / 1 31 MB 292

254.gap 596 (70%) 4109 (19%) 2 / 2 100 MB 10

255.vortex 672 (73%) 3400 (19%) 9 / 258k 399 B 365

256.bzip2 8 (11%) 7 (1.1%) 10 / 36 16 MB 51

300.twolf 59 (31%) 218 (3.5%) 3 / 574k 31 B 28

some make very few but large allocations (mcf and bzip2). They have different impacts on

the performance. Programs parser and gap allocate a memory pool at the beginning and

then rely on their own memory management systems. Our current system does not trace

into memory pool management. We leave it for future work. Observe, the maximum tree

depth is not high with respect to the structural complexity of programs.

Figure 4.12.: Normalized runtime and space overheads of memory indexing with and with-

out optimizations.

The overhead can be seen in Figure 4.12, in which Full represents implementation

without removing redundant instrumentation; Part removing redundant instrumentation;

Flow the online semantics; and Lazy the lazy semantics. The figure presents the perfor-

mance overhead for a number of combinations. In practice, Part+Lazy is desirable for

65

most applications, as illustrated by later client studies. Space represents the space over-

head for Part+Lazy. All data is normalized against original runs without instrumentation.

We observe first that the Full+Lazy approach has substantially more runtime overhead

than the Part+Lazy approach. Part+Flow is slightly more expensive than Part+Lazy

due to instrumentation on pointer operations. The overhead of Part+Lazy is low (41%).

Next, observe that in half the benchmarks, there is little space overhead. This is because

the number of allocations and the tree depth are relatively low regarding the size of each

allocation. In contrast, 300.twolf had the most overhead. It performs a large number

of very small allocations, <32 bytes on average, so on average maintaining the index for

each allocation is more costly2. Nonetheless, the average space overhead is 213% (111%

without twolf). The conclusion is that the cost of MI is feasible for many applications.

4.6.2 Trace Canonicalization

Trace canonicalization is the alignment of control flow and memory accesses across

traces from two executions. It plays a part in debugging and regression analyses [42,57,99],

among others. With MI, an important question can be answered, given two address entries

in two respective traces, should they be considered differences? Note, two accesses at the

corresponding points in the two traces do not mean that they operate on the same data; the

accessed addresses being different does not mean they do not semantically correspond.

The study is on three common, open source programs, make, gawk, and dot. We re-

ported the number of address differences before and after MI canonicalization. We turned

off all memory layout randomization. To avoid comparing trace entries that do not corre-

spond, we aligned the execution points of memory accesses in both executions and only

compared accesses that occurred at aligning points.

We generated traces from the programs’ provided test suites or, in the case of dot, the

provided examples in the documentation. Each full trace was compared with traces gen-

erated by a fixed percentage of the input, i.e., removing part of the inputs. The results

2In our implementation, we use 22 bytes for each tree node.

66

are shown in Fig. 4.13. For each percentage of input similarity, we present the percent-

age of matched stack and heap memory accesses before and after canonicalization. For

MI, these are ‘MI locals’ and ‘MI allocs’ respectively, while for the addresses without

canonicalization, they are ‘Addr allocs’ and ‘Addr locals’. We furthermore present

the percentage of control flow correspondence (‘Control Flow’).

Figure 4.13.: Percent of corresponding memory accesses w. and w/o MI.

Observe first that MI provides a substantially higher level of heap access correspon-

dence (50% more for make and 50-60% more for gawk, and 15-30% more for dot). Less

benefit was observed in dot because dot’s dynamic allocations are largely on fixed buffers

that do not change according to inputs. MI was able to find more corresponding addresses

for local variables too. Observe that stack local allocation and variable sized objects on the

stack make it more difficult to find correspondences without MI (e.g. the make case).

The control flow similarity increases as the input similarity increases. Note that the ad-

dress correspondence without canonicalization stays roughly the same or even decreases as

the control flow similarity increases (like in dot). The decrease happened because greater

control flow similarity allows more (different) addresses to be compared. In contrast, the

correspondence found by MI is roughly consistent.

4.6.3 Cause Transition Computation

This experiment evaluates the impact of MI on computing cause transitions. The algo-

rithm in [114] was implemented as a platform on which we tested two versions of the mem-

67

ory comparison and replacement primitive: one is symbolic path based, used in [28, 114];

the other is the new MI-based. The study is on several real bugs in open source programs,

including gcc, make, and gawk, that have non-trivial heap behavior and aliasing. The fail-

ing runs are generated according to the bug reports. The passing runs are acquired from the

correct inputs in the reports if provided; previous non-regressing versions; or using an auto-

mated patching technique [134]. Note that acquiring passing runs is an orthogonal problem

out of the scope of this chapter. Other patching techniques such as [62] can also be used.

Results are summarized in Table 4.2. The Program column contains the buggy pro-

grams. Bug ID presents the bug id, through which one can identify the report online, or

the publication date on the mailing list. Bug describes each bug. Passing Run shows the

sources of the passing runs: inputs provided in reports (correct input), non-regressing

versions (non-regressing), and dynamic patching (predicate switch). The maxi-

mum number of differences (present in failing and absent in passing) found using symbolic

differencing is presented in Sym Diffs, and the maximum when using MI is in MI Diffs.

In Sym Diffs, we report one memory cell only once although it may be a difference along

multiple paths. Of further interest is the number of differences with aliases (in column

Aliases), or multiple symbolic paths. They can cause issues as discussed in Section 4.1.

Column Issue presents the exhibited problems when using the symbolic path based prim-

itive. We also present the number of transitions and the average number of differences

included in each transition in Trans/Diffs, along with time required (in seconds) in Time

when using the MI version.

Observe that in every case, the number of symbolic differences is substantially, 2-50

times, larger than the number of differences when using MI, because the proper memory

correspondence cannot be found. Furthermore, the Aliases column shows that substan-

tial aliasing is common, creating a lot of difficulties for the symbolic method. As seen in

the Issue column, in most cases, symbolic path based computation would not terminate

within 12 hours. This stems in part from the large number of differences found. For ex-

ample, in the first gcc case, it may be possible that all the enumerated subsets of the 8365

6
8

Table 4.2: Cause transition computation for failures.

Program Bug ID Bug Passing Sym. Diffs MI Diffs Aliases Issue Trans/Diffs Time (s)

gcc 2.95.2 529 -Wshadow warns on functions predicate switch 8365 233 8105 >12h 8/1 4559

gcc 2.95.2 776 Large array size causes abort predicate switch 10101 230 9027 >12h 2/1 379

gcc 2.95.2 2771 -O1 breaks strength-reduce provided input 11095 284 10254 >12h 4/1 1797

make 3.81 16958 .PHONY targets are unrecognized non-regressing 2699 184 33 >12h 9/1 740

make 3.81 18435 Parentheses break make targets provided input 3301 336 356 >12h 29/2 645

make 3.81 19133 ./ prevents self remake provided input 3728 550 187 >12h 5/2 235

make 3.80 112 Rules cannot handle colons provided input 3309 645 217 >12h 11/6 685

gawk 3.1.5 1/20/06 Deallocate bad pointer provided input 630 22 509 early term. 8/1 56

69

differences need to be tested. In gawk, the algorithm simply terminated early, unable to

produce relevant transitions for the failure.

A Case Study on Detailed Comparison. We performed a separate test focusing on make bug

18435 from Table 4.2. We selected 10 sample points at 10% intervals along the part of the

passing run that is beyond the first divergence of the two runs. At each sample point, we

compared the memory snapshots across the two runs and then mutated the memory in the

passing to that in the failing by applying the universal set of differences, alternatively using

the symbolic path based primitive [28,114] and the MI based primitive. Then we collected

the trace after the mutation and compared it to that of the failing run. We performed trace

comparison by aligning the corresponding instructions and memory addresses across the

executions. According to the discussion in Section 4.5, the traces should be identical if the

primitives are completely composable.

Figure 4.14.: Heap accesses and control flow trace similarity after state mutation in the

execution of make.

The results are shown in Figure 4.14. ‘Heap (MI)’ and ‘Control Flow (MI)’ rep-

resent the similarities of heap access and control flow traces using the MI based primitive,

and ‘Heap (Sym)’ and ‘Control Flow (Sym)’ represent those using the symbolic prim-

itive. Observe, the access similarity when using MI is consistently near 100%, and the

control flow similarity is consistently above 90% until the end. This means the mutation is

mostly successful in turning the passing run to the failing run. The similarity is not 100%

70

because we currently do not model external state such as file IDs, process IDs, etc. Thus,

such states are not eligible for meaningful comparison and replacement. In contrast, when

the symbolic primitive is used, the execution quickly diverges from the expected control

flow, having near 0% similarity, and it has near 0% similarity for accessing the heap. In

fact, the mutated run often quickly crashes due to destructive mutation (Section 4.1). This

supports that the MI primitive is composable, but the symbolic primitive is not.

In summary, MI allows cause transition computation to be more precisely realized, re-

flected by our success of scaling to programs like gcc with full automation. Note, although

a gcc case was presented in [132]. It was conducted with human intervention.

4.7 Related Work

Trace normalization [37] divides traces into segments. Segments with the same starting

and ending state are considered equivalent. Client applications using such traces only need

to look at a consistent representative segment from each equivalence class. The outcome

is reduced workload and increased precision. Memory indexing is complementary in that

it provides a robust way of comparing program state across executions and hence helps

identify equivalent trace segments.

Recent work has examined comparing executions for debugging regression faults [57],

analyzing impact of code changes [99], and finding matching statements across program

versions [42]. These techniques are able to construct a symbolic mapping of variables

across program versions through profiling, such as pointer x in version one being renamed

to y in version two. The constructed mapping is static. In comparison, we focus on compar-

ing dynamic (address) values of corresponding variables, answering questions like “does x

point to the corresponding address in the two executions”. Furthermore, trace canonicaliza-

tion facilitated by MI would improve the precision of these analyses.

Many debugging techniques [21,25,60,64,66,81] compute fault candidates by looking

at a large number of executions, both passing and failing. In these techniques, execution

profiles are collected and analyzed statistically. Some debugging techniques compare a

71

simple profile of a failure with a small number of correct runs (usually one) [53]. They

use control flow paths and code coverage. MI is complementary to these techniques by

providing a way to canonicalize profiles before they are analyzed to achieve better precision,

especially for pointer related bugs. We have demonstrated in this chapter that MI is able to

drive cause transition computation that is highly sensitive to memory alignment.

Compared to the recent advances on generating causal explanations of failures [25,64],

The proposed robust, fine-grained memory differencing and substitution primitives make it

feasible to extract succinct and in-depth information about failures. For instance, it is easier

for us to reason about whether a value at a given execution point is relevant to a failure.

Furthermore, MI improves cause transition computation [28, 114] by allowing alignment

along the memory dimension, which substantially improves robustness in the presence of

aliasing.

Abstractions for memory regions used in static analysis also have the notion that small,

bounded chains of the control dependence of a region’s creation provide a notion of identity

for that region [109]. In contrast, we extend this into the dynamic domain, efficiently

capturing precise identities online instead of just over-approximations.

Joshi et al. use execution points to locate locks across executions of Java programs [70],

but the approach is not as generalized or optimized as memory indexing.

4.8 Conclusions

We present a novel challenge in dynamic program analysis: aligning memory locations

across executions. We propose a solution called memory indexing (MI), which provides a

canonical representation for memory addresses such that memory locations across runs can

be aligned by their indices. Pointer values can be compared across runs by their indices.

The index of a memory region is derived from the canonical control flow representation of

its dynamic allocation site such that control flow correspondence is projected to memory

correspondence. Enabled by MI, we also propose a novel memory substitution primitive

that allows robustly copying states across runs. We evaluate the efficiency of two memory

72

indexing semantics. Our results show that the technique has 41% runtime overhead and

213% space overhead on average. We evaluate effectiveness through two client studies:

one is trace canonicalization and the other is cause transition computation on failures. The

studies show that MI reduces address trace differences by 15-60%. It also scales cause

transition computation to programs with complex heap structures.

73

5 EXPLAINING WHY EXECUTIONS DIFFER

Explaining why something happened is a subtle task; philosophers have debated the notion

of causation for centuries [40,73,87]. One common thread among the myriad approaches is

that they involve comparing a world in which that something happened to others in which

it did not. Many software engineering techniques take similar approaches in explaining

software behavior. For example, in probabilistic fault localization, a set of failing runs

is contrasted with a set of passing runs [11, 66] to provide probabilistic insights into the

cause of the failures. Compared to techniques that do not rely on comparison to explain

software behavior, such as program slicing [136], these techniques are more precise as they

use comparison to trim unnecessary information.

One classic fine-grained comparative technique for identifying causes when one exe-

cution (e.g., a buggy execution) differs from another (e.g. a similar correct execution) is

Zeller’s delta debugging approach [132]. It is capable of reasoning about causality at the

granularity of individual instructions and variables, generating much more informative and

precise failure explanations compared to other techniques [115]. The technique involves

replacing part of the state in the correct execution with that from the buggy execution and

determining whether such replacement induces the failure in the modified execution. How-

ever, due to the complexity of program state (e.g. inter-connected data structures in the

heap, pointers, and external resources), it faces many problems in practice. In particular,

entangling the states from both executions allows them affect each other in undesirable and

unexpected ways, leading to poor failure explanations. More discussion of the limitations

of the technique can be found in Section 5.1.

In this chapter, we propose a novel fine-grained causal inference technique that illus-

trates the behavior of the findCauses() function in Figure 2.2. Given two executions and

some observed differences between them, the technique can precisely reason about the

causes of such differences. While the technique reasons about causality through state re-

74

placement, it makes three key advances. It features a novel execution model that avoids

undesirable entangling of the replaced state and the original state such that the precision

of causal inference can be substantially improved. It is capable of handling execution

omission errors by analyzing both executions symmetrically. It also leverages an existing

slicing technique called dual slicing [125] to limit the scope of causality testing while en-

suring no relevant state differences can be missed. As a result, the efficiency is substantially

improved.

Our main contributions are highlighted as follows.

• We first thoroughly discuss the limitations of the state of the art fine-grained causal

inference technique that has been used for many years. We especially study the

problems in state replacement.

• We propose a novel causal inference model that is symmetric and comparative. We

declare the goals of the model, which reflect the user’s intention when reasoning

about software behavior by comparison.

• We propose a novel realization of the model. It leverages dual slicing to ensure rel-

evance of the causes and limit the scope of causality testing. While it makes use

of state replacement to determine causality, a novel execution model and its approx-

imation are developed to avoid the undesirable entangling of the state from both

executions.

• We implement and evaluate a prototype. We apply the causal inference engine toward

failure explanation for 15 real world bugs, including all the reported bugs for tar,

make, and grep in a one year period. Comparison against the causal inference engine

from the most recent improved delta debugging [115] and dual slicing techniques

shows that our technique has substantially improved the efficiency and effectiveness

of failure explanation.

The ideas presented in this chapter have previously been published by the author in the

proceedings of ICSE 2013 [115] (c©2013 IEEE).

75

5.1 Causal State Minimization in Delta Debugging

1 x← input()
2 y← input()
3 z← input()
4 if y>1 & z<6:
5 y← 5
6 else: y← y+1
7 print(y)

(a)

x← 1
y← 1
z← 3
if False:

y← 2
print(2)

(b)

x← 0
y← 2
z← 6
if False:

y← 3
print(3)

(c)

1

2

3

4

6

7

{

y 7→ 2

z 7→ 6

}

(d)

1

2

3

4

6

7
(e)

Figure 5.1.: (a) A program. (b-c) executions with differing input. (d) CSM. (e) dual slice.

Symbols 3 and _ denote the cause point and effect point, respectively. The set in (d)

represents the causal state set.

Delta debugging is a classic debugging technique that can minimize failure inducing

inputs [133] or the faulty internal program state essential to reproducing a failure [28,132].

The original work first contrasts a buggy execution with a similar correct execution to

determine state differences [28, 132]. It then performs Causal State Minimization (CSM)

to determine the minimal subset of state differences essential to reproducing the failure.

CSM involves performing the correct execution up to a point of interest preceding the

failure, called the cause point, replacing a subset of program state with state from the buggy

execution, and continuing this patched execution to determine whether the failure can be

induced. If so, the subset is called a causal state set or cause set. The technique makes use

of a generalized binary search to enumerate and test different subsets until it identifies the

minimal cause set. We recently combined delta debugging with the more precise execution

alignment techniques in Chapter 3 and Chapter 4 to improve its robustness, precision, and

efficiency. By applying CSM inductively, a causal chain or summary of a failure can be

computed, comprising a sequence of the minimal causal state sets computed for a sequence

of execution points leading from the root cause to the failure [114, 115].

Example. Consider the simple program presented in Figure 5.1. This program reads three

integers, re-defines one of them, and then prints it. In the execution of (b), the user inputs

1, 1, 3 and the program prints 2. In contrast, in the execution (c), the user inputs 0, 2, 6 and

76

the program prints 3. Suppose that execution (c) is buggy. Given the buggy output 3 on

line 7, called the effect point, we apply CSM to determine what state on line 4, called the

cause point, actually caused the buggy output. The cause and effect points are respectively

marked in the figure as empty and filled diamonds in (d).

Note, here the term “buggy” is a generalized notion as there is not a faulty statement

per se. Any behavioral difference between the executions may be considered buggy and

we are interested in what caused these differences. The discussion and the technique are

universally applicable for cases where true faults cause the behavioral differences.

CSM repeatedly replays execution (b) up to line 4. Each time, it then replaces a subset

of state with state from execution (c) to identify a subset sufficient to produce y 7→3 within

execution (b). For instance, replacing (on line 4) the variable/value mappings y 7→1 and

z 7→3 in execution (b) with y 7→2 and z 7→6 from execution (c) yields y 7→3 on line 7. Thus,

the process identifies that the values of y and z are buggy on line 4 in execution (c), leading

to the buggy output. Figure 5.1d presents the causal state set on line 4 along with relevant

program dependences for comprehension. The computation continues in order to determine

whether a smaller causal set can be identified. If not, the identified minimal set will be

reported.

If we desire a summary of the failure, the current cause point becomes the new effect

point and the identified causal state set becomes the new target buggy state. The algorithm

then continues to compute the causal state set for a preceding new cause point, until no

such sets can be computed [115].

Limitations. Delta debugging [28, 132] and its recent improvements [114, 115] all use

CSM. While prior research demonstrated the effectiveness of these techniques, we find that

inherent limitations of CSM often lead to low quality failure summaries. Next, we discuss

these limitations in detail and motivate the need for a new causal inference engine.

Confounding caused by partial state replacement: The first problem with CSM is

that replacing only a subset of the state in an execution can induce new behavior that was

not present in either of the original executions. We call this problem the confounding of

partial state replacement. The introduced new behavior can affect the validity of a causality

77

test. Particularly, a causal chain may terminate prematurely because key buggy state is

excluded due to confounding, or it may contain additional state that does not pertain to

the failure. In the worst case, the entire chain may not even be relevant for explaining the

failure. From our experiments, 11 of the 15 real bugs suffered from this problem.

For example, consider the program presented in Figure 5.1. Previously, we showed

that CSM can determine that {y 7→2,z 7→6} is the causal state set on line 4. Suppose CSM

further considers a smaller subset {y7→2}. When replacing the value of y in execution (b)

with that from (c), the condition of the if statement becomes True. This redefines y on

line 5, rendering the target state y 7→3 uninducible. Because of that condition, CSM finds

replacing the values of both y and z necessary. However, z is unrelated to the original

behavioral difference. The only contribution of z in both executions is its use on line 4,

which had the value False in both executions. Ideally, only the definition of y 7→2 should

be blamed for the failure.

1 x← input()

2 y← input()

3 if x < 3:

4 y← y−3

5 if x > y:

6 x← 3

7 print(x)
(a)

x← 5

y← 3

if False:

if True:

x← 3

print(3)
(b)

x← 1

y← 9

if True:

y← 6

if False:

print(1)
(c)

1
2
3
4
5

7

{x 7→1}

{x 7→1}

(d)

Figure 5.2.: Missing causes by execution omission. (a) program. (b-c) executions with

differing input. (d) CSM result.

Execution omission: The second problem is that CSM may miss important causal

state in the presence of execution omission errors [140], where the buggy target state is

produced because statements were not executed due to the bug. In such cases, the computed

failure summaries are usually incomplete. The root cause of the problem is that CSM

is asymmetric, meaning the buggy and correct executions have asymmetric roles in the

process: CSM reasoning is based on modifying state only in the correct execution; its final

results only include information from the buggy execution.

78

Figure 5.2 presents an example. The correct execution in (b) follows the False branch

of line 3, then the True branch of line 5, and prints 3, whereas the “buggy” execution in (c)

follows the True branch of line 3, then the False branch of line 5, and prints 1. Suppose

that initially the effect point is line 7 and the cause point is line 5. CSM determines that

replacing the value of x is sufficient to induce the buggy target state in (b), so it identifies

x 7→1 as the only buggy state at the cause point. However, the buggy output x 7→1 on line

7 in (c) is due to the undesirable omission of line 6, which is partially determined by the

buggy state of y 7→6. Missing y 7→6 in the cause set leads to an incomplete summary of the

failure.

Suppose the computation continues backward with a new effect point on line 5 and new

cause point on line 3. CSM determines that replacing the value of x on line 3 is sufficient to

induce the buggy target state x 7→1 on line 5. Figure 5.2d shows the result of this analysis.

This implies x 7→1 is the sole root cause of the bug. However, replacing the value of x on

line 3 in (b) cannot induce the final failure although it can induce x 7→1 on line 5, because

line 3 evaluates to True in the patched execution. Hence, line 4 produces y 7→0 and leads to

x 7→3.

In our experiments, 5 of the 15 real bugs face this problem.

Efficiency: CSM may demand a large number of reexecutions. The number of state

differences can be as large as the size of the allocated memory [115]. The number of

possible subsets that need to be tested for causality is potentially combinatorial in terms

of the full set. To combat this, existing approaches use delta debugging [132] to perform

a generalized binary search over the subsets. However, the number of reexecutions can

still be quadratic in the size of all used memory. Even the most recent implementation of

CSM [115] may take a few hours to reason about a failure while the original execution time

is just a few milliseconds.

79

5.2 Comparative Causality

In this chapter, we propose a more effective and precise causal inference model called

comparative causality (CC). This model focuses on symmetrically reasoning about two

executions, one buggy and one correct1, in order to explain why they both differ from ea-

chother. It also enables efficient and practical implementation. In the following, we first

define a number of notations and concepts. Then we study the intended properties of the

new model. Here we assume we can properly align the control flow and the variables/mem-

ory regions of the two executions for fine-grained comparison using the work presented in

Chapter 3 and Chapter 4:

• Execution point: We use a superscripted label le to denote a point in execution e.

Symbol l(e1,e2) denotes a point that appears in both executions e1 and e2, determined

by the given control flow alignment as described in Chapter 3. It is also called an

aligned point.

• State difference: we use {x 7→(v1,v2)} to denote that a variable x has value v1 in e1

and value v2 in e2, with v1 , v2.

Problem Statement: Given a set of state differences ∆ at an aligned execution point l
(e1,e2)
_

and a preceding aligned point l
(e1,e2)
3

, we want to find a set of state differences at l
(e1,e2)
3

that

is relevant, sufficient, and minimal for inducing ∆.

The preceding execution point is the cause point and the latter one the effect point. We

demand aligned points because state comparison is not meaningful at non-aligned points.

An inducing state difference in the cause point is called a cause; a state difference in ∆ is

called an effect.

5.2.1 Property One: Relevance

The causes identified by CC must be relevant to the target effects. Intuitively, a differ-

ence d is relevant to a later difference ds if ds is (transitively) produced from d through a
1How to acquire a correct execution given only the buggy execution can be found in a survey [113].

80

sequence of differences. It represents the notion that “buggy state must be derived from

preceding buggy state (except at the root cause)”.

Consider the example presented in Figure 5.1. The state difference {z 7→(3,6)} on line 3

is not relevant to {y 7→(2,3)} on line 7 even though there is a dynamic dependence path from

line 3 to line 7, because the difference of z is neutralized on line 4, which yields False in

both runs. In contrast, The difference {y 7→(1,2)} on line 2 is relevant to {y 7→(2,3)} on line

7. More formally:

Definition 5.2.1 (Relevance) A state difference δ3 at l
(e1,e2)
3

is relevant to a target state

difference δ_ at a later effect point l
(e1,e2)
_

if either of the following conditions is satisfied.

1. There exists a dynamic program dependence path from δ_ to δ3 in e1 (e2) where

all the statement computations along the path yield different results from the other

execution e2 (e1).

2. There exists a state difference δx in an aligned point in between l
(e1,e2)
3

and l
(e1,e2)
_

such

that δ3 is relevant to δx and δx is relevant to δ_.

Condition (1) expresses the requirement that a difference cannot be neutralized within

an execution in order to be relevant. Note that this property is symmetric to both executions

as relevance can be determined by a dependence path in either execution. This allows us to

precisely capture relevance in the presence of execution omission. Consider the example

in Figure 5.2. The state difference {y 7→(3,6)} on line 5 is relevant to {x 7→(3,1)} on line 7,

due to the dependence path y@5 ← True@5 ← 6 ← 7 in (Figure 5.2b). Observe that

there is no dependence between y@5 and x@7 in the failing execution (Figure 5.2c) due

to the omission of line 6. The underlying intuition is that omission is an asymmetric con-

cept regarding one execution. An omitted statement regarding one execution implies that

it appears in the opposing execution. With our symmetric definition, omissions are concep-

tually precluded. Condition (2) expresses that relevance can be transitive, even across the

two executions.

81

5.2.2 Property Two: Sufficiency

The identified set of causes must sufficiently induce the target effect of each of the two

executions within its opposing execution. This inducement acts as a new causality test and

witnesses the causal relationship between the identified causes and the target state.

The property is symmetric as it requires the set of effects in either execution to be

induced by the causes. It means that if for all the variables in the cause set, we copy their

values from execution e1 to e2, we can induce the target effect of e1 at the effect point in e2,

and vice versa.

Consider the example in Figure 5.2. State differences {y 7→(3,6), x 7→(5,1)} on line 5

form a sufficient set regarding the effect {x 7→(3,1)} on line 7. In contrast, the difference

{x 7→(5,1)} itself is insufficient because although replacing x’s value 5 with 1 in (b) can

induce the effect {x 7→1} on line 7, replacing x’s value 1 with 5 in (c) cannot induce the

effect {x 7→3}. This symmetry ensures that we capture relevance due to execution omission.

More formally,

Definition 5.2.2 (Sufficiency) A cause set ∆3 at l
(e1,e2)
3

is sufficient for a given target effect

set ∆_ at a later effect point l
(e1,e2)
_

if and only if, in the absence of confounding, copying the

state of e2 in ∆3 to e1 at the cause point induces the effect of e2 in ∆_ in execution e1 at the

effect point, and vice versa.

One key condition is that reexecution should be confounding-free. Unfortunately, nor-

mal program execution cannot guarantee this. The remainder of this subsection focuses on

discussing confounding.

What is confounding? Determining sufficiency involves replacing part of the state in

one execution with values from the opposing execution. However, the continuation of the

modified execution has state from both original executions entangled, affecting each other

and inducing undesirable and unexpected results in causal inference.

Recall in Figure 5.1, we saw that partially changing the state of execution (b) with the

single desired cause variable y yielded output different than in either execution (b) or (c).

In addition, we found that including z as a cause along with y would yield the target state,

82

although z is not relevant to the output. Both of these are unexpected results that we call

confounding from partial state replacement. These confounding effects do not just have

the ability to include arbitrary state within the set of identified causes, they can exclude

arbitrary state, as well.

At a high level, these unexpected results occur because partial state replacement created

new behaviors that did not exist in either of the original executions.

Definition 5.2.3 (Confounding) Given executions e1 and e2 as well as a patched execution

ep constructed from them, a causality test using ep is confounded if either of the following

conditions are satisfied:

1. An execution point in ep is not present in e1 or e2.

2. A data dependence in ep is not exercised in e1 or e2

Condition (1) corresponds to control flow confounding and (2) to data flow confounding,

which means confounding can occur without exhibiting any new control flow.

1 x← [0, 1, 2, 3]

2 y← input()

3 z← input()

4 x[z]← 5

5 print(x[y])

x← . . .

y← 1

z← 2

x[2]← 5

print(1)

x← . . .

y← 2

z← 3

x[3]← 5

print(2)

1
2
3
4
5

{
y 7→ (1, 2),

z 7→ (2, 3)
}

(a) (b) (c) (d)

Figure 5.3.: Data flow confounding example. (a) program. (b-c) executions with differing

input. (d) confounded explanation.

Consider the example in Figure 5.3. This time, the target state is {x[y] 7→(1,2)} with

cause and effect points at lines 4 and 5 respectively. Observe that in each execution, the

read from and written to elements of x are different. Thus, the only identified cause for the

different output should be the differing values of y, which provides the index read from the

list. However, when only the value of y is replaced on line 4 in (b), the patched execution

reads the new value written to the list on line 4. Thus, the target state is not induced.

Observe that in this case, a new data dependence from line 5 to line 4 is exercised.

83

In later sections, we will examine new execution models that can avoid/mitigate con-

founding. We argue that the two properties, together with the minimality requirement, are

essential for understanding execution differences. They precisely express the programmer’s

intentions.

5.3 Realizing Comparative Causal Inference

In this section, we discuss the realization of CC. Given a target effect set and a cause

point, we leverage a technique called dual slicing to compute a set of candidate causes and

only apply causality testing on the candidate set. Dual slicing is a symmetric slicing tech-

nique that works on two executions. It first determines control flow and value differences

in the two executions through trace comparison and then performs slicing on these differ-

ences (in and across both executions). The benefits of using dual slicing are twofold. First,

it ensures relevance of the candidates. Second, it is more efficient because causality testing

only needs to enumerate subsets of the candidates instead of the full set of state differences

as in CSM [115, 132].

After acquiring the dual slice, we then symmetrically minimize the causes included in

the slice to a minimal subset sufficient for inducing the target state within both executions.

During the minimization process, one key step is to perform causality testing by state re-

placement. In order to avoid confounding, we devise an execution model that harnesses a

patched execution in such a way that it respects the control flow and dependences in the

two original executions while allowing flexibility for reasoning about the effects of state

replacement.

5.3.1 Background: Dual Slicing

Dual slicing was first introduced to study concurrency bugs [125] and software vul-

nerabilities [65]. Figure 5.4 presents the basic dual slicing algorithm. Although it is not

part of this chapter’s contributions, we present a simplified version of the algorithm for

completeness.

84

dualSlice(l(e1,e2)
_

)

Input: l
(e1,e2)
_

- the slicing criterion

Output: D - the dual slice, a set of deps in either execution

1: if e1 , ⊥ then

2: for each data dep dd ← {l
(e1,e2)
_

x
−−→

e1

l
(e1,e

′
2
)

3
} do

3: if e′
2
≡ ⊥ or x has different values on l3 then

4: D ← D∪ dd ∪ dualSlice(l
(e1,e

′
2
)

3
)

5: control dep cd ← {l
(e1,e2)
_

==⇒
e1

l
(e1,e

′
2
)

3
}

6: if e′
2
≡ ⊥ or l3 has different branch outcomes then

7: D ← D∪ cd ∪ dualSlice(l
(e1,e

′
2
)

3
)

8: if e2 , ⊥ then

9: /* operations symmetric to when e1 , ⊥ */

10: return D

Figure 5.4.: Dual slicing

Given a slicing criterion, an execution point that exhibits a state difference, the algo-

rithm returns its dual slice, a set of dynamic dependences from both executions denoting

the causality of the difference. Lines 1-7 describe the process of slicing in execution e1. It

first ensures that the current criterion l_ is present in e1 (line 1). Here, l
(⊥,e2)
_

denotes that l_

is not present in e1. Lines 2-4 traverse each dynamic data dependence edge of the criterion

in e1 with x, the variable involved, denoted as l
(e1,e2)
_

x
−−→

e1

l
(e1,e

′
2
)

3
. We use variable e′2 to show

that l3 may or may not be in the second execution, disregarding the value of e2. On lines

3-4, if l3 is exclusively in e1 (i.e, e′2 ≡ ⊥) and thus is a control flow difference, or even if

it is not exclusive but variable x has different values in the two executions, the data depen-

dence is added to the slice. The dual slice of l3 is recursively computed and added to the

slice too (line 4). Thus, when l3 is present in both executions and produces the same value,

it is not added because it cannot induce the criterion. In lines 5-7, the algorithm traverses

the control dependence edge in e1, denoted as “==⇒
e1

”. Similarly, if the guarding predicate

is exclusive or has different branch outcomes, the edge gets added and the dual slice of

the predicate is recursively computed. Lines 8-9 are symmetric to lines 1-7, describing the

process of slicing in execution e2.

85

1 t← input()
2 x← input()
3 y← input()
4 z← input()
5 if x + y + z > 3:
6 z← −10
7 if x + y + z > 0:
8 z← 5
9 if z < 0 and y > 0:

10 z← t
11 else: print(z)

(a)

t← 0
x← 1
y← 0
z← 4
if True:

z← −10
if False:

if False:

print(-10)
(b)

t← 1
x← 1
y← 1
z← 1
if False:

if True:
z← 5

if False:

print(5)
(c)

y← input()
z← input()
if 1+y+z >3:

z← −10
if 1+y+z >0:

z← 5

print(z)
(d)

3

4

5

6

7

8

11

✘ ✘

✘ ✘

(e)

4

5

6

7

8

11

{z 7→(4,1)}

{z 7→(-10,1)}

{z 7→(-10,5)}

(f)

Figure 5.5.: (a) program. (b-c) two runs. (d) program from the dual slice. (e) dual slice. (f)

CC explanation.

Example. Consider the program in Figure 5.5a. The dual slice of the two executions, (b)

and (c), is presented in Figure 5.5e (including the crossed-out dependences). Part of the

computation is represented as follows. We use dS() as a shorthand for dualSlice(). The

superscripts of execution points are elided for brevity when explicit from the context. The

box in a step denotes that the next step is to execute the recursive call inside.

dS(11(b,c)) = {11
z
−−→

b
6} ∪ dS(6(b,⊥)) ∪ {11

z
−−→

c
8} ∪ dS(8(⊥,c)) [1]

= {11
z
−−→

b
6, 6 ==⇒

b
5} ∪ dS(5(b,c)) ∪ {11

z
−−→

c
8}... [2]

= {11
z
−−→

b
6, 6 ==⇒

b
5, 5

z
−−→

b
4, 5

z
−−→

c
4, ...}... [3]

At step [1], the control dependence to line 9 is not involved as it has the same branch

outcome in the two runs. Also, dual slicing line 6 of execution (b) in step [1] entails

slicing line 5 in both executions (step [2]). Line 1 is not included, even though it denotes a

86

difference, as it is not reachable from the criterion. The dual slice captures the behavioral

differences of the two executions related to the criterion.

5.3.2 Dual Slices Are Relevant but Not Ideal

Dual slices are represented in terms of dependences, whereas causal inference is con-

ducted on program state. Hence, we first introduce a projection from a dual slice to the

corresponding set of state differences at a given execution point so that we can discuss

the properties of dual slicing in our context. These properties are unique to the proposed

technique and have not been studied before.

Given a dual slice and a cause point l(e1,e2), which is an aligned point, we define the cut

of the dual slice with respect to the point as follows.

C(D, l(e1,e2)) = {x 7→ (v1, v2) | let

_

x
−−→

et

l
et

3
∈ D,

with l3 ≺et
l ≺et

l_ or l_ ≡ l,

and x 7→ (v1, v2) on l with v1 , v2}

It denotes the set of state differences involved in the dual slice on the given cause point.

It essentially denotes the set of variables when we cut the dual slice on the cause point.

Symbol la ≺et
lb denotes la precedes lb in execution et.

Consider the dual slice in Figure 5.5e. The cut on line 7 is the following. C(D, 7(b,c)) =

{z 7→(-10,1), y 7→(0,1)}. Note that {t 7→(0,1)} is not in the cut.

Theorem 5.3.1 All the causes in a cut C(D, l(e1,e2)) are relevant to the slicing criterion. All

relevant causes on l(e1,e2)) are included in its cut.

The property suggests that dual slices cover all the causes the programmer needs to

inspect. Unfortunately, a dual slice cut may not sufficiently induce the slicing criterion

given the confounding-prone regular execution model. That is, replacing the state of all

causes in a cut may not induce the failure. Let us revisit the example in Figure 5.1. The

dual slice is shown in Figure 5.1e. Its cut on line 4 has only y. However, from the discussion

87

inferCauses(D, l
(e1,e2)
3

, l
(e1,e2)
_

, ∆_)
Input: D - the dual slice l3 - the cause point

l_ - the effect point ∆_ - the target state

Output: causes of target at l3

1: ∆ ← C(D, l3)

2: ∆min ← ∆

3: for each s ⊂ ∆ by delta debugging do

4: if |s| < |∆min|

∧ Ee1[s↓e2 /s↓e1]
l3
l_
; ∆_ ↓e2

∧ Ee2[s↓e1 /s↓e2]
l3
l_
; ∆_ ↓e1 then

5: ∆min ← s

6: return ∆min

Figure 5.6.: Minimizing causes

in Section 5.1, we know that replacing y 7→1 with y 7→2 in execution (b) does not lead to the

target effect due to the confounding from z.

A cut may also not be minimal. It may contain causes that are not essential for inducing

the target effect. In Figure 5.5e, the cut on line 7 is {z 7→(-10,1), y 7→(0,1)}, but the minimal

sufficient set is just {z 7→(-10,1)}.

These limitations motivate us to realize the proposed CC by performing confounding-

free minimization on dual slices.

5.3.3 The Basic Algorithm

In this subsection, we assume a confounding-free execution model and introduce the

basic minimization algorithm. We will discuss the execution model in the next subsection.

Figure 5.6 presents the basic approach. Given a precomputed dual slice, the cause and

effect points, and the target state, the algorithm returns a minimal set of causes sufficient

to induce the target state. The algorithm starts by computing a dual slice cut at the cause

point, which is essentially the set of relevant causes. Lines 3-6 minimize the set to only

those sufficient for inducing the observed target state of each execution in the other. We

leverage the delta debugging algorithm to enumerate subsets of the relevant causes and test

their causality. Symbol Ee1[s ↓e2
/s ↓e1

]
l3
l_

means executing e1 up to the cause point l3,

88

replacing its variable/value mappings in s with those from e2, and continuing the execution

up to the effect point l_. Symbol s ↓e1
denotes the projection of state differences s on

execution e1. If the variables in the target state have the values from e2, we say that the

target state of e2 was induced, written; ∆_ ↓e2
.

Note, in contrast to existing CSM approaches [114, 132], our minimization algorithm

performs two symmetric causality checks. This is necessary to include causes via omission.

5.3.4 Confounding Free Execution Model

Recall that confounding occurs when new control flow or data dependences not in either

original execution occur in a patched execution. By Theorem 5.3.1, we know that all the

relevant causes are included by the dual slice. This suggests we only need to perform

causality testing within the dual slice.

Conceptually, the essence of our new execution model is to construct a program con-

taining only the behavior of the dual slice and all reexecutions for causality testing occur

on the constructed program. Statement executions not in the dual slice should be prevented

in order to minimize confounding.

Illustrative Example. Consider the example in Figure 5.5. Assume we start by using

the target state {z 7→(-10,5)} at line 11. Assume the cause point is line 7 and we apply

Figure 5.6 to minimize the causes at this point. The cut of the dual slice (Figure 5.5e)

involves variables y and z. When we consider variable z with a regular execution model,

we reexecute (c) up to the cause point and replace the value of z with -10. It induces the

false branch outcome on line 7 but the true branch outcome on line 9, which is different

than execution (b). Hence, {z 7→(-10,1)} is not considered a valid cause set.

With our new execution model, conceptually, we construct a program representing the

dual slice, as in Figure 5.5d, in which lines 1, 2, 9, and 10 are precluded as they are not in

the slice. Also, line 11 is no longer guarded by any predicate. Operands that are in the slice

and have identical values in both executions are concretized (e.g. x on lines 5 and 7).

89

1. When l is not a conditional with l < D, skips l.

2. When l is a conditional and it was in both executions with branch(T e1 , l) ≡ branch(T e2 , l),

unconditionally continue with the same branch as in the original executions.

3. When l is a conditional and it was in both executions with branch(T e1 , l) , branch(T e2 , l)

or l is in only one execution, evaluate the statement according to Rule 4) and follow the

computed branch.

4. When l is not a conditional with l ∈ D, validate that all the operands involved in some data

dependence in D have the same data dependence as they did in the original executions,

otherwise terminate and report confounding; For any operand not in any dependences inD,

denoted as x, set its value to val(T ex , l, x), and continue.

Figure 5.7.: Semantics of E[].

Again, let us determine the causality of variable z on line 7. We reexecute (c) up to the

cause point using the original program. We replace the value of z with -10, then continue

execution with the program in Figure 5.5d. Since lines 9 and 10 are not in the program,

we avoid confounding and can induce the desired target state. Hence {z 7→(-10,1)}} is the

minimal inducing cause set. Observe that it allows us to prune the relevant but not necessary

cause {y 7→(0,1)}}. Applying Figure 5.6 transitively, we acquire a more concise failure

explanation as shown in Figure 5.5f. 2

Semantics of the New Execution Model. In the following, we discuss the semantics that

allows achieving the effect of executing exclusively within the dual slice without construct-

ing a new program. During minimization, we first reexecute the original program with

normal semantics up to the cause point and then continue executing the program with the

new semantics after state replacement until the effect point.

In the semantics, we assume the runtime availability of the dual slice D and the traces

of the original two executions, denoted by T e1/2 . Without losing generality, we assume we

are patching e1 using information from e2. The value of a variable x at a point le1 in the

original execution e1 can be queried from the trace by val(T e1 , l, x). If an execution point le1

is a conditional statement, branch(T e1 , l) queries its branch outcome in execution e1. The

semantics is presented in Figure 5.7.

90

Statement executions not in the dual slice are skipped when they are not conditional

statements (Rule 1). When executing conditional statements, we cannot simply skip as we

need to select a branch to proceed. Rules 2-3 specify the cases for conditional statements.

In Rule 3, if a conditional had different branch outcomes originally or was present in

only one execution, the semantics evaluates the predicate and follows the computed branch.

The essence is to allow the flexibility to take either branch based on the predicate evaluation

in order to reason about the effect of state replacement when it is in the dual slice. If the

statement is not in the dual slice, it does not matter which branch is taken because all non-

conditional statements inside the branches must be skipped according to Rule 1. These

statements must not be in the dual slice; otherwise, the conditional would have been in the

slice according to the dual slicing algorithm.

Rule 4 handles non-conditional statement execution in the dual slice, for all the operands

not involved in any dependences in the slice, implying that they must have identical values

in the two executions, we concretize them with values from the traces to achieve isolation.

For operands involved in some dependence, we ensure no data flow confounding.

This new model will not allow any confounded executions to go through, as can be

inferred from the semantic rules.

Theorem 5.3.2 A dual slice cut is sufficient within the new execution model.

This theorem ensures that Figure 5.6 must be able to find a minimal sufficient set of

causes inducing the target state because in the worst case, the cut is the minimal set. Infor-

mally, the theorem holds because reexecution is exclusively within the dual slice and hence

replacing all the state in a cut leads to a reexecution equivalent to the part of the dual slice

belonging to the opposing execution, and hence the target state.

A Practical Approximation. Unfortunately, the semantics in Figure 5.7 demands a pro-

hibitively expensive implementation. It requires collecting traces with dependences and

values. The traces and the dual slice have to be accessed during each reexecution. Each

statement has to be instrumented to decide if it is in the dual slice (Rule 1) or perform

91

1. Rule 2 from Figure 5.7.

2. When l is a conditional and it was in both executions with branch(T e1 , l) , branch(T e2 , l),

evaluate the statement normally and follow the computed branch.

3. When l is a conditional and it was in only one execution ex, follow the branch that was

taken in ex.

4. Otherwise, evaluate l as in a regular execution model.

Figure 5.8.: Semantics of the approximate execution model.

complex control (Rules 2-4). The overhead could easily be many orders of magnitude, not

affordable for repeated reexecutions.

In practice, we observe that control flow confounding is the dominant confounding

factor and data flow confounding can only affect the execution by causing control flow con-

founding in most cases. We hence propose a practical approximation that can completely

prevent control flow confounding and mitigate data flow confounding. The approximate

model ensures a patched execution can only follow dynamic branches taken by at least one

of the original executions. Consequently, it enforces a control flow path composed of seg-

ments that occurred in either execution. What we do here is essentially constructing guard

rails for the execution so that it can never deviate from the dual slice’s control flow. Since

data dependences heavily depend on control flow, the approximation can also mitigate data

flow confounding. The semantics is presented in Figure 5.8.

Observe that the semantics does not require the runtime of the dual slice or dependence/-

value traces for runtime checking, but rather just the control flow trace. This can be very

efficiently represented and accessed by using bit streams that simply record the sequence

of boolean branch outcomes. It does not skip statements. It hence avoids instrumenting all

statements to decide if one can be skipped at runtime.

Theorem 5.3.3 The approximate execution model is free of control flow confounding.

The theorem can be inferred from the semantic rules. We implemented the approximate

semantics and in practice it was able to suppress all confounding in our experience.

92

5.4 Evaluation

We implemented our technique using LLVM 3.0. We have also implemented the CSM

and dual slicing approaches [114, 115, 125, 132] for comparison. Both implementations

reflect the latest published designs [115,125]. The evaluation is in the context of automated

debugging. The techniques contrast buggy and correct executions, using explanations for

their different behavior as explanations of bugs. First, we compute explanations for a set

of real world bugs by chaining together the computed causes. We contrast the explanations

computed by the three different techniques. Second, we examine in depth how the problems

that CSM faces affect its results in practice.

We used real world bugs taken from the repositories of open source programs. They

include all deterministic bugs from tar, grep, and make in a one year period that we

were able to reproduce. All the bugs in our study were non-crashing, semantic bugs that

produce incorrect outputs. Table 5.1 presents the full set of programs and bugs. The first

three columns identify the buggy program, bug ID, and the version of the program that

actually contains the bug. The SSLOC column contains the static source lines of code

computed with sloccount. The Alt. column identifies how a second, correct execution

was selected. We used a correct input when the bug report also provided it, otherwise,

we used predicate switching [134] to automatically synthesize a correct execution from

the failing one. More information on acquiring a correct execution from a given failing

execution resides in Sumner’s survey paper [113]. We performed all experiments on a

64-bit 2.4GHz CPU with 12GB RAM using one core.

5.4.1 Full Explanation Comparison

Our first experiment uses each of the three techniques to compute an explanation for

each bug. For each bug, we first identify the last observable failure and use that as the initial

target state. CC and CSM select the last preceding definition of a target effect as the cause

point to compute the causes. They also proceed transitively, using the computed causes as

93

the new target state and the current cause point as the new effect point until there are no

more causes to identify (e.g. the two executions have no state differences).

We contrast the results of the different techniques through their quality, scale, and ef-

ficiency. We measure quality through precision and recall with respect to a relevant, suf-

ficient, and minimal explanation of why the correct and buggy executions differed. This

is manually checked at each step of the computation. Precision (P) is the proportion of

the dynamic statements in the computed explanation for a technique that coincide with the

statements in the correct explanation. Recall (R) is the proportion of the dynamic state-

ments in the correct explanation that are also identified by the computed explanation. We

have to resort to manual inspection due to the lack of an automated oracle to tell us the

ideal explanations for execution differences. As we show later, such ideal explanations are

small enough for line by line human inspection.

We have done the following to mitigate threats to validity. First, we cross referenced the

computed explanations with the root causes identified by the bug fixes or reports. Second,

we calibrated our system using the Siemens suite before our experiments. We computed the

explanations for the over 10,000 failing runs in Siemens using the corresponding passing

executions of the provided correct versions and validated that these explanations capture

the injected faulty statements as the root causes. Third, we also release the experimental

results of the real world bugs at the same site for interested readers.

We measure the scale of a technique by the number of dynamic statements (Stmts) in

the computed explanation. Finally, we measure efficiency in three ways: the number of

steps or rounds of causal inference, the clock time required in seconds, and the number of

reexecutions needed. Note that the clock time of CC includes dual slicing time. Table 5.1

shows the results. From these, we make several observations.

CC consistently yields the highest quality explanations. Dual slicing generally has

good recall but poor precision because it does not minimize. CSM is unpredictable because

it can arbitrarily include or exclude causes, however, it frequently fails to identify causes

for even a single step of an execution. We shall explore the unpredictability of CSM further

in the next section. In contrast, CC yields high precision and high recall for every computed

9
4

Table 5.1: Comparison of full explanations. Averages are arithmetic except for P & R, which are geometric. - means that the root

cause could not be captured.

Program ID Version SSLOC Alt.
CC CSM Dual Slicing

Steps Time Tests Stmts P R Roots Steps Time Tests Stmts P R Roots Stmts P R

find 1 4.5.7 73k switch 7 12 15 6 1.0 1.0 X 1 253 1260 0 0 0 - 185 0.03 1.0

gnuplot 2 4.5.0 144k switch 11 44 33 10 1.0 1.0 X 11 141 469 10 1.0 1.0 X 148 0.06 1.0

gnuplot 3 4.4.0 139k input 35 200 323 48 1.0 1.0 X 1 51 208 0 0 0 - 464 0.07 1.0

gnuplot 4 4.2.4 134k input 146 961 337 129 1.0 1.0 - 127 950 1888 121 0.97 0.91 - 368 0.33 1.0

gnuplot 5 4.2.4 134k switch 24 140 130 33 1.0 1.0 - 31 931 3012 38 0.87 1.0 - 237 0.14 1.0

grep 6 2.5.4 12k switch 59 114 186 62 1.0 1.0 - 24 8263 1012 23 0.96 0.35 - 153 0.51 1.0

grep 7 2.5.4 12k switch 45 156 327 69 1.0 1.0 - 33 183 1734 32 1.0 0.46 - 109 0.62 1.0

grep 8 2.5.4 12k switch 27 49 78 27 1.0 1.0 X 24 168 1546 23 0.96 0.81 - 95 0.26 1.0

make 9 3.81.90 30k switch 27 342 62 27 1.0 1.0 X 18 416 543 17 1.0 0.63 - 38 0.66 1.0

tar 10 1.22.90 20k switch 5 22 8 3 1.0 1.0 X 5 50 221 3 1.0 1.0 X 3 1.0 1.0

tar 11 1.22.90 24k input 30 124 125 48 1.0 1.0 X 1 110 332 0 0 0 - 61 0.79 1.0

tar 12 1.22.90 20k input 9 53 121 20 1.0 1.0 X 1 66 296 0 0 0 - 1239 0.01 1.0

tar 13 1.22.90 20k switch 11 43 28 10 1.0 1.0 X 6 439 2117 5 1.0 0.5 - 1270 0.01 1.0

tar 14 1.23 21k input 17 80 87 23 1.0 1.0 X 5 165 709 15 0.73 0.48 X 25 0.92 1.0

tar 15 1.23 21k switch 5 22 15 4 1.0 1.0 X 5 228 1283 4 1.0 1.0 X 557 0.01 1.0

Average 30.5 157.4 125 34.6 1.0 1.0 - 19.53 827.6 1108.7 19.7 0.22 0.26 - 330.1 0.14 1.0

95

explanation. For the bugs, it captures 11 of 15 root causes whereas CSM fails to do so in

11 of 15 cases. Where CC failed to identify root causes, denoted by -, it still explained

why the two executions differed, thus the precision and recall. In those cases, the second

execution was too different to meaningfully explain the bugs as well.

The extra reexecutions for CSM make it slower than CC, even when it computes

fewer steps. On average, CSM takes 13.8 minutes to compute an explanation, even though

it produces less of the correct explanation. In contrast, CC takes 2.6 minutes on average be-

cause the extra dual slice information allows it to avoid considering all memory differences

as potential causes. This reduces the number of necessary reexecutions by up to two orders

of magnitude.

CC produces more concise explanations than dual slicing. The precision numbers

show that CC is more precise than dual slicing, 1.0 vs 0.14. On average, CC produces

explanations of 35 dynamic statements, while dual slicing produces 330 statements.

This experiment illustrates that CC produces superior explanations in terms of quality,

efficiency, and scale.

5.4.2 Why and How CSM fails

A single incorrect cause at any point of the full chain computation can cascade through

the rest of the computation, causing more incorrect causes. It is hence difficult to determine

the reasons behind the incorrectness by simply looking at the full chains. Our second

experiment examines why and how CSM missed or erroneously included causes on a per-

step basis. Note that CC does not encounter these problems for the given benchmarks, and

dual slicing does not do minimization. Thus, we focus only on CSM for this experiment.

We first computed the causes for each step using CSM as in the first experiment. For

each step, we also supply the same (CSM) target state and the same cause point to CC and

compare the resulting causes from the two approaches. This allows us to quickly observe

any effects from confounding.

96

In this per-step fashion, we checked the results of CSM for missing causes (M), extra

causes (E), or failure to identify any causes (F). These are the ways that the technique

can fail. We also checked why these failures occurred, including control flow confounding

(CFC), data flow confounding (DFC), and execution omission (O). Table 5.2 contains these

results.

Table 5.2: CSM difficulties. This includes symptoms: (M)issing causes, (E)xtra causes,

and complete (F)ailure. It also lists reasons why: control and data flow confounding

(CFC/DFC) or (O)mission.

ID M E F CFC DFC O

1 X - X X - -

2 - - - - - -

3 X X X X - -

4 X X - X - X

5 X X - X - -

6 X - X X - X

7 X - - - - X

8 X X - X - X

9 X X - X - X

10 - - - - - -

11 X X X X - -

12 X X - X - -

13 X - X X - -

14 X X X X - -

15 - - - - - -

CSM suffers from all three problems. It misses causes in almost all benchmarks (12

out of 15), has extra causes in 8 out of 15, and fails to produce any causes for a step in 6 out

of 15 cases. These failures resulted both from omission and from confounding, although

confounding was the more frequent cause.

Control flow confounding causes errors in most of the CSM explanations. In 11

out of 15 cases, the CSM explanations are directly impacted by control flow confounding.

This shows that control flow confounding is a real world challenge that we must address.

Data flow confounding does not directly impact CSM. While close inspection in-

dicates that some data flow confounding occurs, it impacts the executions only through

control flow confounding. As CC prevents control flow confounding, the impact of the cor-

responding data flow confounding is also suppressed. For example, data flow confounding

97

may lead to an incorrect branch, but CC forces the execution back to the correct branch

through its execution model.

Together, these fine grained comparisons allow us to see that omission and confounding

do indeed impact existing techniques. Furthermore, taken with the results in Table 5.1 they

show that CC is resilient when faced with them.

5.4.3 Example of Resulting Explanations

Next, we demonstrate a failure explanation generated by CC and explain how CSM

fails to compute that explanation. This chain is for bug 13. Version 1.22.90 of tar has

a bug when using the --backup option. When extracting files from an archive, this op-

tion copies any already existing files into a backup directory, preventing these files from

being overwritten. When extracting a directory that already exists, however, it appears to

incorrectly prevent files from being extracted.

We used predicate switching to dynamically patch the buggy execution and derive a

correctly behaving execution. Both the buggy and the switched executions first extract

some files before trying to extract a directory that already exists. The switched execution

renames the extracted directory so that it does not conflict with the existing one, and it

correctly extracts files to the new directory without error. However, the buggy execution

appears to have not extracted any files at all, even the previously extracted ones.

Figure 5.9 shows a simplified version of the relevant code, as well as the explanation

by CC, which is slightly shortened for readability. First, predicate switching renames one

of the extracted directories from ”dir2” to ”dir”. Next, a call to mkdir() fails in the buggy

execution, returning −1 because ”dir2” already exists. In contrast, the call succeeds in the

switched execution and returns 0. This difference (0 vs. −1) gets propagated through the

variable status back into extract archive(), where it makes the condition on line 18 True

only in the failing execution, indicating an error when extracting ”dir2”. So the buggy

execution calls undo last backup(). This actually replaces all of the extracted files with

the original backups. As a result, all of the files extracted before ”dir2” appear to never

98

Code Summary
1 int read header primitive():
2 file name = ”dir” vs. ”dir2”
3
4 int extract dir(file name):
5 tmp = mkdir(file name)
6 ...
7 status = tmp
8 if status:
9 if errno == EEXIST && IS DIR(file name):

10 pass
11 elif !maybe recoverable(filename):
12 mkdir error(file name);
13 return status
14
15 void extract archive():
16 ...
17 status = extract dir(file name)
18 if status && backup option:
19 undo last backup()

Explanation
At 2, file name is ”dir” vs. ”dir2”.
At 5, tmp is 0 vs. -1.
At 7, status is 0 vs. -1.
At 13, the return value is 0 vs. -1.
At 17, extract dir returns is 0 vs. -1.
At 18, (status && backup option) is False vs. True.
So ”undo last backup()” is called, overwriting the extracted

files with the original ones.

Figure 5.9.: Example of a derived explanation using our technique

have been extracted, even though they were. In fact, the original bug reports for this failure

assumed the files had not been extracted, as well, but our generated explanation clearly

shows that they were first extracted and then incorrectly overwritten.

The root cause is that extract dir() should not fail even if mkdir() fails due to the exis-

tence of the directory, because extracting to an existing directory should not cause problems.

A tar developer can see this from the computed explanation (on the bottom of Figure 5.9)

and know how to construct a fix. Indeed, the applied fix set status to 0 on line 10.

Note, CSM cannot construct this explanation. On line 13, confounding prevents further

analysis of the bug. First, the condition on line 9 only executes in the failing execution,

where it is True. CSM replaces the value of tmp at line 7 to produce the failing status at

line 13, but the condition on line 9 evaluates to False this time because it also requires a

99

failing value for errno. Hence, CSM proceeds to line 12, which reports an unrecoverable

error and terminates. This confounding prevents the identification of tmp alone as the cause.

Additional confounding not shown here also prevents replacing both errno and tmp from

inducing the failing status.

5.4.4 Threats and Limitations

We have shown that CC is effective at explaining why two executions are different, but

there are limits to the technique, our evaluation, and what may be inferred from it.

We first note that explaining why a buggy and correct execution differ does not always

provide a useful explanation of a bug, as observed in 27% of our generated explanations.

Also, manual examination of execution differences risks human error. Most of the

explanations generated by CC are short enough that we can be confident of our inspection.

Finally, again, comparative causality is presently limited to examining deterministic

bugs. This inherently follows from exploiting reexecution within the technique.

5.5 Related Work

The most relevant work is causal state minimization (CSM) that was originally intro-

duced by Zeller [132], and subsequently improved by others [28, 114, 115]. In contrast

to CSM, our CC model avoids confounding, handles execution omission by symmetric

analysis, and is much more efficient.

Ermis et al. have used theorem provers on abstract error traces to infer causes of bugs

that remain invariant over the failing executions of a program [41]. While the technique can

also infer semantic causes of bugs, the inference process requires many calls to a theorem

prover and has not been shown to scale. It also requires a generalized specification of the

failure over all possible executions, which can be difficult to provide.

Podgurski and Clarke also examined the notion of semantic dependences [96]. Se-

mantic dependences are static dependences indicating when one statement can potentially

100

impact the result of another. In contrast, our approach identifies dynamic dependences that

can be blamed for another statement producing a particular result.

Recently, Rößler et al. also noted problems with Zeller’s original approach, although

they did not delve into what these problems were [103]. They also produce a technique for

explaining bugs, but it is based on test generation and requires a strong oracle to evaluate

each new test.

Traditional dynamic slicing [76] is a technique that captures dynamic data and control

dependences. It has been extensively examined for its usefulness in debugging [119]. Dy-

namic slices are usually problematically large and suffer from execution omission. Dual

slicing is a kind of dynamic slicing technique that compares two executions and extracts

the differing dependencies between the two [65, 125]. It forms the initial basis of our tech-

nique. In contrast, our computed explanations are much smaller due to state replacement

and minimization.

Several satisfiability based techniques also strive to precisely localize and potentially

explain failures, either within a single program [51, 68] or when comparing correct and

incorrect versions [14, 97]. The present limitations in constraint solving, however, have

thus far mostly limited these techniques to programs of a few thousand lines of code. In

contrast, our technique explains failures in programs with well over 100K lines.

Our technique requires that the executions of interest be reproducible. Tools that aid

failure reproduction, for instance, can make this more feasible in practice [9]. Other tools

also make it easier to repeatedly analyze the behavior of a program at different points in the

history of a failing execution [71].

5.6 Conclusions

We presented a novel causal inference technique called comparative causality. It allows

precise and concise explations for the differences between two executions at a very fine

granularity. It advances the state of the art in three aspects: it improves robustness of un-

derlying state replacement techniques by preventing confounding through novel execution

101

models; it handles execution omission errors by analyzing two executions symmetrically;

and it substantially improves efficiency by leveraging dual slicing. Evaluation on a set of

real world bugs shows that the proposed technique can generate high quality explanations

at low cost.

102

6 FINDING APPROXIMATELY CORRECT EXECUTIONS

Execution comparison provides a means for developers to better understand a program’s

behavior. Given two executions of a program, a developer may compare and contrast the

control flow paths taken and the values operated upon during these executions in order to

better understand how and why the program behaved differently for each. When one of the

executions fails and the other is correct, such comparison forms a basis for automated tech-

niques toward debugging like that presented within Figure 2.2. These techniques extract

the behaviors and properties of the respective executions that correspond with the correct

and incorrect program behaviors. The differences in behavior provide evidence for what

parts of a program might be incorrect and why. This helps to reduce the developer burden

in finding, understanding, and fixing a bug.

The utility of such techniques depends on precisely which executions they compare

against each other [8, 100, 114, 132]. When the correct execution does not follow the same

path as the failing one, automated analyses may derive little more than the fact that the exe-

cutions are different because there are no fine-grained differences from which comparison

can extract more information. One might then try using an execution that follows the exact

same path as the failing one. Unfortunately, the failing execution’s behavior is incorrect,

so executions that are similar to it may also behave as if they were incorrect. As a result,

the differences between the executions do not provide insight on why the failing execution

is buggy. Deciding which executions should be compared is a significant problem when

using execution comparison.

The difficulty in the problem arises because of a mismatch between the respective objec-

tives of execution comparison and of debugging in general. Debugging involves comparing

the failing execution with the programmer’s model or specification of how the execution

should have behaved. Differences between the model and the actual behavior of the ex-

ecution precisely capture an explanation of where and why the program is not behaving

103

correctly, and ideally how the developer may change the underlying program to remove the

fault. In contrast, execution comparison finds differences between two actual executions.

These differences explain how and why those particular executions behaved differently. For

example, if one execution receives an option ‘-a’ as input and the other receives an option

‘-b’ as input, execution comparison can explain how the semantically different options lead

to semantically different program behavior.

The mismatch between debugging and execution comparison arises because the seman-

tic differences that debugging strives to infer should explain the failure. This inherently

requires comparing the failing execution against the correct, intended execution. However,

only the correct version of the program can generate that correct execution, and the correct

program is exactly what automated debugging should help the programmer create. Because

this execution is unavailable, we must settle for an execution that is instead similar to the

correct one. In order for execution comparison to be useful, the execution against which we

compare the failing execution must approximate the correct one without knowing a priori

how the correct one should behave. We call this the peer selection problem. Given a partic-

ular failing execution, another execution, called the peer, must be chosen for comparison

against the failing one. This peer must be as similar as possible to the unknown correct

execution.

1 x = input()
2 if x > 5:
3 print(’one’)
4 elif x > 0:
5 if x > 1:
6 print(’two’)
7 else:
8 print(’three’)

Executions

input 2 6 4 1

path 1 1 1 1

2 2 2 2

4 3 4 4

5 5 5

6 6 8

(a) (b)

Figure 6.1.: (a) A trivial faulty program. The x>1 on line 5 should instead be x>2. This

causes the program to fail when the input is 2. (b) Example executions of the program on

different inputs. Input 2 yields a failing execution; the others are correct.

104

For example, consider the program snippet in Figure 6.1a. The if statement on line

5 is incorrect; instead of x>1, it should instead be x>2. As a result, if the input is 2, the

program prints ‘two’ when it should print ‘three’. If we use execution comparison to debug

the failing execution when the input is 2, we must first find a suitable peer. Figure 6.1b

presents some possible correct executions along with the input that yields each execution

and the path, or the trace of the statements in the execution.

First consider the execution with input 6. Of those listed, this execution differs the

most from the failing execution. They are different enough that execution comparison

provides little insight. They take different paths at line 2 because they have different inputs

and because 6>5 is true, but 2>5 is not. However, this does not imply anything about

the correct behavior when the input is 2. Similarly, if we consider input 4, the execution

follows the exact same path as the failing execution except the execution is correct. This

also yields no insights on why the original execution failed. Finally, let us consider the

input 1. This execution follows the exact path that the failure inducing input 2 would

follow if the program were correct, and it produces the output that the failing execution

should have. Comparing this execution with the failing execution tells us that lines 2 and

4 are likely correct because they evaluate the same in both executions. Line 5, however,

evaluates differently, so we should suspect it and examine it when debugging the program.

Because this execution behaved most similarly to how the failing execution should have

behaved, it was able to provide useful insight on why the program was faulty.

This chapter considers 5 techniques that can select or create a peer execution when

provided a failing one. Their approaches range widely from selecting known test inputs to

synthesizing entirely new executions that might not even be feasible with the faulty version

of the program. We objectively examine their fitness for selecting peers by using these tech-

niques to derive peers for known bugs in real world programs. We use the patched versions

of the programs to generate the actual correct executions, the ideal peers, and compare the

generated peers against them to discover which techniques created peers most similar to

the correct executions. We examine the strengths and weaknesses of the techniques with

respect to properties of the bug under consideration, the failure generated by the bug, and

105

the faulty program as a whole. Developers can use this information to automatically or

interactively help choose the most effective peer selection technique for understanding a

particular failure. In summary, the contributions of this chapter are:

1. We survey and implement existing techniques that can select peers for execution

comparison. We consider their applicability with respect to properties of the program

and failure that the developer knows a priori.

2. We objectively examine the fitness of each technique for peer selection on 20 real

bugs in 3 real world programs. They represent the full set of reported bugs for these

programs during a roughly one year period. Using the corrected versions of the pro-

grams as extracted from their source repositories, we generate the expected correct

execution and compare the peers from the techniques against it.

3. We examine the real world bugs to infer when the given techniques may or may not

be applicable if more information about a bug is already known.

The ideas presented in this chapter have previously been published by the author in the

proceedings of ISSTA 2011 [113].

6.1 Selecting Executions

In this section, we review five existing techniques for selecting execution peers. Not all

of the techniques were originally designed with peer selection in mind, but those that were

not still generate peers either as a side effect or intermediate step toward their respective

intended purposes.

6.1.1 Input Isolation

The same input that causes an execution to behave unexpectedly, henceforth called a

failing input, can sometimes be reduced to produce a valid alternative input. This new and

simpler input might yield an execution that does not fail. This insight was used by Zeller

106

in [132] to produce two executions, one passing and the other failing, whose internal states

were then compared against each other. Given a failing input, Zeller used his previously

developed delta-debugging technique [133] to simplify the input and isolate a single in-

put element such that including this element caused a program to crash, and excluding the

element caused the program to succeed. In his technique, the execution without the induc-

ing element was used as a peer for the execution including the element. The underlying

intuition is that the less the inputs for the two executions differ, the less the executions

themselves should differ, as well.

The central idea of the technique is to use a modified binary search over the possible

inputs of the program. A subset of the original input is extracted and tested on the program.

If the subset of the original failing input also yields a failing execution, then that new input

is used instead of the original, effectively reducing the size of the failing input. In contrast,

if the new input yields a passing execution, then this acts as a lower bound on the search.

Any later input that is tested must at least include this passing input. In this way, the

algorithm terminates when the failing input and the passing input are minimally different1.

Start:

1:

4:

3:

2:

Start:

a b c d e f g h i j k l m n o p

a b c d e f g h

a b c d e f g

a b c d e f

a b c d

Empty

Decrease failing input

Minimal difference found

Increase passing input

Figure 6.2.: Delta debugging can produce two minimally different inputs, yielding an exe-

cution to use as a peer.

Figure 6.2 presents a brief example showing how delta debugging generates inputs for

peer executions. Suppose that a program crashes when the characters ‘b’ and ‘g’ are present

in the input. The full input a..p thus causes a program to crash, as seen on the first line.

We also assume that an empty input yields a passing execution, as denoted on the last line.

The approach tries to narrow down exactly which portions of the input are responsible for

the crash by selectively removing portions of the input and re-executing the program on
1Differences between inputs are locally minimal as in [133].

107

the new input. In the first test, the algorithm selects a..h. When the program executes this

input, it fails, so the failing input reduces to a..h on step 1. On step 2, a..d is selected.

Because this does not include ‘g’, the execution passes, and the passing input increases

to a..d. Steps 3 and 4 continue the process until the failing input contains a..g and the

passing input is a..f. Because they differ by only ‘g’, the inputs are minimally different,

and the technique selects the passing execution as a peer.

6.1.2 Spectrum Techniques

Modern program development includes the creation of test suites that can help to both

guide the development process and ensure the correctness of a program and its components.

One straightforward approach for finding a peer is to simply select an execution from this

already existing test suite. This allows the developer to reuse the existing work of generat-

ing the tests, but the developer must still select the specific execution from the test suite to

use. Execution profiles, or program spectra, are characteristic summaries of a program’s

behavior on a particular input [56] and researchers have long used them as a means of es-

tablishing test suite sufficiency and investigating program failures [36, 56, 66, 100, 101]. In

particular, spectra have been used to select a passing execution from a test suite with the

intent of comparing the execution to a different, faulty one [100]. Thus, spectra provide an

existing means of selecting an execution peer.

We specifically focus on the spectrum based peer selection in [100]. This paper intro-

duces the nearest neighbor model for selecting a passing peer. For every passing test in a

suite, as well as the failing execution itself, we compute a frequency profile that records

the number of times each basic block of the program executes during the test. Next, we

evaluate a distance function with respect to the failing profile against each passing profile.

This determines which profile, and thus which test, is most similar to the failing execution.

A key observation in [100] is that the nature of the distance function is critical to the

utility of the overall technique. A Euclidean distance, where each element in the frequency

profile is a component in a vector, can lead to illogical results. For example, if one execu-

108

tion has long running loops and another does not, such a distance may ignore similarities

between the parts that are the same in both executions. General inconsistencies with dis-

tance functions influenced by the concrete number of times a program executes a basic

block led the authors to use the Ulam distance, an edit distance between two sequences

of the same unique elements. Each profile is first transformed into an ordered sequence

of basic blocks of the program, sorted by their execution frequencies. Note that order is

the discriminating factor, the actual frequencies are not even present in the profile. The

distance function between profiles is the edit distance [61], or the number of operations

necessary to transform the sorted list of basic blocks from the test into that from the failing

execution. The lower the distance, the fewer dissimilarities between the profiles, so the

algorithm selects the test with the lowest edit distance as the nearest neighbor, and peer.

1 x = input()
2 if x < 5:
3 for y in 1 to 10:
4 print(y / (y + x))
5 print(’done’)

Fails on: Tests:

x = −2 x = 1

x = 7

1

2

5

4

3

1

2

5

3

4

5

1

2

3

4

Ulam distance: 2

5

1

2

3

4

1

1

1

10

11

0

1

1

2

2

Frequency Profiles

x = 1 x = −2

Figure 6.3.: The nearest neighbor model’s peer finding approach. Basic blocks (identified

by the numbers inside the boxes) are sorted by frequency (circled numbers), then the test

profile with the lowest edit distance to that of the failure belongs to the peer.

Consider the example in Figure 6.3. For simplicity, it uses frequency profiles over the

statements instead of basic blocks. The program listed here has 5 statements which should

all execute if the program behaves properly. Line 1 reads a number, x, from input. If x

is less than 5, execution enters a loop that computes and prints a new value. Finally, the

program prints ‘done’ when it is complete. Observe, however, that when x=-2, the program

crashes on the second execution of statement 4 due to integer division by 0. This gives the

failing execution the sorted frequency profile shown on the far right. Basic block IDs are

shown in the cells, while their execution frequencies are shown in adjacent circles. Note

109

that the failing execution omits statement 5 and misses the final check of the loop guard.

Thus, statements 5 and 3 are out of place. A correct input of x=1 instead executes the full

loop and statement 5, giving the leftmost frequency profile. To compute the Ulam distance

between the two, we count the minimum number of blocks that need to be moved. In this

case, it is 2. Because the only other test x=7, has a distance of 3, the technique chooses

input x=1 as the input of the peer execution in this example.

6.1.3 Symbolic Execution

Both input isolation and spectra based approaches derive peers from existing input.

This may not always be possible. For instance, if there are no passing test cases then the

spectrum based approach will fail. With no similar passing cases, it may simply yield

poor results. One alternative is to generate new inputs for a program with the goal of

creating inputs that inherently yield executions similar to an original failing run. This goal

is achievable through recent work in test generation using symbolic execution [8,22,23,48,

105, 129].

When a program executes symbolically, it does not merely execute any operation that

might use or depend on input data. Instead, it builds a formula reflecting what the result of

the operation could be for any possible input value. When it executes a branching instruc-

tion like an if statement, the symbolic execution takes all possible paths, constraining the

possible values along those paths appropriately. For example, in Figure 6.4, the variable

x receives an integer value from symbolic input() on line 1. Because the input is sym-

bolic, x represents all possible numeric inputs at that point. On line 2, execution reaches an

if statement and must consider both branches. Thus, along the path where the condition

is true, the execution adds the constraint x>5 to the formula for x. Along the other path, it

adds the constraint x<=5.

The sequence of branch constraints along a path, or path condition, determine what con-

ditions on the input must hold for the path to be followed. By solving these constraints at

a certain point in the symbolic execution, concrete inputs sufficient to reach that point can

110

1 x = symbolic input()
2 if x > 5:
3 print(’greater’)
4 elif x > 0:
5 if x % 2 == 0:
6 print(’even’)
7 else:
8 print(’even’)

Figure 6.4.: Buggy code snippet. The last print statement should print “odd”.

be discovered. This is the common underlying approach to test generation using symbolic

execution. Precise mechanisms, however, differ between approaches. For instance, pro-

grams may have infinitely long or infinitely many different execution paths, so no approach

covers them all. The way a particular test generation system chooses to explore program

paths impacts the generated tests. In the context of peer selection, we desire to generate

executions similar to an already existing path. One example of such a strategy is presented

in [8].

The test generation approach in [8] creates new tests that are similar to a failing execu-

tion in order to aid fault localization in PHP programs. It first uses the failing execution as

a ‘seed’ to the process, collecting its symbolic path condition. It then generates additional

paths by negating the conjuncts along the path and solving to generate inputs for those

paths as well. The process then continues, always prioritizing the generation of tests along

paths that measure as ‘similar’ to the original failing path condition.

A simplified version of the algorithm is reproduced in Figure 6.5. In fact, this is a gen-

eral test generation algorithm, but as we shall discuss later, we can customize the function

selectNextTest() to direct it toward executions similar to the failing one. Line 2 initializes

a set of candidate tests to possibly add to the test suite. To start, this holds a test for each

branch encountered in the failing execution such that the test takes the alternate path at

that branch. E.g., if the failing execution took the true path, the test would take the false

path for that branch. Lines 3-6 iteratively select a test to add to the test suite and generate

new candidates until a time limit expires or there are no more paths to explore. A more

111

generateNewTests(seed)
Input: failing - a failing test

Output: a set of new tests

1: tests ← Ø

2: toExplore ← getNeighboringTests(failing)

3: while toExplore , Ø and time has not run out do

4: test ← selectNextTest(toExplore)

5: tests ← tests ∪ test

6: toExplore ← toExplore ∪ getNeighboringTests(test)

7: return tests

getNeighboringTests(seed)
Input: seed - a previously selected test

Output: tests with paths branching from that of seed

1: neighbors ← Ø

2: c1 ∧ c2 ∧ . . . ∧ cn = getPathCondition(seed)

3: for all i ∈ 1, 2, . . . , n do

4: path ← c1 ∧ c2 ∧ . . . ∧ ¬ci

5: neighbors ← neighbors ∪ solve(path)

6: return neighbors

Figure 6.5.: A test generation algorithm directed by the objective function select-

NextTest().

complete presentation of the algorithm also handles such optimizations as not following

the same path more than once. We refer the reader to the original papers for the details,

which are not relevant to the discussion here.

As previously mentioned, this is a general test generation algorithm. The way it selects

tests to further explore and add to the test suite is controlled by the objective function se-

lectNextTest(). This function guides the test selection toward whatever goals a developer

may have in mind. In [8], the goal was similarity with a failing execution, so they addi-

tionally developed a heuristic objective function using path conditions to select such tests.

Given a sequence of branch conditions, or path condition, encountered in a program, their

similarity score is the number of the same conditions that evaluated to the same values in

both executions.

Consider again the program in Figure 6.4. The program has a bug such that when line 1

assigns the value 1 to x, the program executes the faulty print statement on line 8. The path

112

condition for this execution is 〈2F∧4T ∧5F〉, meaning that the condition on line 1 evaluated

to false, the condition on line 4 evaluated to true, and the last condition on line 5 evaluated

to false. If the candidate tests in toExplore are the inputs -1, 2, and 10, then their respective

path conditions are 〈2F ∧ 4F〉, 〈2F ∧ 4T ∧ 5T 〉, and 〈2T 〉. Observe, input -1 yields the same

value for condition 1, so its similarity is 1. Input 2 has similarity 2, and 3 has similarity 0

for the same reason. Because input 2 has the highest similarity, it is the next test added to

the test suite and further explored.

We decide if the generated inputs lead to passing executions with an oracle. We further

select from the pool the one that is most similar to the failing run using the same path

condition based criterion.

6.1.4 Predicate Switching

Instead of generating input that will force a buggy program to yield a strictly correct,

passing execution, some approaches for selecting peers relax the notion of correctness.

This allows peers that may represent slightly incorrect executions or normally infeasible

executions. Instead of finding some new input for the program, these techniques can patch

the program or even the execution itself at runtime to create a new execution that behaves

similarly to a failing one. Because incorrectness is undesirable in a peer, these approaches

must be careful in how they modify a program’s behavior.

One such dynamic patching technique is predicate switching [134]. First designed

for fault localization, it generates peers as a part of its core process. The authors of this

paper noted through experiments that less than 10% of an execution’s instructions relate to

computation of values produced as output. As a result, they inferred that they could correct

most faults by fixing only the control flow of an execution. That is, by forcing an execution

to follow the desired control flow, it would behave, to an observer, exactly the same as

a correct program. This insight was extended to a technique for constructing peers when

given a failing execution.

113

One way to alter the control flow of a program is to switch the result of evaluating

a branch condition, or predicate. For example, if the tenth predicate of a program origi-

nally evaluated to true, predicate switching would dynamically patch the execution and flip

the outcome to false, forcing the execution along the false path instead of the true path.

Predicate switching combines this with various search strategies for such a dynamic patch,

considering each individual predicate instance as a candidate. If the observable behavior of

a patched execution matches the expected behavior of the failing execution, then the search

found a patch, and this patched execution can be returned as a peer.

1 x = [101, 102, 103]
2 for i in 0 to 3:
3 if x[i] % 2 == 0:
4 print(x[i])
5 print(’done’)

Figure 6.6.: Buggy code snippet. Index 3 is invalid when accessing the array x.

The code snippet in Figure 6.6 presents a small example where predicate switching is

useful. This program creates a list with 3 elements, but its loop body executes for indices

0 through 3 inclusive. When the execution accesses index 3 of the list on line 3, it throws

an exception, terminating the program. The sequence of predicates encountered within

the failing execution is 〈21
T , 3

2
F , 2

3
T
, 34

T , 2
5
T
, 36

F
, 27

T
〉, with superscripts as timestamps, distin-

guishing the different instances of the same static predicate. The program crashes after it

executes 27
T
. Predicate switching switches each predicate in order starting with 21 until it

finds a patch. The second iteration of the loop, when i = 1 should print out ‘102’, so the

algorithm will not find a valid patch until after that iteration. When the technique switches

the fifth predicate, 25
T
, to false, the program prints ‘done’ and successfully ends. This is the

expected behavior of the correct program, so the search ends with the dynamic patch of 25

providing the peer.

Note that the result does not perfectly match the control flow of the correct program.

Namely, the correct program also expects a third iteration of the loop to complete, even

though it does not do anything. Because the last iteration was not necessary for generating

114

the expected observable behavior of the execution, predicate switching considers that loss

an acceptable approximation for the peer.

6.1.5 Value Replacement

Value replacement [62, 63] is a technique related to predicate switching in that it also

modifies a program’s behavior dynamically to create an approximately correct execution.

While predicate switching works on the boolean domain of branch conditions, value re-

placement replaces other values within a program as well, allowing it to dynamically patch

value based errors in addition to control flow errors.

The underlying abstraction used by value replacement is the value mapping for a state-

ment, or the set of values used by a particular dynamic instance of a statement during an

execution. By changing the value mapping for a statement, value replacement can cause a

failing execution to behave observably correctly. Indeed, predicate switching is a special

case of value replacement, wherein it only considers the values at branching statements.

The difficulty of the technique lies in finding appropriate value mappings to use at a given

statement. Unlike predicate switching, which only needs to consider the values true and

false, replacing all values at a statement gives intractably many different options for what

the value mapping in a patch might be. It is not knowable a priori which of these options

might correctly patch the execution. To make a solution feasible, value replacement only

considers the values observed in the test suite of a program, as these are at least known to

be valid alternatives. The first step of the technique constructs a value profile that holds the

value mappings for a statement observed in any of the tests of a test suite. For each dynamic

statement in the failing execution, the previously observed value mappings are then used to

generate dynamic patches.

The value profile for a statement may still have many different mappings. Instead of

directly applying each of the value mappings, the technique only looks at a subset of the

value mappings. For a statement, these mappings use the values from the profile that are:

115

the minimum less than the original value, the maximum less than the original value, the

minimum greater than the original value, and the maximum greater than the original value.

For example, consider the statement z = x + y where x and y have the values 1 and

3 in the failing execution, respectively. If the value profile contains x = 0,1,2,3 and

y = 0,1,2,3, then the potential value mappings of the statement consists of {x=0,y=0},

{x=0,y=2}, {x=2,y=0}, {x=2,y=2}, {x=3,y=0}, and {x=3,y=2}.

6.2 Analytical Comparison

In this section, we classify the techniques and discuss their applicability. We empirically

compare the techniques in Section 6.3. Table 6.1 summarizes these techniques. Column

Class classifies the techniques based on how they select peers. Column Oracle lists the

power of the testing oracle that must be available for applying the technique. Column Test

Suite notes whether or not a given technique requires a test suite.

Table 6.1: Common features among peer selection approaches.

Technique Class Oracle Test Suite

Input Isolation
input

synthesis
complete no

Spectra Based
input

selection
test suite yes

Symbolic

Execution

input

synthesis
complete no

Predicate

Switching

execution

synthesis
1 test no

Value

Replacement

execution

synthesis
1 test yes

Classification The first three techniques either generate new inputs or use existing inputs

to select peer executions. We call them input based techniques. These technique can only

generate executions that exercise feasible paths in the faulty program (recall that a feasible

path is an execution path driven by a valid input).

116

The remaining two techniques synthesize executions from the failing execution. They

may generate executions that are not feasible under the original faulty program.

Oracle Both input isolation and symbolic execution require complete oracles in theory.

These techniques check whether or not arbitrary executions pass or fail, so the oracle must

work on any execution. In fact, input isolation also needs to determine whether or not an

execution fails in the same way as the original, e.g. crashing at the same point from the

same bug. In practice, implementations of the techniques use approximate oracles instead.

For example, simple oracles can be composed for certain types of failures (e.g. segfaults).

Spectra based selection examines the passing cases from an existing test suite, so an oracle

must be able to determine whether or not each individual test passes or fails. Such an oracle

is weaker than a complete oracle, because it is usually a part of the test suite. The execution

synthesis techniques only check that the patched executions are able to observably mimic

the expected behavior. This means that an oracle must be able to check for the expected

behavior of a single execution. This is the weakest oracle.

Test Suite Both the spectra based and value replacement approaches require a test suite

to function. As noted earlier, test suites are commonly used during development, but the

efficacy of these particular approaches will depend on how the tests in the test suite relate

to the passing and failing executions. For example, if the test executions do not follow

control flows similar to those in the failing execution, the spectra based approach will yield

a poor peer. On the other hand, if statements within tests never use the values that the

failing execution needs to patch and correct its own behavior, then value replacement will

fail entirely.

6.3 Experiment

We implemented all the techniques using the LLVM 2.8 infrastructure and an additional

set of custom libraries, requiring about 11,000 lines of C and C++ and 1,500 lines of python

117

in addition to using the KLEE infrastructure for symbolic execution [22]. We ran all tests

on a 64-bit machine with 6 GB RAM running Ubuntu 10.10.

For input isolation, we performed delta debugging both on command line arguments

passed to the faulty program and on files that the program uses during the buggy execution.

For our spectrum based selector, we computed frequency profiles over the test suite for

each program that existed at the time the bug was not yet fixed. Each of our analyzed

programs contains a test directory in its repository that contains regression tests for bugs

that developers previously fixed. These suites contain 150–1,000 tests.

We built our symbolic execution based selector using a modified version of the KLEE

engine. Instead of generating tests with a breadth first branch coverage policy, we modified

the search heuristics to initially follow the path of the failing execution as much as possible,

then explore paths that branch off from the original execution. If the constraints along one

path are too complex, the system gives up on solving for input on that path and continues

test generation on other paths. Once the system finishes (or the time limit expires), it selects

the passing test with the a path condition most similar to that of the failing run as the peer.

We performed an empirical study of how these techniques behave for executions of a set

of real bugs. The study examines (1) the overhead incurred by using each technique in terms

of time required, (2) how accurately the peers generated by each technique approximate

the correct execution, and (3) how the approximations from different techniques compare

to each other and in which cases one may be more appropriate than another.

Evaluating the second objective is challenging. Given the selected peer, an execution of

the existing buggy program, we must objectively measure how similar it is to the intended

correct execution. The more similar, the better the peer approximates the behavior of the

correct execution. This necessitates both knowing what the correct execution should be and

having a way to compare it with the chosen peer. In order to know what the correct execu-

tion should be, we limit our study to bugs that maintainers have already patched in each of

the above programs. To reduce the possible bias caused by bug selection, we extracted the

bugs for each program by searching through a one-year period of the source repository logs

for each program and extracting the correct versions where the logs mentioned corrections

118

and fixes for bugs. We also extracted the immediately preceding version of the program to

capture the faulty program in each case. Excluding those that were not reproducible or ob-

jectively detectable, we have 10 versions for tar, 5 for make, and 5 for grep. By running

the failing version of the program on the input that expresses each bug, we generate the

execution for which we desire a peer. By running the corrected version, we generate the

perfect peer against which we must compare the selected peers. The precise mechanism

for comparing the executions is discussed in Section 6.3.1.

6.3.1 Measuring Execution Similarity

We need a way to objectively compare the similarity of these executions. We do this

by measuring along two different axes. First, we measure the path similarity of the two

executions through execution indexing [130]. Indexing builds the hierarchical structure of

an execution at the level of each executed instruction. Executions can be very precisely

compared by comparing their structures. It has been used in a number of applications that

demand comparing executions [70, 115]. For example, in Figure 6.7a, the instructions 2, 3,

and 5 correspond across the two executions as denoted by the filled circles, but instruction

4 in the correct execution does not correspond to anything in the failing execution, as it

only appears in one of the executions.

Note that execution indexing first requires that we know which static instructions cor-

respond between the two executions. Because the executions come from two different

versions of a program, some functions may have changed, with instructions being added

or removed between the two versions. To determine which instructions correspond, we

extracted the static control dependence regions into a tree and minimized a recursive tree

edit distance [16] to find the largest possible correspondence between the two programs.

For example, Figure 6.7b shows a program where a developer inserted an if statement

guarding a new instruction. An edit distance algorithm will show that the fewest possible

changes between the two functions require that lines 2 and 5 correspond across program

119

versions, and the if statement on line 3 along with the nested control dependence region

on line 4 are new additions to the correct version.

1 def foo():
2 print ”one”
3 if guard:
4 print”two”
5 print ”three”

Executions

Failing Passing

2 2

3 3

5 #4

 5

(a) Matching dynamic instructions across executions

1 def baz():
2 print ”one”
3

4

5 print ”three”

1 def baz():
2 print ”one”
3 # if guard:
4 #

print”two”
5 print ”three”

failing program correct program

(b) Matching static instructions across versions

Figure 6.7.: Matching of instructions across executions and program versions. Matches are

denoted by , while mismatches are denoted by #.

We score path similarity using the formula

100 ×
2Iboth

I f + Ic

(6.1)

where Iboth is the number of dynamic instructions that match across the executions, I f is the

total number of instructions in the failing execution, and Ic is the number of instructions

in the correct execution. This scores the path similarity of two executions from 0 to 100,

where 0 means that the paths are entirely different, and 100 means that the paths execute

exactly the same instructions.

Second, we measure the data similarity of the executions. We compare the memory

read and write instructions that correspond across the two executions, examining both the

target location of the memory access and the value that it reads or writes. If these are

equivalent across the executions, then the accesses match, otherwise they represent a data

difference between the programs. The similarity of the accesses is then scored, again us-

120

ing formula 6.1, but only considering the instructions that access memory. One difficulty

performing this comparison, as noted by others [99], is that comparing pointers across two

executions is difficult because equivalent allocation instructions may allocate memory at

different positions in the heap. This makes it difficult to determine both (1) when the tar-

gets of memory accesses match, and (2) when values of read or written pointers match.

To enable this, we use memory indexing [115], a technique for identifying corresponding

locations across different executions, to provide canonical IDs for memory locations. We

also use shadow memory and compiler level instrumentation to mark which words in mem-

ory hold pointer values. Thus, when comparing the targets of accesses, we compare their

memory indices. When comparing the values of accesses, we use the memory index of that

value if the value is a pointer; otherwise we use the actual value in memory.

These two approaches allow us to objectively determine both how similar the paths

taken by the peers and correct executions are as well as how similar the values they use and

create are along those matching paths.

6.3.2 Results

Using these representatives of the peer selection techniques, we considered the col-

lected bugs. Table 6.2 summarizes some details for the bugs. Column BugID uniquely

identifies each bug across our results. Program lists the program to which each bug be-

longs, along with the date that a developer committed and documented a fix for the bug in

the source repository in column Patch Date. The table classifies the fault in the program

that induces a failure in Fault Type. For instance, in bug 15 on make, the program calls

strcpy() instead of memmove(), resulting in a corrupted value, so the fault has the de-

scription ‘wrong function called’. Finally, column Failure Type classifies what the user

of a program is able to directly observe about a failure. These observations primarily fall

into two categories: the program either computed an unexpected value (denoted value), or

it performed an unexpected action (behavior). For example, the incorrect value in bug 5 is

an integer representing Unix permissions that the program computes incorrectly, while the

121

Table 6.2: Bugs used in the study along with their failures and the faults that cause them.

Bug

ID
Program Patch Date Fault Type

Failure

Type

1 tar 23 Jun 2009 missing guard behavior

2 tar 30 Jul 2009 missing function call value

3 tar 30 Jul 2009 weak guard behavior

4 tar 5 Aug 2009 missing function call behavior

5 tar 4 Oct 2009 wrong formula value

6 tar 7 Oct 2009 design error behavior

7 tar 17 Mar 2010 design error behavior

8 tar 27 Mar 2010 incorrect guard loop

9 tar 28 Jun 2010 call at wrong place behavior

10 tar 23 Aug 2010 incorrect guards behavior

11 make 3 Jul 2010 design error behavior

12 make 6 Oct 2009 design error behavior

13 make 30 Sep 2009 design error behavior

14 make 23 Sep 2009 design error behavior

15 make 1 Aug 2009 wrong function called value

16 grep 14 Dec 2009 design error behavior

17 grep 4 Mar 2010 corner case behavior

18 grep 4 Mar 2010 corner case behavior

19 grep 14 Mar 2010 corner case behavior

20 grep 25 Mar 2010 incorrect goto value

incorrect behavior of bug 14 is that make does not print out errors that it should. Bug 8

caused tar to execute an infinite loop, which is a specific type of incorrect behavior.

Overhead

First, consider the overhead of the techniques, presented in Table 6.3. For each bug

in column BugID, we ran the five peer selection techniques, noting the Time in seconds

required to select a peer and the number of Tests or reexeutions of the program that the

technique used. Symbolic execution based approaches do not necessarily terminate on their

own; they explore as many of the infinite program paths as possible within a time bound.

Thus, this metric does not apply to symbolic execution; we always stopped it at 4 hours.

Similarly, we stopped any other approach at 4 hours and considered that attempt to find a

peer unsuccessful. Two approaches, the spectrum based approach and value replacement,

both first aggregate data about an existing test suite. This effort amortizes over the develop-

1
2
2

Table 6.3: Peer selection work for each bug. For each technique, Tests holds the number of reexecutions of the program required

by a technique before finding a peer. Time is the total time required to find a peer in seconds. *Average and StdDev for Predicate

Switching without the infinite loop outlier are 119 and 101.

Bug

ID

Input

Isolation
Spectrum

Symbolic

Execution

Predicate

Switching

Value

Replacement

Tests Time
Profile

Time

Selection

Time
Time Tests Time Tests

Profile

Time

Selection

Time

1 51 0.7 144 1233 N/A 22412 178 637381 148 5883

2 44 0.2 144 1236 N/A - 65 - 143 2934

3 213 23.2 145 1257 N/A 25023 204 - 143 >4 hours

4 9 0.2 147 1299 N/A 26880 302 - 143 7032

5 14 10.1 226 1516 N/A - 74 - 212 3279

6 40 0.6 228 1517 N/A - 239 - 210 8592

7 208 3.1 262 1890 N/A 27252 228 836191 240 8054

8 27 50.4 251 1877 N/A 24132 12122 - 251 >4 hours

9 55 50.2 255 1866 N/A 31878 143 - 247 2691

10 6 0.1 315 2695 N/A - 230 - 306 3381

11 5 0.1 35 841 N/A 12581 33 - 1112 >4 hours

12 6 0.1 36 811 N/A 21228 66 819332 1021 13753

13 6 0.1 36 758 N/A 16504 48 674999 1092 11167

14 7 0.1 38 757 N/A - 230 - 1143 >4 hours

15 9 0.2 35 761 N/A 15599 50 - 648 >4 hours

16 20 0.1 1.1 248 N/A - 7.1 - 18.7 65

17 5 0.1 4.5 188 N/A 26 0.1 4232 35.2 16.4

18 7 0.1 4.5 197 N/A 252 3.4 8446 25 28.1

19 5 0.1 2.6 218 N/A 196 3.4 232 31.8 6

20 13 40 3.4 627 N/A 39 2.1 59 41.8 1.2

Average 38 9 116 1090 N/A 16000 711* 432202 361 3386

StdDev 61 17 108 676 N/A 11545 2688* 675610 401 4244

123

ment of a program and is not considered part of the time required to find a single peer. It is

an additional, auxiliary cost.

Input isolation is consistently the fastest approach, always finishing in under a minute,

which is highly desirable. Next, we note that the average time for predicate switching

includes an outlier. Bug 8 is an infinite loop in tar, and we use a five second timeout to

detect such failures in our system. Thus, every test costs one to two orders of magnitude

more in that test case. Discarding that outlier, predicate switching is the next fastest with

an average of 2 minutes to find a peer or determine that it cannot. The next fastest is the

spectrum based approach, using over 18 minutes to find a peer on average. Finally, value

replacement is the slowest, taking about an hour on average to find a peer. From the table

and the high standard deviation, however, we can see that it frequently takes 3-4 hours to

find a peer in practice.

These results are more intuitive when considering what bounds each approach. Input

isolation uses delta debugging over the execution input, so it has a running time polynomial

in the size of the input in the worst case and logarithmic in normal cases. The spectrum

based approach computes an edit distance over metadata for each statement in a program,

so it is polynomially bounded by program size. In contrast, predicate switching and value

replacement are bounded by the length of the execution in either branch instructions or all

instructions respectively, so they can take longer in theory. Looking at the Tests columns,

both approaches execute the buggy program several thousand times when finding a peer,

whereas input isolation executes it only 38 times on average. In practice, if executions take

several seconds to run, then predicate switching and value replacement will become more

costly to use, just as we observe for bug 8.

Fitness

While the speed of peer selection is important for providing convenience and scalabil-

ity, Figure 6.1 shows that a peer is not useful for debugging unless it forms a good approx-

imation of the correct execution. To that end, we collected the peers generated by each

124

Table 6.4: Peer selection similarity scores for each bug. For each selection technique, Path

denotes the path similarity score for each bug. Data denotes the data similarity score for

each bug.

Bug

ID

Input

Isolation
Spectrum

Symbolic

Execution

Predicate

Switching

Value

Replacement
Path Data Path Data Path Data Path Data Path Data

1 0.2 67.8 98.6 59.3 0.2 69 99.6 67.5 99.7 65.4

2 99.0 56.1 84.0 56.2 0.2 67 - - - -

3 0.2 69.7 87.6 59.4 0.2 68 87.6 56.3 - -

4 97.4 69.6 95.9 59.0 0.2 69 97.7 66.7 - -

5 99.3 60.0 98.7 59.7 0.5 69 - - - -

6 0.1 9.1 0.1 9.1 0.1 9.1 - - - -

7 0.1 37.5 0.1 37.5 0.1 9.1 0.1 37.5 0.1 37.5

8 0.2 66.8 95.9 54.4 0.2 67 99.5 67.2 - -

9 0.2 67.2 75.4 58.9 0.2 67 74.8 58.3 - -

10 0.1 21.9 0.1 21.9 0.1 22 - - - -

11 74.7 56.2 66.2 52.4 93 50 97.8 61.9 - -

12 67.1 52.4 0.1 13.9 15 55 66.9 59.2 66.8 59.2

13 78.4 63.3 43.2 63.3 75 65 38.6 61.2 78 61

14 0.1 13.8 0.1 13.9 0.1 14 - - - -

15 52.3 61.4 66.2 52.4 82 76 97.8 61.7 - -

16 0.1 0 0.1 0 0.1 0 - - - -

17 13.6 46.5 0.7 70 0.6 66 1.1 81 74 63

18 14.4 49.6 93 67 0.6 66 55.2 63 71 63

19 75.8 64.5 93 64 0.6 67 97 64 3.1 69

20 30.4 60.9 0.2 70 0.2 67 2.6 59 31 82

Average 33 49 50 47 13 52 65 62 49 63

StdDev 44 21 42 20 30 25 33 8.7 51 15

technique. We traced the control flow and data accesses of the executions and compared

these traces using the metric from Section 6.3.1. Table 6.4 shows the results. For each

technique, we present the path similarity (path) and data similarity (data), along with the

average and standard deviation. We further discuss our observations, each highlighted and

tagged with the symbol Oi.

Predicate Switching First note that (O1): predicate switching performs best in terms of

both path and data similarity, on average scoring in the 60’s with the lowest variance in

both similarity metrics.

Since predicate switching often generates infeasible paths under the original faulty pro-

gram, we observe that in many cases (O2): correct executions resemble infeasible paths

125

1 int create placeholder(char ∗file, int ∗made){
2 ...
3 while ((fd = open (file)) < 0)
4 if (! maybe recoverable (file, made))
5 break;
6 }

tar, extract.c: create placeholder

Figure 6.8.: Bug 8 requires unsound techniques to get a strong peer.

under the original faulty program. Consequently, input based techniques are less effective

because they only generate feasible paths for the faulty program. For example, consider

bug 8 of tar, presented in Figure 6.8. This function tries to open a file at a given path

location. If the call to open fails, the execution enters the loop to attempt fixing the error

with a call to maybe recoverable. If this call returns the constant RECOVER OK, then the

error was fixed and the function calls open again. The failing execution enters an infinite

loop because the condition on line 4 should be compared against the constant RECOVER OK

instead of being negated. In this buggy form, maybe recoverable returns a nonzero error

code every time, so the loop never terminates. Techniques relying on sound behavior can-

not modify the execution to escape the loop, so they select executions that never enter it.

Because predicate switching can select peers from unsound or infeasible executions, it is

able to iterate through the loop the correct number of times and then break out of it. Thus,

it matches the correct path very closely with a score of 99.5.

(O3): Predicate switching may fail to patch a failing run even though it often leads

to peers with good quality if it manages to find one. In comparison, since input based

techniques are not constrained to patching the failing run. They will eventually select a

closest peer (even with bad quality).

(O4): Predicate switching may coincidently patch a failing run, returning a peer with

poor quality. For example, in bug 17 for grep, predicate switching yields a peer with

a path similarity of only 1.1, even though it produced the correct output. The path of

the peer execution actually deviates from the correct path early in the execution, but the

deviated path still produces the expected output. Figure 6.9 presents the location of the

126

1 void mb icase keys (char ∗∗keys, size t ∗len){
2 ...
3 incorrectpatch:
4 for (i = j = 0; i < li ;) {
5 /∗ Convert each keys[i] to lowercase ∗/
6 }

7 }

grep, grep.c: mb icase keys

Figure 6.9.: Execution synthesis on bug 17 yields an erroneous patch.

incorrectly patched predicate. When grep starts, it converts user requested search patterns

into a multibyte format when ignoring character case, but predicate switching toggles the

condition on line 4, preventing patterns from being converted. That grep produced correct

output is merely coincidental. The unconverted search patterns happen to yield a successful

match when the converted ones did not, even though the buggy portion of the program is

in an unrelated component (see Figure 6.10). Thus, the comparison of the failing run with

the peer does not isolate faulty state but rather some random differences. However, this is

an unlikely enough coincidence that predicate switching still scores best on average.

Finally, (O5): predicate switching is less likely to provide a good peer when used on

bugs that exhibit value based failures. For three of the bugs that exhibit value based failures,

where the fault leads to the incorrect value through computation instead of control flow,

predicate switching yields a poor peer (bug 20) or no peer at all (bugs 2 and 5). Developers

can use this insight to use a more general approach like the spectrum techniques when

dealing with value failures.

Value Replacement Value replacement shares much in common with predicate switch-

ing. Hence, (O6): value replacement scores high when it finds a peer but is less likely to

find a peer. This shortcoming is twofold: (1) it takes so long that we had to cut its search

short, and (2), it can only mutate values of an execution as guided by values observed in

the test suite. If the desired value is not seen in the test suite, value replacement cannot

generate a peer. Sometimes, this leads to peers with very poor quality (bug 19) or even no

peers (bugs 9 and 10).

127

1 void parse bracket exp mb (void) {
2 bug19:
3 wt = get character class(str, case fold);
4 ...
5 bug17:
6 if (case fold)
7 remap pattern range(pattern);
8 ...
9 bug18:

10 if (case fold)
11 canonicalize case(buffer);
12 }

grep, dfa.c: parse bracket exp mb

Figure 6.10.: Bugs 17, 18, and 19 are related.

Spectrum Techniques The next strongest technique is the spectrum based approach,

which matched paths as well as value replacement, but was not able to match data ac-

cesses as well. (O7): The spectrum based approach works better with a larger test suite,

which on the other hand requires more time to search for the peer. This is evidenced by its

strongest scores for tar, which had the largest test suite of the programs we tested and the

high computation cost. In other cases, as in both make and tar, finding a desirable peer

may be difficult or impossible because no similar test exists.

Of particular interest, however, are the similarity scores in the 90’s for bugs 18 and

19 of grep. Both of these bugs are related to the component that was patched to fix bug

17. The peer selected for both of those bugs was actually the test added to make sure bug

17 did not reappear as a regression. As shown in Figure 6.10, the three bugs are within

the same function, dealing with the same set of variables. As a result, the regression test

closely resembles the correct executions regarding bugs 18 and 19, making itself a good

peer. Thus, (O8): the spectrum based approach is able to adapt. Once a test for a buggy

component is added to the test suite, related bugs may have a stronger peer for comparison.

This is particularly useful in light of the fact that bugs tend to appear clustered in related

portions of code [77].

128

Input Isolation Input isolation is by far the fastest, but there does not appear to be an

indicator for when or if it will return a useful peer. Its tendency to yield paths of low sim-

ilarity to the correct executions makes it generally less desirable for peer selection. This

happens because (O9): input similarity and behavioral similarity do not necessarily corre-

spond, so making small changes to input will likely create large changes in the behavior

of a program. For example, consider bug 8 for tar. When extracting an archive with a

symbolic link, using the -k option causes tar to enter an infinite loop. This option, how-

ever, significantly alters the behavior of the program, preventing it from extracting some

files. Input isolation selects a peer by generating new input where the k has simply been

removed. This avoids the error but also radically changes the behavior of the program such

that the peer is highly dissimilar to the correct execution. This effect is undesirable because

the differences between the failing run and the peer may not be relevant to the fault but

rather just semantic differences resulting from the input difference.

In spite of this, its ability to exploit coincidental similarity between runs on passing

and failing inputs allows input isolation to create better peers for some bugs than any of

the other approaches. For example, consider bug 5 of tar. Input isolation produced the

peer with the highest path and value similarity for this bug. The original command line

to produce the failure included the arguments -H oldgnu, telling tar to create an archive

in ‘oldgnu’ format. Input Isolation determined that the most similar passing run should

instead use the arguments -H gnu. Coincidentally, ‘gnu’ is another valid file format, and

creating an archive in that format follows almost the same path as the oldgnu format. Such

behavior is difficult to predict but quite interesting.

Symbolic Execution We observe (O10): the symbolic execution approach performs poorly,

generating only very short executions that diverge substantially from the failing runs. The

main reason is that the approach tries to model path conditions of entire failing runs in

order to search for their neighbors. However, the original failing runs are too complex for

KLEE to handle, causing the system to time out. According to the Figure 6.5, the tech-

nique degenerates to producing inputs for short executions, which it can manage. Note that

129

good performance was reported for the same algorithm for web applications in [8], but web

applications are usually smaller and have very short executions. We note that good code

coverage can be achieved for our subject programs if simply using KLEE as a test genera-

tion engine. But we observe the generated executions are nonetheless very short, attributed

to the path exploration strategy of the test generation algorithm. In contrast, peer selection

requires modeling relatively much longer executions.

Threats to Validity The above experiments only consider three client programs; tar,

make, and grep; and may not generalize to other programs. In particular, these programs

are all medium sized GNU utilities. Experimentation on a broader variety of programs can

lessen this threat. Additionally, we have only considered five representative approaches

for peer selection, but other techniques that fall into the same classification exist and may

yield different results [46,123]. Our implementations are also derived only from published

work and may differ slightly from the real designs of their published systems. However,

the case analysis examining the problems with each type of peer selection stands even for

new techniques and supports the empirical results.

Finally, we note that we only evaluate these techniques for peer selection, we do not

dispute their utility in solving other problems.

6.4 Related Work

We have examined methods for selecting or synthesizing executions for use in execution

comparison. Many techniques related to peer selection stem from existing areas of software

engineering.

Execution comparison itself has a long history in software engineering, from earlier ap-

proaches that enabled manually debugging executions in parallel to more automated tech-

niques that locate or explain faults in programs [28, 125, 132]. These systems require that

a failing execution is compared with an execution of the same program. This chapter aug-

ments these approaches by suggesting that the desired execution should approximate the

correct one. This approximation aids the existing techniques in explaining failures.

130

Many peer selection techniques come from automated debugging analyses. Delta de-

bugging, used for input isolation, is well known for reducing the sizes of failing test cases

and several other uses [133]. Zeller’s work on execution comparison also utilized delta de-

bugging to locate faulty program state [28], using either input isolation or spectrum based

selection techniques to select a peer execution. Spectrum based approaches for fault lo-

calization [36, 56, 66, 100, 101] have long exploited existing test suites in order to identify

program statements that are likely buggy. Symbolic execution and constraint solving are

popular approaches for automatically generating tests [22, 48, 97, 105, 129]. By building

formulae representing the input along paths in an execution, they are able to solve for the

input required to take alternative paths. Some systems also use search heuristics to guide

the tests toward a particular path for observation [8, 97, 129], appropriately generating a

peer as we did in our experiments. Execution synthesis techniques like predicate switching

and value replacement mutate an existing failing execution in unsound ways to see if small

changes can make the executions behave correctly [63, 134]. Information about how and

where this dynamic patch occurred can be used for fault localization. Some effort has been

put into finding corrections to executions that require multiple predicate switches [123].

More recently, the observation that unsound approximations of executions provide useful

information about real program behaviors has even been explored for test generation [120].

Our system for comparing execution traces uses execution and memory indexing to

identify corresponding instructions and variables across the different executions [115,130].

Other trace comparisons exist, but they do not allow strictly aligning both data and control

flow as necessary for examining suitability for execution comparison [57, 99, 137]. Ex-

isting work also looks at the static alignment and differencing of static program, but these

approaches emphasize efficiency over precision or high level alignment over low level align-

ment in comparison to the edit distance approach used in this paper [7, 58]. Edit distances

have been used to align the abstract syntax trees of multiple programs [45], but not the

control flow, which is necessary for aligning traces.

131

6.5 Conclusions

This chapter introduces peer selection as a subproblem of using execution comparison

for debugging. Given a failing execution, that failing execution must be compared against

a peer that approximates the correct, intended execution in order to yield useful results. We

have surveyed and implemented five existing peer selection techniques, comparing how

well the peers that they generate approximate the correct execution and how quickly they

can find these peers. The results provide insight into the advantages and disadvantages of

the different techniques.

132

7 RELATED WORK

Coping with debugging has been a long standing issue for software developers. Beyond

the core categories of fault localization and slicing, there have been further commonalities

and trends in debugging research that relate to the techniques presented in this dissertation.

7.1 Comparison Based Debugging

Our contrasts a correct execution with a buggy execution and explains why they differ.

Previous approaches have also used comparison based approaches that look at how buggy

and correct executions differ.

Notably, we have already seen that fault localization techniques look at the criteria

such as whether or not a statement was more likely to be executed in buggy runs of a

program than in correct runs [2, 66]. Renieris and Reiss have also used criteria such as

how frequently each instruction was executed to identify correct executions that are similar

to a failing execution. They then used the same spectra to identify differences between

the two executions that suggested where the buggy statement may reside [100]. Ball et al.

used a pool of correct executions combined with counterexamples from a model checker to

identify the first step within the failing counterexample that did not exist within any correct

trace as well. The transitions into failure then identify possible causes of errors [13].

Some techniques focus instead on comparing different versions of a program or dif-

ferent implementations of solutions to localize possible bugs. Relative debugging from

Abramson introduced a debugging interface like gdb augmented with primitives for exam-

ining the values of variables in two executions at once. Using these primitives, a developer

could manually execute both programs up to the same point in each implementation and

use the comparison primitives to determine whether or not variables had the same values

in both executions [1]. In contrast, constraint based techniques like Darwin and golden

133

implementation driven debugging look at the common constraints within executions of dif-

ferent programs or different versions of a program on the same input. These techniques

then analyze the path conditions of the different implementations to identify conjuncts that

are likely associated with the failure [14, 97].

The automated comparison based techniques presented thus far focus on localizing bugs

rather than explaining how bugs propagate through an execution. In contrast, we previously

showed how Zeller’s original work as well as dual slicing use comparison based techniques

to explain failures, albeit with less precision or correctness than the technique presented in

this dissertation [28, 125, 132].

7.2 Interactive Debugging Interfaces

Not all research has focused on purely manual or purely automated debugging tech-

niques. Instead, some research looks at debugging assistants that try to guide developers

by either asking them questions or presenting possible questions that may be answered

through further analyses.

Algorithmic debugging is one of the earliest such debugging assistants of which we are

aware. It would identify possible conditions related to the search for a bug and ask the

developer whether or not those conditions were true. Using the developer feedback, algo-

rithmic debugging could direct the search for a buggy procedure within a program [108].

In contrast, more recent work by Dillig et al. provides an interactive assistant that does not

try to explain why or where a bug may be but rather to classify bug reports as actual bugs

or false alarms [39].

Whyline was a debugging interface designed to guide the developer through the use of

slices for understanding why a bug occurred [74]. Ko et al. recognized that developers

often guide their understanding of program behavior through an interrogative process, so

Whyline provided an interface of possible questions that the developer might ask at differ-

ent points within an execution. These questions then fed into static and dynamic slicing

algorithms that could guide the developer further backward through the program.

134

Of these techniques, Whyline is the most closely related to our approach, even though

we do not focus on the user interface aspect of debugging. Whyline guides the developer

by posing possible questions that can guide the developer backward through the slice. In

contrast, the technique presented in this paper determines which questions are useful to

ask through the dependences in the final explanation of a bug. Thus, the techniques are

complementary and pose a possible direction for future work.

7.3 Structuring Slice Information

Instead of guiding the developer through the slice via questions, some debugging tech-

niques abstract away or deprioritize portions of slices that may not be as immediately inter-

esting to the developer. Developers can still explore the entire slices, but the goal of these

techniques is to direct the developer toward interesting portions of the slice first.

One such initial tool was the Program Slice Browser [35]. This browser provided an

interface for traversing static program slices, but it also provided a coarse grained hierarchi-

cal abstraction of slices. Thus, for instance, the dependences between functions would first

appear in the slice, and the developer could zoom into the dependences within a function

on demand.

This tool is related to hierarchical dynamic slicing, which instead operates on dynamic

slices [124]. However, hierarchical dynamic slicing offers abstractions at the level of con-

trol structures such as loops as well. These are important to address in the context of

dynamic slicing because long running loops can introduce additional dependences into a

slice during each loop iteration.

Similar to dual slicing, thin slicing used the observation that not all dependences and

definitions within a slice are actually relevant to answering questions using a slice [111]. It

uses the observation that dependences may be introduced into a slice that do not actually

affect a value of interest. For instance, a buggy value may be inserted into a container

type and read from a container type, thus introducing dependences on the container type

itself, even though only the buggy value is of interest. Thin slicing hierarchically prunes

135

the likely uninteresting values from the slice and instead allows the developer to explore

them on demand.

Zhang et al. used profiles of the values at different instructions within a program to

establish a ranked confidence that the value produced at each instruction within a buggy

execution was correct [135]. These confidence rankings then guide a developer’s search by

deprioritizing or pruning away the statements from the slice that are likely correct.

All of these tools provide interfaces and abstractions that help developers to navigate

and understand slices. As such, they are orthogonal to the work presented in this paper and

future work may combine them to examine the impact on resulting slices.

7.4 Explanations from Distance Metrics

One of the most related lines of work to that presented in this dissertation is Groce’s

work on explaining failures using distance metrics [50]. In this work, Groce created a

bounded static model of a buggy program using CBMC and searched for a correct execution

in this model that had the most similar control flow and data flow to the buggy execution.

The approach then computed a backward dynamic slice over the differences between the

two executions to produce an explanation that was similar although not equivalent to a dual

slice.

The search for an execution as similar as possible to the failing execution is inspired by

the counterfactual model of causality [87]. However, as we observed in Chapter 6, the dif-

ferences between an execution similar to the failing one can simply lead to an explanation

of the semantic differences in their input. To explain a failure, correct the execution needs

to reflect the intended behavior of the failing one.

The slicing technique presented in the distance metrics work is also able to prune away

statements that produce the same values in both executions, as in dual slicing. However,

it does not always allow dependences that only exist in one execution to feed back into

the slice of the other. Thus, for bugs whose explanations include execution omission, the

resulting slice may not be able to identify the missing behaviors that should have occurred.

136

8 CONCLUSIONS

8.1 Contributions

This dissertation makes contributions in the areas of execution comparison and auto-

mated debugging. It first defines problems and solutions that enable dynamic analyses to

efficiently and precisely compare properties of multiple executions. Using these, it further

constructs techniques that improve the efficiency and precision of generating explanations

for software failures.

Canonical Identities for Execution Points. This dissertation surveys and contrasts the

already existing approaches for identifying execution points, thus identifying when some

approaches may be preferable over others. In addition, this comparison shows that existing

approaches do not provide a solution for comprehensively, scalably, and efficiently identify-

ing execution points across multiple executions, which fine-grained execution comparison

requires. Instead, a new approach derived from identifying statically equivalent points in

control flow graphs does provide such a platform for identifying execution points. The re-

sults in this dissertation show that the new technique, PEPID, can identify execution points

as a program runs with about 25% overhead in execution time on average.

Canonical Identities for Memory Locations. Just as execution comparison benefits

from identifying equivalent execution points across executions, it also benefits from iden-

tifying equivalent locations in memory. This allows the comparison of equivalent memory

locations to determine precisely what variables and values differ across two executions.

Exploiting the EPIDs developed within Chapter 3, this dissertation presents a technique

for identifying all memory by using the EPID at which a program allocates a region of

memory as well as the offset within an allocated memory region. These new identifiers for

137

memory locations facilitate the identification of corresponding memory across executions.

The identifiers also enable the meaningful replacement of the values in memory within one

execution with values in corresponding memory from another execution, even when some

of those values are pointers to memory within the second execution.

Automated Explanations of Software Failures. Dynamic slices are large in part be-

cause they traverse and include dependences that are not relevant to explaining a bug.

Even so, dynamic slices also omit dependences necessary to explain a bug because the

dependences involve instructions not executed in the buggy runs. These unnecessary de-

pendences can be removed and the missing ones added back by identifying those variables

and values within the slice that cause the bug at an execution point. Existing techniques,

however, have problems with both efficiency and correctness. They can take a long time

to identifies causes even at a single step of an execution, and the identified causes can both

include and exclude information they should not.

This dissertation shows that execution comparison can indeed be used to identify the

causes of a bug. By comparing the failing execution of a program with another execution

that approximates the intended correct behavior of the failing one, execution comparison

can identify those variables and values reflecting the missed behavior and dependences in

traditional dynamic slices. Through state replacement and specialized reexecution of both

the failing and correct runs, execution comparison can identify a minimal set of causes for

a bug at a particular execution point. As a result, the technique for computing explanations

of software failures presented within this dissertation is practical for explaining real world

bugs. The technique computes explanations in under three minutes on average and explains

how the root causes of bugs propagate to failures in 73% of the examined bugs. Previous

techniques worked for only 27% of these bugs.

Approximating Correct Executions. The quality of an explanation for a single failing

execution also depends on how well the second (correct) execution reflects the intended

behavior of the failing one. This is in contrast to statistical techniques for fault localization.

Statistical techniques need to compare a pool of multiple failing executions against correct

138

ones that are similar to the failing ones in order to avoid statistical confounding [11, 49].

This dissertation examines existing approaches for finding such executions that are similar

to the intended behavior. We find that some approaches, in particular predicate switching,

are both more effective and more efficient at approximating the intended behavior than

others, but it is also possible for those techniques to fail at providing any approximation at

all.

In addition, we observe that these are only approximations of the intended behavior.

The approximations may still be dissimilar from the intended behavior, and in such cases,

explaining why the two executions differ still will not explain the bug itself, as seen in 27%

of the cases in Chapter 5.

8.2 Future Work

Identifying Causes Without Reexecution. One of the core limitations of the technique

presented in this paper is that it requires repeated reexecution of the failing and correct ex-

ecutions with deterministic results. Real world programs, however, do not necessarily ex-

hibit deterministic behavior. Programs that exploit concurrency or asynchronous behaviors

are affected nondeterministically by timing. Programs that interact with the environment

provided by the operating system may be affected by nondeterministic environmental state.

Explaining the bugs within these programs cannot rely on repeated deterministic reexecu-

tion. Finding a way to explain execution differences without reexecution can avoid this

limitation and potential also reduce the overhead associate with reexecution itself.

Improving Approximations of Correct Behavior. The quality of the produced explana-

tions depends on how well the correct execution mimics the intended behavior. While it

producing such approximations may be possible for programs like system utilities, the qual-

ity of such approximations may be poor, and the techniques may not work for other types

of applications like server, mobile, or web based applications. Furthermore, producing the

approximations can take longer on average than producing the explanations themselves.

Exploring faster ways of producing these approximations and ways of more closely mimic-

139

ing the intended behavior of a failing execution both have the potential to improve the

practicality and utility of the framework presented within this dissertation.

Abstractions for Presenting Explanations. The explanations computed within by the

presented framework work at the instruction and basic block level of the analyzed programs,

but this may not be desirable. For languages like Python or ECMAScript, a single statement

or operation within the source code of a program may yield multiple implicit instructions

and even multiple function calls. A developer may not expect an explanation in terms of

these implicit instructions but rather in terms of the high level operations used within source

code. In addition, some semantic operations may produce multiple instructions that do not

match the level at which a developer understands a program. For instance, a program may

sum of all of the elements within a list. If an explanation of a bug involves that summation,

the explanation may capture the addition of every element of the list even if only one is

relevant. Finding better ways to capture and rarify the intended meaning of a program

could abstract away the irrelevant or low level details that do not concern the developer and

make automated explanations more useful.

Other Uses for Explaining Execution Differences. Comparing executions has proven

useful in security analysis [65], testing and impact analysis [99], and program comprehen-

sion [30]. The efficiency and precision of the techniques presented within this dissertation

for explaining execution differences may improve the existing solutions within these areas

or perhaps allow for entirely new solutions.

LIST OF REFERENCES

140

LIST OF REFERENCES

[1] David Abramson, Ian Foster, John Michalakes, and Rok Sosič. Relative debugging:
A new methodology for debugging scientific applications. Communications of the
ACM, 39(11):69–77, November 1996.

[2] Rui Abreu, Peter Zoeteweij, and Arjan J. C. van Gemund. An evaluation of simi-
larity coefficients for software fault localization. In Proceedings of the 12th Pacific
Rim International Symposium on Dependable Computing, PRDC ’06, pages 39–46,
Washington, DC, USA, 2006. IEEE Computer Society.

[3] Hiralal Agrawal. On slicing programs with jump statements. In Proceedings of the
ACM SIGPLAN 1994 Conference on Programming Language Design and Implemen-
tation, PLDI ’94, pages 302–312, New York, NY, USA, 1994. ACM.

[4] Hiralal Agrawal, Richard A. Demillo, and Eugene H. Spafford. Debugging with
dynamic slicing and backtracking. Software: Practice and Experience, 23(6):589–
616, June 1993.

[5] Hiralal Agrawal, Joseph R. Horgan, Edward W. Krauser, and Saul London. Incre-
mental regression testing. In Proceedings of the 1993 Conference on Software Main-
tenance, pages 348–357, Washington, DC, USA, 1993. IEEE Computer Society.

[6] Dong H. Ahn, Bronis R. de Supinski, Ignacio Laguna, Gregory L. Lee, Ben Liblit,
Barton P. Miller, and Martin Schulz. Scalable temporal order analysis for large
scale debugging. In Proceedings of the Conference on High Performance Computing
Networking, Storage and Analysis, SC ’09, pages 44:1–44:11, New York, NY, USA,
2009. ACM.

[7] Taweesup Apiwattanapong, Alessandro Orso, and Mary Jean Harrold. JDiff: A
differencing technique and tool for object-oriented programs. Automated Software
Engineering, 14(1):3–36, March 2007.

[8] Shay Artzi, Julian Dolby, Frank Tip, and Marco Pistoia. Directed test generation for
effective fault localization. In Proceedings of the 19th International Symposium on
Software Testing and Analysis, ISSTA ’10, pages 49–60, New York, NY, USA, 2010.
ACM.

[9] Shay Artzi, Sunghun Kim, and Michael D. Ernst. ReCrash: Making software fail-
ures reproducible by preserving object states. In Proceedings of the 22nd European
Conference on Object-Oriented Programming, ECOOP ’08, pages 542–565, Berlin,
Heidelberg, 2008. Springer-Verlag.

[10] George K. Baah, Andy Podgurski, and Mary Jean Harrold. The probabilistic pro-
gram dependence graph and its application to fault diagnosis. IEEE Transactions on
Software Engineering, 36(4):528–545, 2010.

141

[11] George K. Baah, Andy Podgurski, and Mary Jean Harrold. Mitigating the confound-
ing effects of program dependences for effective fault localization. In Proceedings
of the 19th ACM SIGSOFT Symposium and the 13th European Conference on Foun-
dations of Software Engineering, ESEC/FSE ’11, pages 146–156, New York, NY,
USA, 2011. ACM.

[12] Thomas Ball and James R. Larus. Efficient path profiling. In Proceedings of the
29th Annual ACM/IEEE International Symposium on Microarchitecture, MICRO 29,
pages 46–57, Washington, DC, USA, 1996. IEEE Computer Society.

[13] Thomas Ball, Mayur Naik, and Sriram K. Rajamani. From symptom to cause: Local-
izing errors in counterexample traces. In Proceedings of the 30th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL ’03, pages
97–105, New York, NY, USA, 2003. ACM.

[14] Ansuman Banerjee, Abhik Roychoudhury, Johannes A. Harlie, and Zhenkai Liang.
Golden implementation driven software debugging. In Proceedings of the Eigh-
teenth ACM SIGSOFT International Symposium on Foundations of Software Engi-
neering, FSE ’10, pages 177–186, New York, NY, USA, 2010. ACM.

[15] Armin Biere, Alessandro Cimatti, Edmund M. Clarke, and Yunshan Zhu. Symbolic
model checking without bdds. In Proceedings of the 5th International Conference on
Tools and Algorithms for Construction and Analysis of Systems, TACAS ’99, pages
193–207, London, UK, UK, 1999. Springer-Verlag.

[16] Philip Bille. A survey on tree edit distance and related problems. Theoretical Com-
puter Science, 337(1-3):217–239, June 2005.

[17] Hans-Juergen Boehm. Space efficient conservative garbage collection. In Proceed-
ings of the ACM SIGPLAN 1993 Conference on Programming Language Design and
Implementation, PLDI ’93, pages 197–206, New York, NY, USA, 1993. ACM.

[18] Michael D. Bond, Graham Z. Baker, and Samuel Z. Guyer. Breadcrumbs: Efficient
context sensitivity for dynamic bug detection analyses. In Proceedings of the 2010
ACM SIGPLAN Conference on Programming Language Design and Implementation,
PLDI ’10, pages 13–24, New York, NY, USA, 2010. ACM.

[19] Michael D. Bond and Kathryn S. McKinley. Probabilistic calling context. In Pro-
ceedings of the 22nd Annual ACM SIGPLAN Conference on Object-Oriented Pro-
gramming Systems and Applications, OOPSLA ’07, pages 97–112, New York, NY,
USA, 2007. ACM.

[20] Coen Bron and Joep Kerbosch. Algorithm 457: Finding all cliques of an undirected
graph. Communications of the ACM, 16(9):575–577, September 1973.

[21] Yuriy Brun and Michael D. Ernst. Finding latent code errors via machine learn-
ing over program executions. In Proceedings of the 26th International Conference
on Software Engineering, ICSE ’04, pages 480–490, Washington, DC, USA, 2004.
IEEE Computer Society.

[22] Cristian Cadar, Daniel Dunbar, and Dawson Engler. KLEE: Unassisted and auto-
matic generation of high-coverage tests for complex systems programs. In Proceed-
ings of the 8th USENIX Conference on Operating Systems Design and Implementa-
tion, OSDI’08, pages 209–224, Berkeley, CA, USA, 2008. USENIX Association.

142

[23] Cristian Cadar, Vijay Ganesh, Peter M. Pawlowski, David L. Dill, and Dawson R.
Engler. EXE: Automatically generating inputs of death. ACM Transactions on In-
formation and System Security (TISSEC), 12(2):10:1–10:38, December 2008.

[24] Satish Chandra, Emina Torlak, Shaon Barman, and Rastislav Bodik. Angelic debug-
ging. In Proceedings of the 33rd International Conference on Software Engineering,
ICSE ’11, pages 121–130, New York, NY, USA, 2011. ACM.

[25] Trishul M. Chilimbi, Ben Liblit, Krishna Mehra, Aditya V. Nori, and Kapil Vaswani.
HOLMES: Effective statistical debugging via efficient path profiling. In Proceedings
of the 31st International Conference on Software Engineering, ICSE ’09, pages 34–
44, Washington, DC, USA, 2009. IEEE Computer Society.

[26] Jong-Deok Choi and Sang Lyul Min. Race frontier: Reproducing data races in
parallel-program debugging. In Proceedings of the Third ACM SIGPLAN Sympo-
sium on Principles and Practice of Parallel Programming, PPOPP ’91, pages 145–
154, New York, NY, USA, 1991. ACM.

[27] Edmund Clarke, Daniel Kroening, and Flavio Lerda. A tool for checking ANSI-C
programs. In Tools and Algorithms for the Construction and Analysis of Systems
(TACAS ’04), volume 2988 of Lecture Notes in Computer Science, pages 168–176.
Springer, 2004.

[28] Holger Cleve and Andreas Zeller. Locating causes of program failures. In Proceed-
ings of the 27th International Conference on Software Engineering, ICSE ’05, pages
342–351, New York, NY, USA, 2005. ACM.

[29] James S. Collofello and Larry Cousins. Towards automatic software fault location
through decision-to-decision path analysis. International Workshop on Managing
Requirements Knowledge, 0:539, 1987.

[30] Bas Cornelissen and Leon Moonen. Visualizing similarities in execution traces. In
Proceedings of the Third Workshop on Program Comprehension through Dynamic
Analysis (PCODA), pages 6–10, 2007.

[31] Michael A. Cusumano. Reflections on the toyota debacle. Communications of the
ACM, 54(1):33–35, January 2011.

[32] Robert DeLine, Andrew Bragdon, Kael Rowan, Jens Jacobsen, and Steven P. Reiss.
Debugger canvas: Industrial experience with the code bubbles paradigm. In Pro-
ceedings of the 2012 International Conference on Software Engineering, ICSE 2012,
pages 1064–1073, Piscataway, NJ, USA, 2012. IEEE Press.

[33] Richard A. DeMillo, Hsin Pan, and Eugene H. Spafford. Critical slicing for software
fault localization. In Proceedings of the 1996 ACM SIGSOFT International Sympo-
sium on Software Testing and Analysis, ISSTA ’96, pages 121–134, New York, NY,
USA, 1996. ACM.

[34] Richard A. DeMillo, Hsin Pan, and Eugene H. Spafford. Failure and fault analysis
for software debugging. In Proceedings of the 21st International Computer Software
and Applications Conference, COMPSAC ’97, pages 515–521, Washington, DC,
USA, 1997. IEEE Computer Society.

143

[35] Yunbo Deng, Suraj Kothari, and Yogy Namara. Program slice browser. In Pro-
ceedings of the 9th International Workshop on Program Comprehension, IWPC ’01,
pages 50–, Washington, DC, USA, 2001. IEEE Computer Society.

[36] William Dickinson, David Leon, and Andy Podgurski. Pursuing failure: The dis-
tribution of program failures in a profile space. In Proceedings of the 8th Euro-
pean Software Engineering Conference Held Jointly with 9th ACM SIGSOFT Inter-
national Symposium on Foundations of Software Engineering, ESEC/FSE-9, pages
246–255, New York, NY, USA, 2001. ACM.

[37] Madeline Diep, Sebastian Elbaum, and Matthew Dwyer. Trace normalization. In
Proceedings of the 2008 19th International Symposium on Software Reliability En-
gineering, ISSRE ’08, pages 67–76, Washington, DC, USA, 2008. IEEE Computer
Society.

[38] Edsger W. Dijkstra. Letters to the editor: Go to statement considered harmful. Com-
munications of the ACM, 11(3):147–148, March 1968.

[39] Isil Dillig, Thomas Dillig, and Alex Aiken. Automated error diagnosis using abduc-
tive inference. In Proceedings of the 33rd ACM SIGPLAN Conference on Program-
ming Language Design and Implementation, PLDI ’12, pages 181–192, New York,
NY, USA, 2012. ACM.

[40] Igor Douven. Abduction. In Edward N. Zalta, editor, The Stanford Encyclopedia of
Philosophy. Spring 2011 edition, 2011.

[41] Evren Ermis, Martin Schäf, and Thomas Wies. Error invariants. In FM 2012: For-
mal Methods, volume 7436 of Lecture Notes in Computer Science, pages 187–201.
Springer Berlin Heidelberg, 2012.

[42] Min Feng and Rajiv Gupta. Detecting virus mutations via dynamic matching. In
Proceedings of the 2009 IEEE International Conference on Software Maintenance,
ICSM ’09, pages 105–114, 2009.

[43] Min Feng and Rajiv Gupta. Learning universal probabilistic models for fault local-
ization. In Proceedings of the 9th ACM SIGPLAN-SIGSOFT Workshop on Program
Analysis for Software Tools and Engineering, PASTE ’10, pages 81–88, New York,
NY, USA, 2010. ACM.

[44] Jeanne Ferrante, Karl J. Ottenstein, and Joe D. Warren. The program dependence
graph and its use in optimization. ACM Transactions on Programming Languages
and Systems (TOPLAS), 9(3):319–349, July 1987.

[45] Beat Fluri, Michael Würsch, Martin Pinzger, and Harald Gall. Change distilling:
Tree differencing for fine-grained source code change extraction. IEEE Transactions
on Software Engineering, 33(11):725–743, November 2007.

[46] Stephanie Forrest, ThanhVu Nguyen, Westley Weimer, and Claire Le Goues. A
genetic programming approach to automated software repair. In Proceedings of the
11th Annual Conference on Genetic and Evolutionary Computation, GECCO ’09,
pages 947–954, New York, NY, USA, 2009. ACM.

[47] Margaret Ann Francel and Spencer Rugaber. The relationship of slicing and debug-
ging to program understanding. In Proceedings of the 7th International Workshop
on Program Comprehension, IWPC ’99, pages 106–, Washington, DC, USA, 1999.
IEEE Computer Society.

144

[48] Patrice Godefroid, Nils Klarlund, and Koushik Sen. DART: Directed automated
random testing. In Proceedings of the 2005 ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation, PLDI ’05, pages 213–223, New
York, NY, USA, 2005. ACM.

[49] Ross Gore and Paul F. Reynolds, Jr. Reducing confounding bias in predicate-level
statistical debugging metrics. In Proceedings of the 2012 International Conference
on Software Engineering, ICSE 2012, pages 463–473, Piscataway, NJ, USA, 2012.
IEEE Press.

[50] Alex Groce. Error explanation and fault localization with distance metrics. PhD
thesis, Carnegie Mellon University, Pittsburgh, PA, USA, 2005.

[51] Alex Groce, Sagar Chaki, Daniel Kroening, and Ofer Strichman. Error explana-
tion with distance metrics. International Journal on Software Tools for Technology
Transfer, 8(3):229–247, June 2006.

[52] Bhargav S. Gulavani, Thomas A. Henzinger, Yamini Kannan, Aditya V. Nori, and
Sriram K. Rajamani. Synergy: A new algorithm for property checking. In Pro-
ceedings of the 14th ACM SIGSOFT International Symposium on Foundations of
Software Engineering, SIGSOFT ’06/FSE-14, pages 117–127, New York, NY, USA,
2006. ACM.

[53] Liang Guo, Abhik Roychoudhury, and Tao Wang. Accurately choosing execution
runs for software fault localization. In Proceedings of the 15th International Con-
ference on Compiler Construction, CC’06, pages 80–95, Berlin, Heidelberg, 2006.
Springer-Verlag.

[54] Tibor Gyimóthy, Árpád Beszédes, and Istán Forgács. An efficient relevant slicing
method for debugging. In Proceedings of the 7th European Software Engineering
Conference Held Jointly with the 7th ACM SIGSOFT International Symposium on
Foundations of Software Engineering, ESEC/FSE-7, pages 303–321, London, UK,
UK, 1999. Springer-Verlag.

[55] Daniel Halperin, Thomas S. Heydt-Benjamin, Benjamin Ransford, Shane S. Clark,
Benessa Defend, Will Morgan, Kevin Fu, Tadayoshi Kohno, and William H. Maisel.
Pacemakers and implantable cardiac defibrillators: Software radio attacks and zero-
power defenses. In Proceedings of the 2008 IEEE Symposium on Security and Pri-
vacy, SP ’08, pages 129–142, Washington, DC, USA, 2008. IEEE Computer Society.

[56] Mary Jean Harrold, Gregg Rothermel, Rui Wu, and Liu Yi. An empirical investi-
gation of program spectra. In Proceedings of the 1998 ACM SIGPLAN-SIGSOFT
Workshop on Program Analysis for Software Tools and Engineering, PASTE ’98,
pages 83–90, New York, NY, USA, 1998. ACM.

[57] Kevin J. Hoffman, Patrick Eugster, and Suresh Jagannathan. Semantics-aware trace
analysis. In Proceedings of the 2009 ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI ’09, pages 453–464, New York, NY,
USA, 2009. ACM.

[58] Susan Horwitz. Identifying the semantic and textual differences between two ver-
sions of a program. In Proceedings of the ACM SIGPLAN 1990 Conference on Pro-
gramming Language Design and Implementation, PLDI ’90, pages 234–245, New
York, NY, USA, 1990. ACM.

145

[59] Susan Horwitz, Thomas Reps, and David Binkley. Interprocedural slicing using
dependence graphs. In Proceedings of the ACM SIGPLAN 1988 Conference on
Programming Language Design and Implementation, PLDI ’88, pages 35–46, New
York, NY, USA, 1988. ACM.

[60] Hwa-You Hsu, James A. Jones, and Alex Orso. Rapid: Identifying bug signatures
to support debugging activities. In Proceedings of the 2008 23rd IEEE/ACM Inter-
national Conference on Automated Software Engineering, ASE ’08, pages 439–442,
Washington, DC, USA, 2008. IEEE Computer Society.

[61] James W. Hunt and Thomas G. Szymanski. A fast algorithm for computing longest
common subsequences. Communications of the ACM, 20(5):350–353, May 1977.

[62] Dennis Jeffrey, Neelam Gupta, and Rajiv Gupta. Fault localization using value re-
placement. In Proceedings of the 2008 International Symposium on Software Testing
and Analysis, ISSTA ’08, pages 167–178, New York, NY, USA, 2008. ACM.

[63] Dennis Jeffrey, Neelam Gupta, and Rajiv Gupta. Effective and efficient localization
of multiple faults using value replacement. In Proceedings of the 2009 IEEE Inter-
national Conference on Software Maintenance, ICSM ’09, pages 221–230, 2009.

[64] Lingxiao Jiang and Zhendong Su. Context-aware statistical debugging: From
bug predictors to faulty control flow paths. In Proceedings of the Twenty-Second
IEEE/ACM International Conference on Automated Software Engineering, ASE ’07,
pages 184–193, New York, NY, USA, 2007. ACM.

[65] Noah M. Johnson, Juan Caballero, Kevin Zhijie Chen, Stephen McCamant, Pongsin
Poosankam, Daniel Reynaud, and Dawn Song. Differential slicing: Identifying
causal execution differences for security applications. In Proceedings of the 2011
IEEE Symposium on Security and Privacy, SP ’11, pages 347–362, Washington,
DC, USA, 2011. IEEE Computer Society.

[66] James A. Jones and Mary Jean Harrold. Empirical evaluation of the tarantula auto-
matic fault-localization technique. In Proceedings of the 20th IEEE/ACM Interna-
tional Conference on Automated Software Engineering, ASE ’05, pages 273–282,
New York, NY, USA, 2005. ACM.

[67] James A. Jones, Mary Jean Harrold, and John Stasko. Visualization of test informa-
tion to assist fault localization. In Proceedings of the 24th International Conference
on Software Engineering, ICSE ’02, pages 467–477, New York, NY, USA, 2002.
ACM.

[68] Manu Jose and Rupak Majumdar. Cause clue clauses: Error localization using max-
imum satisfiability. In Proceedings of the 32nd ACM SIGPLAN Conference on Pro-
gramming Language Design and Implementation, PLDI ’11, pages 437–446, New
York, NY, USA, 2011. ACM.

[69] Pallavi Joshi, Mayur Naik, Koushik Sen, and David Gay. An effective dynamic
analysis for detecting generalized deadlocks. In Proceedings of the eighteenth ACM
SIGSOFT international symposium on Foundations of software engineering, FSE
’10, pages 327–336, New York, NY, USA, 2010. ACM.

[70] Pallavi Joshi, Chang-Seo Park, Koushik Sen, and Mayur Naik. A randomized dy-
namic program analysis technique for detecting real deadlocks. In Proceedings of
the 2009 ACM SIGPLAN Conference on Programming Language Design and Imple-
mentation, PLDI ’09, pages 110–120, New York, NY, USA, 2009. ACM.

146

[71] Yit Phang Khoo, Jeffrey S. Foster, and Michael Hicks. Expositor: Scriptable time-
travel debugging with first-class traces. In Proceedings of the 2013 International
Conference on Software Engineering, ICSE ’13, pages 352–361, Piscataway, NJ,
USA, 2013. IEEE Press.

[72] Samuel T. King, George W. Dunlap, and Peter M. Chen. Debugging operating sys-
tems with time-traveling virtual machines. In Proceedings of the Annual Conference
on USENIX Annual Technical Conference, ATEC ’05, pages 1–1, Berkeley, CA,
USA, 2005. USENIX Association.

[73] Juergen Klein. Francis Bacon. In Edward N. Zalta, editor, The Stanford Encyclope-
dia of Philosophy. Summer 2011 edition, 2011.

[74] Andrew J. Ko and Brad A. Myers. Debugging reinvented: Asking and answering
why and why not questions about program behavior. In Proceedings of the 30th
International Conference on Software Engineering, ICSE ’08, pages 301–310, New
York, NY, USA, 2008. ACM.

[75] Andrew J. Ko, Brad A. Myers, Michael J. Coblenz, and Htet Htet Aung. An ex-
ploratory study of how developers seek, relate, and collect relevant information
during software maintenance tasks. IEEE Transactions on Software Engineering,
32(12):971–987, December 2006.

[76] Bogdan Korel and Janusz Laski. Dynamic program slicing. Information Processing
Letters, 29(3):155–163, October 1988.

[77] Ted Kremenek, Ken Ashcraft, Junfeng Yang, and Dawson Engler. Correlation ex-
ploitation in error ranking. In Proceedings of the 12th ACM SIGSOFT International
Symposium on Foundations of Software Engineering, SIGSOFT ’04/FSE-12, pages
83–93, New York, NY, USA, 2004. ACM.

[78] Arun Lakhotia. Graph theoretic foundations of program slicing and integration.
Technical Report CACS TR-91-5-5, University of Southwestern Louisiana, 1993.

[79] Leslie Lamport. Time, clocks, and the ordering of events in a distributed system.
Communications of the ACM, 21(7):558–565, July 1978.

[80] Feng Li, Wei Huo, Congming Chen, Lujie Zhong, Xiaobing Feng, and Zhiyuan
Li. Effective fault localization based on minimum debugging frontier set. In Pro-
ceedings of the 2013 IEEE/ACM International Symposium on Code Generation and
Optimization, CGO ’13, pages 1–10, Washington, DC, USA, 2013. IEEE Computer
Society.

[81] Ben Liblit, Alex Aiken, Alice X. Zheng, and Michael I. Jordan. Bug isolation via
remote program sampling. In Proceedings of the ACM SIGPLAN 2003 Conference
on Programming Language Design and Implementation, PLDI ’03, pages 141–154,
New York, NY, USA, 2003. ACM.

[82] Ben Liblit, Mayur Naik, Alice X. Zheng, Alex Aiken, and Michael I. Jordan. Scal-
able statistical bug isolation. In Proceedings of the 2005 ACM SIGPLAN Conference
on Programming Language Design and Implementation, PLDI ’05, pages 15–26,
New York, NY, USA, 2005. ACM.

[83] Barbara Liskov. The power of abstraction. In ACM Turing Award Lectures. ACM,
New York, NY, USA, 2007.

147

[84] Chao Liu, Xifeng Yan, Long Fei, Jiawei Han, and Samuel P. Midkiff. SOBER: Sta-
tistical model-based bug localization. In Proceedings of the 10th European Software
Engineering Conference Held Jointly with 13th ACM SIGSOFT International Sym-
posium on Foundations of Software Engineering, ESEC/FSE-13, pages 286–295,
New York, NY, USA, 2005. ACM.

[85] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser, Geoff
Lowney, Steven Wallace, Vijay Janapa Reddi, and Kim Hazelwood. Pin: Building
customized program analysis tools with dynamic instrumentation. In Proceedings
of the 2005 ACM SIGPLAN Conference on Programming Language Design and Im-
plementation, PLDI ’05, pages 190–200, New York, NY, USA, 2005. ACM.

[86] John M. Mellor-Crummey and Thomas J. LeBlanc. A software instruction counter.
In Proceedings of the Third International Conference on Architectural Support for
Programming Languages and Operating Systems, ASPLOS III, pages 78–86, New
York, NY, USA, 1989. ACM.

[87] Peter Menzies. Counterfactual theories of causation. In Edward N. Zalta, editor, The
Stanford Encyclopedia of Philosophy. Fall 2009 edition, 2009.

[88] Emerson Murphy-Hill, Thomas Zimmermann, Christian Bird, and Nachiappan Na-
gappan. The design of bug fixes. In Proceedings of the 2013 International Con-
ference on Software Engineering, ICSE ’13, pages 332–341, Piscataway, NJ, USA,
2013. IEEE Press.

[89] Todd Mytkowicz, Devin Coughlin, and Amer Diwan. Inferred call path profiling. In
Proceedings of the 24th ACM SIGPLAN Conference on Object Oriented Program-
ming Systems Languages and Applications, OOPSLA ’09, pages 175–190, New
York, NY, USA, 2009. ACM.

[90] Nicholas Nethercote and Julian Seward. Valgrind: A framework for heavyweight
dynamic binary instrumentation. In Proceedings of the 2007 ACM SIGPLAN Con-
ference on Programming Language Design and Implementation, PLDI ’07, pages
89–100, New York, NY, USA, 2007. ACM.

[91] Peter G. Neumann. Risks to the public. ACM SIGSOFT Software Engineering Notes,
32(3):20–24, May 2007.

[92] Tuan Anh Nguyen, Christoph Csallner, and Nikolai Tillmann. GROPG: A graphical
on-phone debugger. In Proceedings of the 2013 International Conference on Soft-
ware Engineering, ICSE ’13, pages 1189–1192, Piscataway, NJ, USA, 2013. IEEE
Press.

[93] Karl J. Ottenstein and Linda M. Ottenstein. The program dependence graph in a
software development environment. In Proceedings of the First ACM SIGSOFT/SIG-
PLAN Software Engineering Symposium on Practical Software Development Envi-
ronments, SDE 1, pages 177–184, New York, NY, USA, 1984. ACM.

[94] Soyeon Park, Shan Lu, and Yuanyuan Zhou. CTrigger: Exposing atomicity violation
bugs from their hiding places. In Proceedings of the 14th International Conference
on Architectural Support for Programming Languages and Operating Systems, AS-
PLOS XIV, pages 25–36, New York, NY, USA, 2009. ACM.

148

[95] Chris Parnin and Alessandro Orso. Are automated debugging techniques actually
helping programmers? In Proceedings of the 2011 International Symposium on
Software Testing and Analysis, ISSTA ’11, pages 199–209, New York, NY, USA,
2011. ACM.

[96] Andy Podgurski and Lori A. Clarke. A formal model of program dependences and its
implications for software testing, debugging, and maintenance. IEEE Transactions
on Software Engineering, 16(9):965–979, September 1990.

[97] Dawei Qi, Abhik Roychoudhury, Zhenkai Liang, and Kapil Vaswani. Darwin: An
approach to debugging evolving programs. ACM Transactions on Software Engi-
neering and Methodology (TOSEM), 21(3):19:1–19:29, July 2012.

[98] Ganesan Ramalingam. On loops, dominators, and dominance frontiers. ACM
Transactions on Programming Languages and Systems (TOPLAS), 24(5):455–490,
September 2002.

[99] Murali Krishna Ramanathan, Ananth Grama, and Suresh Jagannathan. Sieve: A tool
for automatically detecting variations across program versions. In Proceedings of the
21st IEEE/ACM International Conference on Automated Software Engineering, ASE
’06, pages 241–252, Washington, DC, USA, 2006. IEEE Computer Society.

[100] Manos Renieris and Steven P. Reiss. Fault localization with nearest neighbor queries.
In Proceedings of the 18th IEEE International Conference on Automated Software
Engineering, ASE ’03. IEEE Computer Society, 2003.

[101] Thomas Reps, Thomas Ball, Manuvir Das, and James Larus. The use of program
profiling for software maintenance with applications to the year 2000 problem. In
Proceedings of the 6th European Software Engineering Conference Held Jointly with
the 5th ACM SIGSOFT International Symposium on Foundations of Software Engi-
neering, ESEC ’97/FSE-5, pages 432–449, New York, NY, USA, 1997. Springer-
Verlag New York, Inc.

[102] Michiel Ronsse, Koen De Bosschere, Mark Christiaens, Jacques Chassin de Ker-
gommeaux, and Dieter Kranzlmüller. Record/replay for nondeterministic program
executions. Communications of the ACM, 46(9):62–67, September 2003.

[103] Jeremias Rößler, Gordon Fraser, Andreas Zeller, and Alessandro Orso. Isolating
failure causes through test case generation. In Proceedings of the 2012 International
Symposium on Software Testing and Analysis, ISSTA 2012, pages 309–319, New
York, NY, USA, 2012. ACM.

[104] Swarup Kumar Sahoo, John Criswell, Chase Geigle, and Vikram Adve. Using likely
invariants for automated software fault localization. In Proceedings of the Eigh-
teenth International Conference on Architectural Support for Programming Lan-
guages and Operating Systems, ASPLOS ’13, pages 139–152, New York, NY, USA,
2013. ACM.

[105] Koushik Sen, Darko Marinov, and Gul Agha. CUTE: A concolic unit testing en-
gine for C. In Proceedings of the 10th European Software Engineering Conference
Held Jointly with 13th ACM SIGSOFT International Symposium on Foundations of
Software Engineering, ESEC/FSE-13, pages 263–272, New York, NY, USA, 2005.
ACM.

149

[106] Konstantin Serebryany, Derek Bruening, Alexander Potapenko, and Dmitry Vyukov.
AddressSanitizer: A fast address sanity checker. In Proceedings of the 2012
USENIX Conference on Annual Technical Conference, USENIX ATC’12, pages 28–
28, Berkeley, CA, USA, 2012. USENIX Association.

[107] Julian Seward and Nicholas Nethercote. Using Valgrind to detect undefined value
errors with bit-precision. In Proceedings of the Annual Conference on USENIX
Annual Technical Conference, ATEC ’05, pages 2–2, Berkeley, CA, USA, 2005.
USENIX Association.

[108] Ehud Y. Shapiro. Algorithmic program diagnosis. In Proceedings of the 9th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL
’82, pages 299–308, New York, NY, USA, 1982. ACM.

[109] Olin Shivers. Control-Flow Analysis of Higher-Order Languages. PhD thesis,
Carnegie Mellon University, May 1991.

[110] Saurabh Sinha, Mary Jean Harrold, and Gregg Rothermel. System-dependence-
graph-based slicing of programs with arbitrary interprocedural control flow. In Pro-
ceedings of the 21st International Conference on Software Engineering, ICSE ’99,
pages 432–441, New York, NY, USA, 1999. ACM.

[111] Manu Sridharan, Stephen J. Fink, and Rastislav Bodik. Thin slicing. In Proceedings
of the 2007 ACM SIGPLAN Conference on Programming Language Design and
Implementation, PLDI ’07, pages 112–122, New York, NY, USA, 2007. ACM.

[112] Bjarne Steensgaard. Sequentializing program dependence graphs for irreducible
programs. Technical Report MSR-TR-93-14, Microsoft Research, Redmond, Wash,
1993.

[113] William N. Sumner, Tao Bao, and Xiangyu Zhang. Selecting peers for execution
comparison. In Proceedings of the 2011 International Symposium on Software Test-
ing and Analysis, ISSTA ’11, pages 309–319, New York, NY, USA, 2011. ACM.
doi:10.1145/2001420.2001458.

[114] William N. Sumner and Xiangyu Zhang. Algorithms for automatically computing
the causal paths of failures. In Proceedings of the 12th International Conference
on Fundamental Approaches to Software Engineering, FASE ’09, pages 355–369,
Berlin, Heidelberg, 2009. Springer-Verlag.

[115] William N. Sumner and Xiangyu Zhang. Memory indexing: Canonicalizing ad-
dresses across executions. In Proceedings of the Eighteenth ACM SIGSOFT Interna-
tional Symposium on Foundations of Software Engineering, FSE ’10, pages 217–226,
New York, NY, USA, 2010. ACM. doi:10.1145/1882291.1882324.

[116] William N. Sumner and Xiangyu Zhang. Comparative causality: Explaining the dif-
ferences between executions. In Proceedings of the 2013 International Conference
on Software Engineering, ICSE ’13, pages 272–281, Piscataway, NJ, USA, 2013.
IEEE Press.

[117] William N. Sumner, Yunhui Zheng, Dasarath Weeratunge, and Xiangyu Zhang.
Precise calling context encoding. IEEE Transactions on Software Engineering,
38(5):1160–1177, September 2012.

150

[118] Gregory Tassey. Economic impacts of inadequate infrastructure for software testing.
Technical Report RTI Project Number 7007.011, National Institute of Standards and
Technology, 2002.

[119] Frank Tip. A survey of program slicing techniques. Journal of Programming Lan-
guages, 3(3), 1995.

[120] Petar Tsankov, Wei Jin, Alessandro Orso, and Saurabh Sinha. Execution hijack-
ing: Improving dynamic analysis by flying off course. In Proceedings of the 2011
Fourth IEEE International Conference on Software Testing, Verification and Vali-
dation, ICST ’11, pages 200–209, Washington, DC, USA, 2011. IEEE Computer
Society.

[121] Ludo Van Put, Dominique Chanet, Bruno De Bus, Bjorn De Sutter, and Koen
De Bosschere. DIABLO: A reliable, retargetable and extensible link-time rewrit-
ing framework. In International Symposium on Signal Processing and Information
Technology, pages 7–12. IEEE, 2005.

[122] Kaushik Veeraraghavan, Dongyoon Lee, Benjamin Wester, Jessica Ouyang, Peter M.
Chen, Jason Flinn, and Satish Narayanasamy. DoublePlay: Parallelizing sequential
logging and replay. In Proceedings of the Sixteenth International Conference on Ar-
chitectural Support for Programming Languages and Operating Systems, ASPLOS
XVI, pages 15–26, New York, NY, USA, 2011. ACM.

[123] Tao Wang and Abhik Roychoudhury. Automated path generation for software fault
localization. In Proceedings of the 20th IEEE/ACM International Conference on
Automated Software Engineering, ASE ’05, pages 347–351, New York, NY, USA,
2005. ACM.

[124] Tao Wang and Abhik Roychoudhury. Hierarchical dynamic slicing. In Proceedings
of the 2007 International Symposium on Software Testing and Analysis, ISSTA ’07,
pages 228–238, New York, NY, USA, 2007. ACM.

[125] Dasarath Weeratunge, Xiangyu Zhang, William N. Sumner, and Suresh Jagannathan.
Analyzing concurrency bugs using dual slicing. In Proceedings of the 19th Interna-
tional Symposium on Software Testing and Analysis, ISSTA ’10, pages 253–264,
New York, NY, USA, 2010. ACM.

[126] Mark Weiser. Program slicing. In Proceedings of the 5th International Conference
on Software Engineering, ICSE ’81, pages 439–449, Piscataway, NJ, USA, 1981.
IEEE Press.

[127] Mark Weiser. Programmers use slices when debugging. Communications of the
ACM, 25(7):446–452, July 1982.

[128] W Eric Wong and Vidroha Debroy. A survey of software fault localization. Technical
Report UTDCS-45-09, University of Texas at Dallas, 2009.

[129] Tao Xie, Nikolai Tillmann, Peli de Halleux, and Wolfram Schulte. Fitness-guided
path exploration in dynamic symbolic execution. In Proceedings of the 39th Annual
IEEE/IFIP International Conference on Dependable Systems and Networks (DSN
2009), pages 359–368, June-July 2009.

151

[130] Bin Xin, William N. Sumner, and Xiangyu Zhang. Efficient program execution
indexing. In Proceedings of the 2008 ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI ’08, pages 238–248, New York, NY,
USA, 2008. ACM.

[131] Hongtao Yu and Zhiyuan Li. Fast loop-level data dependence profiling. In Proceed-
ings of the 26th ACM International Conference on Supercomputing, ICS ’12, pages
37–46, New York, NY, USA, 2012. ACM.

[132] Andreas Zeller. Isolating cause-effect chains from computer programs. In Proceed-
ings of the 10th ACM SIGSOFT Symposium on Foundations of Software Engineering,
SIGSOFT ’02/FSE-10, pages 1–10, New York, NY, USA, 2002. ACM.

[133] Andreas Zeller and Ralf Hildebrandt. Simplifying and isolating failure-inducing
input. IEEE Transactions on Software Engineering, 28(2):183–200, February 2002.

[134] Xiangyu Zhang, Neelam Gupta, and Rajiv Gupta. Locating faults through auto-
mated predicate switching. In Proceedings of the 28th International Conference on
Software Engineering, ICSE ’06, pages 272–281, New York, NY, USA, 2006. ACM.

[135] Xiangyu Zhang, Neelam Gupta, and Rajiv Gupta. Pruning dynamic slices with con-
fidence. In Proceedings of the 2006 ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI ’06, pages 169–180, New York, NY,
USA, 2006. ACM.

[136] Xiangyu Zhang and Rajiv Gupta. Cost effective dynamic program slicing. In Pro-
ceedings of the ACM SIGPLAN 2004 Conference on Programming Language Design
and Implementation, PLDI ’04, pages 94–106, New York, NY, USA, 2004. ACM.

[137] Xiangyu Zhang and Rajiv Gupta. Matching execution histories of program versions.
In Proceedings of the 10th European Software Engineering Conference Held Jointly
with 13th ACM SIGSOFT International Symposium on Foundations of Software En-
gineering, ESEC/FSE-13, pages 197–206, New York, NY, USA, 2005. ACM.

[138] Xiangyu Zhang, Rajiv Gupta, and Youtao Zhang. Precise dynamic slicing algo-
rithms. In Proceedings of the 25th International Conference on Software Engineer-
ing, ICSE ’03, pages 319–329, Washington, DC, USA, 2003. IEEE Computer Soci-
ety.

[139] Xiangyu Zhang, Armand Navabi, and Suresh Jagannathan. Alchemist: A transpar-
ent dependence distance profiling infrastructure. In Proceedings of the 7th Annual
IEEE/ACM International Symposium on Code Generation and Optimization, CGO
’09, pages 47–58, Washington, DC, USA, 2009. IEEE Computer Society.

[140] Xiangyu Zhang, Sriraman Tallam, Neelam Gupta, and Rajiv Gupta. Towards lo-
cating execution omission errors. In Proceedings of the 2007 ACM SIGPLAN Con-
ference on Programming Language Design and Implementation, PLDI ’07, pages
415–424, New York, NY, USA, 2007. ACM.

[141] Xiaotong Zhuang, Mauricio J. Serrano, Harold W. Cain, and Jong-Deok Choi. Ac-
curate, efficient, and adaptive calling context profiling. In Proceedings of the 2006
ACM SIGPLAN Conference on Programming Language Design and Implementation,
PLDI ’06, pages 263–271, New York, NY, USA, 2006. ACM.

VITA

152

VITA

William Nicholas Sumner was born in Midland, Michigan on October 16, 1982. He

graduated summa cum laude from Hope College in 2005 with a Bachelor of Science in

Computer Science and a Bachelor of Arts in German. He then attended Purdue University

from 2005 through 2013, studying dynamic program analysis with Dr. Xiangyu Zhang. He

joined Simon Fraser University as an assistant professor in the fall of 2013.

	Purdue University
	Purdue e-Pubs
	Fall 2013

	Automated Failure Explanation Through Execution Comparison
	William Nicholas Sumner
	Recommended Citation

	ETDForm9Signed2
	diss

