109,820 research outputs found

    Efficient motion planning for problems lacking optimal substructure

    Full text link
    We consider the motion-planning problem of planning a collision-free path of a robot in the presence of risk zones. The robot is allowed to travel in these zones but is penalized in a super-linear fashion for consecutive accumulative time spent there. We suggest a natural cost function that balances path length and risk-exposure time. Specifically, we consider the discrete setting where we are given a graph, or a roadmap, and we wish to compute the minimal-cost path under this cost function. Interestingly, paths defined using our cost function do not have an optimal substructure. Namely, subpaths of an optimal path are not necessarily optimal. Thus, the Bellman condition is not satisfied and standard graph-search algorithms such as Dijkstra cannot be used. We present a path-finding algorithm, which can be seen as a natural generalization of Dijkstra's algorithm. Our algorithm runs in O((nBn)log(nBn)+nBm)O\left((n_B\cdot n) \log( n_B\cdot n) + n_B\cdot m\right) time, where~nn and mm are the number of vertices and edges of the graph, respectively, and nBn_B is the number of intersections between edges and the boundary of the risk zone. We present simulations on robotic platforms demonstrating both the natural paths produced by our cost function and the computational efficiency of our algorithm

    Synchronization-Aware and Algorithm-Efficient Chance Constrained Optimal Power Flow

    Full text link
    One of the most common control decisions faced by power system operators is the question of how to dispatch generation to meet demand for power. This is a complex optimization problem that includes many nonlinear, non convex constraints as well as inherent uncertainties about future demand for power and available generation. In this paper we develop convex formulations to appropriately model crucial classes of nonlinearities and stochastic effects. We focus on solving a nonlinear optimal power flow (OPF) problem that includes loss of synchrony constraints and models wind-farm caused fluctuations. In particular, we develop (a) a convex formulation of the deterministic phase-difference nonlinear Optimum Power Flow (OPF) problem; and (b) a probabilistic chance constrained OPF for angular stability, thermal overloads and generation limits that is computationally tractable.Comment: 11 pages, 3 figure

    RISK MANAGEMENT ISSUES ON THE CASE STUDY OF QANTAS CRASH IN BANGKOK, SEPTEMBER 1999

    Get PDF
    The cycle of risk management is an essential procedure for every company in order to be able to manage its risks. The purpose of this discussion is to explore the risk management issue of Qantas crash in Bangkok, September 1999. Analyzing the potential factors of the safety of flying that closely related to Qantas reputation would give some understanding how to improve company performance. Outlining the six steps proposed by Augustine as a guidance to manage the crisis highlights the importance of identifying the potential crisis, preventing it to happen or even finding the potential success from it. In addition, exploring the case can generate some knowledge that can help one recognizing the effective ways to deal with crisis. Finally, by looking, at the analysis as a whole, it can be concluded that there are always risks associated with flying. Therefore every effort should be made by an airplane company toward the safety of passengers. Improving knowledge of pilot is also essential to reduce human error. Moreover, regularly updating strategy and procedure will give awareness toward the best action that should be taken when facing the crisis

    SPIDER: Fault Resilient SDN Pipeline with Recovery Delay Guarantees

    Full text link
    When dealing with node or link failures in Software Defined Networking (SDN), the network capability to establish an alternative path depends on controller reachability and on the round trip times (RTTs) between controller and involved switches. Moreover, current SDN data plane abstractions for failure detection (e.g. OpenFlow "Fast-failover") do not allow programmers to tweak switches' detection mechanism, thus leaving SDN operators still relying on proprietary management interfaces (when available) to achieve guaranteed detection and recovery delays. We propose SPIDER, an OpenFlow-like pipeline design that provides i) a detection mechanism based on switches' periodic link probing and ii) fast reroute of traffic flows even in case of distant failures, regardless of controller availability. SPIDER can be implemented using stateful data plane abstractions such as OpenState or Open vSwitch, and it offers guaranteed short (i.e. ms) failure detection and recovery delays, with a configurable trade off between overhead and failover responsiveness. We present here the SPIDER pipeline design, behavioral model, and analysis on flow tables' memory impact. We also implemented and experimentally validated SPIDER using OpenState (an OpenFlow 1.3 extension for stateful packet processing), showing numerical results on its performance in terms of recovery latency and packet losses.Comment: 8 page

    Decision Taking for Selling Thread Startup

    Full text link
    Decision Taking is discussed in the context of the role it may play for a selling agent in a search market, in particular for agents involved in the sale of valuable and relatively unique items, such as a dwelling, a second hand car, or a second hand recreational vessel. Detailed connections are made between the architecture of decision making processes and a sample of software technology based concepts including instruction sequences, multi-threading, and thread algebra. Ample attention is paid to the initialization or startup of a thread dedicated to achieving a given objective, and to corresponding decision taking. As an application, the selling of an item is taken as an objective to be achieved by running a thread that was designed for that purpose

    Training of Crisis Mappers and Map Production from Multi-sensor Data: Vernazza Case Study (Cinque Terre National Park, Italy)

    Get PDF
    This aim of paper is to presents the development of a multidisciplinary project carried out by the cooperation between Politecnico di Torino and ITHACA (Information Technology for Humanitarian Assistance, Cooperation and Action). The goal of the project was the training in geospatial data acquiring and processing for students attending Architecture and Engineering Courses, in order to start up a team of "volunteer mappers". Indeed, the project is aimed to document the environmental and built heritage subject to disaster; the purpose is to improve the capabilities of the actors involved in the activities connected in geospatial data collection, integration and sharing. The proposed area for testing the training activities is the Cinque Terre National Park, registered in the World Heritage List since 1997. The area was affected by flood on the 25th of October 2011. According to other international experiences, the group is expected to be active after emergencies in order to upgrade maps, using data acquired by typical geomatic methods and techniques such as terrestrial and aerial Lidar, close-range and aerial photogrammetry, topographic and GNSS instruments etc.; or by non conventional systems and instruments such us UAV, mobile mapping etc. The ultimate goal is to implement a WebGIS platform to share all the data collected with local authorities and the Civil Protectio
    corecore