92 research outputs found

    Holographic representation: Hologram plane vs. object plane

    Get PDF
    Digital holography allows the recording, storage and subsequent reconstruction of both amplitude and phase of the light field scattered by an object. This is accomplished by recording interference patterns that preserve the properties of the original object field essential for 3D visualization, the so-called holograms. Digital holography refers to the acquisition of holograms with a digital sensor, typically a CCD or a CMOS camera, and to the reconstruction of the 3D object field using numerical methods. In the current work, the different representations of digital holographic information in the hologram and in the object planes are studied. The coding performance of the different complex field representations, notably Amplitude-Phase and Real-Imaginary, in both the hologram plane and the object plane, is assessed using both computer generated and experimental holograms. The HEVC intra main coding profile is used for the compression of the different representations in both planes, either for experimental holograms or computer generated holograms. The HEVC intra compression in the object plane outperforms encoding in the hologram plane. Furthermore, encoding computer generated holograms in the object plane has a larger benefit than the same encoding over the experimental holograms. This difference was expected, since experimental holograms are affected by a larger negative influence of speckle noise, resulting in a loss of compression efficiency. This work emphasizes the possibility of holographic coding on the object plane, instead of the common encoding in the hologram plane approach. Moreover, this possibility allows direct visualization of the Object Plane Amplitude in a regular 2D display without any transformation methods. The complementary phase information can easily be used to render 3D features such as depth map, multi-view or even holographic interference patterns for further 3D visualization depending on the display technology.info:eu-repo/semantics/publishedVersio

    Quality evaluation of holographic images coded with standard codecs

    Get PDF
    Recently, more interest in the different plenoptic formats, including digital holograms, has emerged. Aside from other challenges that several steps of the holographic pipeline, from digital acquisition to display, have to face, visual quality assessment of compressed holograms is particularly demanding due to the distinct nature of this 3D image modality when compared to regular 2D imaging. There are few studies on holographic data quality assessment, particularly with respect to the perceptual effects of lossy compression. This work aims to study the quality evaluation of digital hologram reconstructions presented on regular 2D displays in the presence of compression distortions. As there is no established or generally agreed on compression methodology for digital hologram compression on the hologram plane with available implementations, a set of state-of-the-art compression codecs, namely, HEVC, AV1, and JPEG2000, were used for compression of the digital holograms on the object plane. Both computer-generated and optically generated holograms were considered. Two subjective tests were conducted to evaluate distortions caused by compression. The first subjective test was conducted on the reconstructed amplitude images of central views, while the second test was conducted on pseudovideos generated from the reconstructed amplitudes of different views. The subjective quality assessment was based on mean opinion scores. A selection of objective quality metrics was evaluated, and their correlations with mean opinion scores were computed. The VIFp metrics appeared to have the highest correlation

    Review : Deep learning in electron microscopy

    Get PDF
    Deep learning is transforming most areas of science and technology, including electron microscopy. This review paper offers a practical perspective aimed at developers with limited familiarity. For context, we review popular applications of deep learning in electron microscopy. Following, we discuss hardware and software needed to get started with deep learning and interface with electron microscopes. We then review neural network components, popular architectures, and their optimization. Finally, we discuss future directions of deep learning in electron microscopy

    SSTAC/ARTS Review of the Draft Integrated Technology Plan (ITP). Volume 2: Propulsion Systems

    Get PDF
    The topics addressed are: (1) space propulsion technology program overview; (2) space propulsion technology program fact sheet; (3) low thrust propulsion; (4) advanced propulsion concepts; (5) high-thrust chemical propulsion; (6) cryogenic fluid management; (7) NASA CSTI earth-to-orbit propulsion; (8) advanced main combustion chamber program; (9) earth-to-orbit propulsion turbomachinery; (10) transportation technology; (11) space chemical engines technology; (12) nuclear propulsion; (13) spacecraft on-board propulsion; and (14) low-cost commercial transport

    Research and Technology Objectives and Plans Summary (RTOPS)

    Get PDF
    This publication represents the NASA research and technology program for FY-93. It is a compilation of the Summary portions of each of the RTOP's (Research and Technology Objectives and Plans) used for management review and control of research currently in progress throughout NASA. The RTOP Summary is designed to facilitate communication and coordination among concerned technical personnel in government, in industry, and in universities. The first section containing citations and abstracts of the RTOP's is followed by four indexes: Subject, Technical Monitor, Responsible NASA Organization, and RTOP Number

    Aeronautical engineering: A continuing bibliography with indexes (supplement 253)

    Get PDF
    This bibliography lists 637 reports, articles, and other documents introduced into the NASA scientific and technical information system in May, 1990. Subject coverage includes: design, construction and testing of aircraft and aircraft engines; aircraft components, equipment and systems; ground support systems; and theoretical and applied aspects of aerodynamics and general fluid dynamics
    corecore