28,053 research outputs found

    Substituting clinical features using synthetic medical phrases: Medical text data augmentation techniques.

    Full text link
    Biomedical natural language processing (NLP) has an important role in extracting consequential information in medical discharge notes. Detecting meaningful features from unstructured notes is a challenging task in medical document classification. The domain specific phrases and different synonyms within the medical documents make it hard to analyze them. Analyzing clinical notes becomes more challenging for short documents like abstract texts. All of these can result in poor classification performance, especially when there is a shortage of the clinical data in real life. Two new approaches (an ontology-guided approach and a combined ontology-based with dictionary-based approach) are suggested for augmenting medical data to enrich training data. Three different deep learning approaches are used to evaluate the classification performance of the proposed methods. The obtained results show that the proposed methods improved the classification accuracy in clinical notes classification

    Multi modal multi-semantic image retrieval

    Get PDF
    PhDThe rapid growth in the volume of visual information, e.g. image, and video can overwhelm users’ ability to find and access the specific visual information of interest to them. In recent years, ontology knowledge-based (KB) image information retrieval techniques have been adopted into in order to attempt to extract knowledge from these images, enhancing the retrieval performance. A KB framework is presented to promote semi-automatic annotation and semantic image retrieval using multimodal cues (visual features and text captions). In addition, a hierarchical structure for the KB allows metadata to be shared that supports multi-semantics (polysemy) for concepts. The framework builds up an effective knowledge base pertaining to a domain specific image collection, e.g. sports, and is able to disambiguate and assign high level semantics to ‘unannotated’ images. Local feature analysis of visual content, namely using Scale Invariant Feature Transform (SIFT) descriptors, have been deployed in the ‘Bag of Visual Words’ model (BVW) as an effective method to represent visual content information and to enhance its classification and retrieval. Local features are more useful than global features, e.g. colour, shape or texture, as they are invariant to image scale, orientation and camera angle. An innovative approach is proposed for the representation, annotation and retrieval of visual content using a hybrid technique based upon the use of an unstructured visual word and upon a (structured) hierarchical ontology KB model. The structural model facilitates the disambiguation of unstructured visual words and a more effective classification of visual content, compared to a vector space model, through exploiting local conceptual structures and their relationships. The key contributions of this framework in using local features for image representation include: first, a method to generate visual words using the semantic local adaptive clustering (SLAC) algorithm which takes term weight and spatial locations of keypoints into account. Consequently, the semantic information is preserved. Second a technique is used to detect the domain specific ‘non-informative visual words’ which are ineffective at representing the content of visual data and degrade its categorisation ability. Third, a method to combine an ontology model with xi a visual word model to resolve synonym (visual heterogeneity) and polysemy problems, is proposed. The experimental results show that this approach can discover semantically meaningful visual content descriptions and recognise specific events, e.g., sports events, depicted in images efficiently. Since discovering the semantics of an image is an extremely challenging problem, one promising approach to enhance visual content interpretation is to use any associated textual information that accompanies an image, as a cue to predict the meaning of an image, by transforming this textual information into a structured annotation for an image e.g. using XML, RDF, OWL or MPEG-7. Although, text and image are distinct types of information representation and modality, there are some strong, invariant, implicit, connections between images and any accompanying text information. Semantic analysis of image captions can be used by image retrieval systems to retrieve selected images more precisely. To do this, a Natural Language Processing (NLP) is exploited firstly in order to extract concepts from image captions. Next, an ontology-based knowledge model is deployed in order to resolve natural language ambiguities. To deal with the accompanying text information, two methods to extract knowledge from textual information have been proposed. First, metadata can be extracted automatically from text captions and restructured with respect to a semantic model. Second, the use of LSI in relation to a domain-specific ontology-based knowledge model enables the combined framework to tolerate ambiguities and variations (incompleteness) of metadata. The use of the ontology-based knowledge model allows the system to find indirectly relevant concepts in image captions and thus leverage these to represent the semantics of images at a higher level. Experimental results show that the proposed framework significantly enhances image retrieval and leads to narrowing of the semantic gap between lower level machinederived and higher level human-understandable conceptualisation

    A data mining approach to ontology learning for automatic content-related question-answering in MOOCs.

    Get PDF
    The advent of Massive Open Online Courses (MOOCs) allows massive volume of registrants to enrol in these MOOCs. This research aims to offer MOOCs registrants with automatic content related feedback to fulfil their cognitive needs. A framework is proposed which consists of three modules which are the subject ontology learning module, the short text classification module, and the question answering module. Unlike previous research, to identify relevant concepts for ontology learning a regular expression parser approach is used. Also, the relevant concepts are extracted from unstructured documents. To build the concept hierarchy, a frequent pattern mining approach is used which is guided by a heuristic function to ensure that sibling concepts are at the same level in the hierarchy. As this process does not require specific lexical or syntactic information, it can be applied to any subject. To validate the approach, the resulting ontology is used in a question-answering system which analyses students' content-related questions and generates answers for them. Textbook end of chapter questions/answers are used to validate the question-answering system. The resulting ontology is compared vs. the use of Text2Onto for the question-answering system, and it achieved favourable results. Finally, different indexing approaches based on a subject's ontology are investigated when classifying short text in MOOCs forum discussion data; the investigated indexing approaches are: unigram-based, concept-based and hierarchical concept indexing. The experimental results show that the ontology-based feature indexing approaches outperform the unigram-based indexing approach. Experiments are done in binary classification and multiple labels classification settings . The results are consistent and show that hierarchical concept indexing outperforms both concept-based and unigram-based indexing. The BAGGING and random forests classifiers achieved the best result among the tested classifiers

    Semantic HMC for Big Data Analysis

    Full text link
    Analyzing Big Data can help corporations to im-prove their efficiency. In this work we present a new vision to derive Value from Big Data using a Semantic Hierarchical Multi-label Classification called Semantic HMC based in a non-supervised Ontology learning process. We also proposea Semantic HMC process, using scalable Machine-Learning techniques and Rule-based reasoning

    Applying semantic web technologies to knowledge sharing in aerospace engineering

    Get PDF
    This paper details an integrated methodology to optimise Knowledge reuse and sharing, illustrated with a use case in the aeronautics domain. It uses Ontologies as a central modelling strategy for the Capture of Knowledge from legacy docu-ments via automated means, or directly in systems interfacing with Knowledge workers, via user-defined, web-based forms. The domain ontologies used for Knowledge Capture also guide the retrieval of the Knowledge extracted from the data using a Semantic Search System that provides support for multiple modalities during search. This approach has been applied and evaluated successfully within the aerospace domain, and is currently being extended for use in other domains on an increasingly large scale

    Novel Metaknowledge-based Processing Technique for Multimedia Big Data clustering challenges

    Full text link
    Past research has challenged us with the task of showing relational patterns between text-based data and then clustering for predictive analysis using Golay Code technique. We focus on a novel approach to extract metaknowledge in multimedia datasets. Our collaboration has been an on-going task of studying the relational patterns between datapoints based on metafeatures extracted from metaknowledge in multimedia datasets. Those selected are significant to suit the mining technique we applied, Golay Code algorithm. In this research paper we summarize findings in optimization of metaknowledge representation for 23-bit representation of structured and unstructured multimedia data in order toComment: IEEE Multimedia Big Data (BigMM 2015

    Semantic Flooding: Semantic Search across Distributed Lightweight Ontologies

    Get PDF
    Lightweight ontologies are trees where links between nodes codify the fact that a node lower in the hierarchy describes a topic (and contains documents about this topic) which is more specific than the topic of the node one level above. In turn, multiple lightweight ontologies can be connected by semantic links which represent mappings among them and which can be computed, e.g., by ontology matching. In this paper we describe how these two types of links can be used to define a semantic overlay network which can cover any number of peers and which can be flooded to perform a semantic search on documents, i.e., to perform semantic flooding. We have evaluated our approach by simulating a network of 10,000 peers containing classifications which are fragments of the DMoz web directory. The results are promising and show that, in our approach, only a relatively small number of peers needs to be queried in order to achieve high accuracy

    Identifying Web Tables - Supporting a Neglected Type of Content on the Web

    Full text link
    The abundance of the data in the Internet facilitates the improvement of extraction and processing tools. The trend in the open data publishing encourages the adoption of structured formats like CSV and RDF. However, there is still a plethora of unstructured data on the Web which we assume contain semantics. For this reason, we propose an approach to derive semantics from web tables which are still the most popular publishing tool on the Web. The paper also discusses methods and services of unstructured data extraction and processing as well as machine learning techniques to enhance such a workflow. The eventual result is a framework to process, publish and visualize linked open data. The software enables tables extraction from various open data sources in the HTML format and an automatic export to the RDF format making the data linked. The paper also gives the evaluation of machine learning techniques in conjunction with string similarity functions to be applied in a tables recognition task.Comment: 9 pages, 4 figure
    • …
    corecore