3,402 research outputs found

    Ontology based Scene Creation for the Development of Automated Vehicles

    Full text link
    The introduction of automated vehicles without permanent human supervision demands a functional system description, including functional system boundaries and a comprehensive safety analysis. These inputs to the technical development can be identified and analyzed by a scenario-based approach. Furthermore, to establish an economical test and release process, a large number of scenarios must be identified to obtain meaningful test results. Experts are doing well to identify scenarios that are difficult to handle or unlikely to happen. However, experts are unlikely to identify all scenarios possible based on the knowledge they have on hand. Expert knowledge modeled for computer aided processing may help for the purpose of providing a wide range of scenarios. This contribution reviews ontologies as knowledge-based systems in the field of automated vehicles, and proposes a generation of traffic scenes in natural language as a basis for a scenario creation.Comment: Accepted at the 2018 IEEE Intelligent Vehicles Symposium, 8 pages, 10 figure

    A Comprehensive Review on Ontologies for Scenario-based Testing in the Context of Autonomous Driving

    Full text link
    The verification and validation of autonomous driving vehicles remains a major challenge due to the high complexity of autonomous driving functions. Scenario-based testing is a promising method for validating such a complex system. Ontologies can be utilized to produce test scenarios that are both meaningful and relevant. One crucial aspect of this process is selecting the appropriate method for describing the entities involved. The level of detail and specific entity classes required will vary depending on the system being tested. It is important to choose an ontology that properly reflects these needs. This paper summarizes key representative ontologies for scenario-based testing and related use cases in the field of autonomous driving. The considered ontologies are classified according to their level of detail for both static facts and dynamic aspects. Furthermore, the ontologies are evaluated based on the presence of important entity classes and the relations between them

    Bridging Data-Driven and Knowledge-Driven Approaches for Safety-Critical Scenario Generation in Automated Vehicle Validation

    Full text link
    Automated driving vehicles~(ADV) promise to enhance driving efficiency and safety, yet they face intricate challenges in safety-critical scenarios. As a result, validating ADV within generated safety-critical scenarios is essential for both development and performance evaluations. This paper investigates the complexities of employing two major scenario-generation solutions: data-driven and knowledge-driven methods. Data-driven methods derive scenarios from recorded datasets, efficiently generating scenarios by altering the existing behavior or trajectories of traffic participants but often falling short in considering ADV perception; knowledge-driven methods provide effective coverage through expert-designed rules, but they may lead to inefficiency in generating safety-critical scenarios within that coverage. To overcome these challenges, we introduce BridgeGen, a safety-critical scenario generation framework, designed to bridge the benefits of both methodologies. Specifically, by utilizing ontology-based techniques, BridgeGen models the five scenario layers in the operational design domain (ODD) from knowledge-driven methods, ensuring broad coverage, and incorporating data-driven strategies to efficiently generate safety-critical scenarios. An optimized scenario generation toolkit is developed within BridgeGen. This expedites the crafting of safety-critical scenarios through a combination of traditional optimization and reinforcement learning schemes. Extensive experiments conducted using Carla simulator demonstrate the effectiveness of BridgeGen in generating diverse safety-critical scenarios

    Ontology-based corner case scenario simulation for autonomous driving

    Get PDF
    Safety assessment of autonomous driving functions is an emerging topic in the automotive industry. In order to launch an autonomous vehicle on the road, the system running it needs to be able to react adequately in most of the cases, just like a human driver, if not even better. Furthermore, the amount of existing data that contains corner cases is nowhere near the amount of data needed to sufficiently train autonomous driving systems. The identification, classification and generation of corner cases for autonomous driving is a crucial part of scenario-based validation. In today’s world, a method that describes, generates and classifies those at the same time, is not available. In this thesis, a method for the description and generation of corner cases for autonomous driving is proposed. The method uses a template ontology, as a base for the scenario generation of corner cases with established definitions. The proposed approach also allows combining already described scenarios into new ones without any further actions. For an easy usage of the template ontology, an OntologyGenerator library for the simplified generation of corner cases is provided. The library completely eliminates the need for the user to work directly with the ontology and provides a method for creating scenarios even for users with little or no experience with ontologies. Moreover, the proposed approach is clean and understandable, making it easily scalable and extensible. The technique, follows the structure of OpenSCENARIO, thus making it easy to use, if one already understands OpenSCENARIO. In addition, the proposed ontology provides the base for the classification of the described scenarios to a specific corner case category. With the proposed technique, I was able to describe and generate seven scenarios, one for each of the earlier mentioned corner case categories. The resulting ontologies(created using the template ontology), that describe different corner cases, deliver correctly defined Open- SCENARIO files, after going through the Onto2OpenSCENARIOConverter. The resulted files deliver a correct simulation within CARLA, corresponding to the scenario description, which shows that the proposed method functions as expected

    Risk analysis of autonomous vehicle and its safety impact on mixed traffic stream

    Get PDF
    In 2016, more than 35,000 people died in traffic crashes, and human error was the reason for 94% of these deaths. Researchers and automobile companies are testing autonomous vehicles in mixed traffic streams to eliminate human error by removing the human driver behind the steering wheel. However, recent autonomous vehicle crashes while testing indicate the necessity for a more thorough risk analysis. The objectives of this study were (1) to perform a risk analysis of autonomous vehicles and (2) to evaluate the safety impact of these vehicles in a mixed traffic stream. The overall research was divided into two phases: (1) risk analysis and (2) simulation of autonomous vehicles. Risk analysis of autonomous vehicles was conducted using the fault tree method. Based on failure probabilities of system components, two fault tree models were developed and combined to predict overall system reliability. It was found that an autonomous vehicle system could fail 158 times per one-million miles of travel due to either malfunction in vehicular components or disruption from infrastructure components. The second phase of this research was the simulation of an autonomous vehicle, where change in crash frequency after autonomous vehicle deployment in a mixed traffic stream was assessed. It was found that average travel time could be reduced by about 50%, and 74% of conflicts, i.e., traffic crashes, could be avoided by replacing 90% of the human drivers with autonomous vehicles

    Holistic Temporal Situation Interpretation for Traffic Participant Prediction

    Get PDF
    For a profound understanding of traffic situations including a prediction of traf- fic participants’ future motion, behaviors and routes it is crucial to incorporate all available environmental observations. The presence of sensor noise and depen- dency uncertainties, the variety of available sensor data, the complexity of large traffic scenes and the large number of different estimation tasks with diverging requirements require a general method that gives a robust foundation for the de- velopment of estimation applications. In this work, a general description language, called Object-Oriented Factor Graph Modeling Language (OOFGML), is proposed, that unifies formulation of esti- mation tasks from the application-oriented problem description via the choice of variable and probability distribution representation through to the inference method definition in implementation. The different language properties are dis- cussed theoretically using abstract examples. The derivation of explicit application examples is shown for the automated driv- ing domain. A domain-specific ontology is defined which forms the basis for four exemplary applications covering the broad spectrum of estimation tasks in this domain: Basic temporal filtering, ego vehicle localization using advanced interpretations of perceived objects, road layout perception utilizing inter-object dependencies and finally highly integrated route, behavior and motion estima- tion to predict traffic participant’s future actions. All applications are evaluated as proof of concept and provide an example of how their class of estimation tasks can be represented using the proposed language. The language serves as a com- mon basis and opens a new field for further research towards holistic solutions for automated driving

    Measurable Safety of Automated Driving Functions in Commercial Motor Vehicles

    Get PDF
    With the further development of automated driving, the functional performance increases resulting in the need for new and comprehensive testing concepts. This doctoral work aims to enable the transition from quantitative mileage to qualitative test coverage by aggregating the results of both knowledge-based and data-driven test platforms. The validity of the test domain can be extended cost-effectively throughout the software development process to achieve meaningful test termination criteria

    Measurable Safety of Automated Driving Functions in Commercial Motor Vehicles - Technological and Methodical Approaches

    Get PDF
    Fahrerassistenzsysteme sowie automatisiertes Fahren leisten einen wesentlichen Beitrag zur Verbesserung der Verkehrssicherheit von Kraftfahrzeugen, insbesondere von Nutzfahrzeugen. Mit der Weiterentwicklung des automatisierten Fahrens steigt hierbei die funktionale Leistungsfähigkeit, woraus Anforderungen an neue, gesamtheitliche Erprobungskonzepte entstehen. Um die Absicherung höherer Stufen von automatisierten Fahrfunktionen zu garantieren, sind neuartige Verifikations- und Validierungsmethoden erforderlich. Ziel dieser Arbeit ist es, durch die Aggregation von Testergebnissen aus wissensbasierten und datengetriebenen Testplattformen den Übergang von einer quantitativen Kilometerzahl zu einer qualitativen Testabdeckung zu ermöglichen. Die adaptive Testabdeckung zielt somit auf einen Kompromiss zwischen Effizienz- und Effektivitätskriterien für die Absicherung von automatisierten Fahrfunktionen in der Produktentstehung von Nutzfahrzeugen ab. Diese Arbeit umfasst die Konzeption und Implementierung eines modularen Frameworks zur kundenorientierten Absicherung automatisierter Fahrfunktionen mit vertretbarem Aufwand. Ausgehend vom Konfliktmanagement für die Anforderungen der Teststrategie werden hochautomatisierte Testansätze entwickelt. Dementsprechend wird jeder Testansatz mit seinen jeweiligen Testzielen integriert, um die Basis eines kontextgesteuerten Testkonzepts zu realisieren. Die wesentlichen Beiträge dieser Arbeit befassen sich mit vier Schwerpunkten: * Zunächst wird ein Co-Simulationsansatz präsentiert, mit dem sich die Sensoreingänge in einem Hardware-in-the-Loop-Prüfstand mithilfe synthetischer Fahrszenarien simulieren und/ oder stimulieren lassen. Der vorgestellte Aufbau bietet einen phänomenologischen Modellierungsansatz, um einen Kompromiss zwischen der Modellgranularität und dem Rechenaufwand der Echtzeitsimulation zu erreichen. Diese Methode wird für eine modulare Integration von Simulationskomponenten, wie Verkehrssimulation und Fahrdynamik, verwendet, um relevante Phänomene in kritischen Fahrszenarien zu modellieren. * Danach wird ein Messtechnik- und Datenanalysekonzept für die weltweite Absicherung von automatisierten Fahrfunktionen vorgestellt, welches eine Skalierbarkeit zur Aufzeichnung von Fahrzeugsensor- und/ oder Umfeldsensordaten von spezifischen Fahrereignissen einerseits und permanenten Daten zur statistischen Absicherung und Softwareentwicklung andererseits erlaubt. Messdaten aus länderspezifischen Feldversuchen werden aufgezeichnet und zentral in einer Cloud-Datenbank gespeichert. * Anschließend wird ein ontologiebasierter Ansatz zur Integration einer komplementären Wissensquelle aus Feldbeobachtungen in ein Wissensmanagementsystem beschrieben. Die Gruppierung von Aufzeichnungen wird mittels einer ereignisbasierten Zeitreihenanalyse mit hierarchischer Clusterbildung und normalisierter Kreuzkorrelation realisiert. Aus dem extrahierten Cluster und seinem Parameterraum lassen sich die Eintrittswahrscheinlichkeit jedes logischen Szenarios und die Wahrscheinlichkeitsverteilungen der zugehörigen Parameter ableiten. Durch die Korrelationsanalyse von synthetischen und naturalistischen Fahrszenarien wird die anforderungsbasierte Testabdeckung adaptiv und systematisch durch ausführbare Szenario-Spezifikationen erweitert. * Schließlich wird eine prospektive Risikobewertung als invertiertes Konfidenzniveau der messbaren Sicherheit mithilfe von Sensitivitäts- und Zuverlässigkeitsanalysen durchgeführt. Der Versagensbereich kann im Parameterraum identifiziert werden, um die Versagenswahrscheinlichkeit für jedes extrahierte logische Szenario durch verschiedene Stichprobenverfahren, wie beispielsweise die Monte-Carlo-Simulation und Adaptive-Importance-Sampling, vorherzusagen. Dabei führt die geschätzte Wahrscheinlichkeit einer Sicherheitsverletzung für jedes gruppierte logische Szenario zu einer messbaren Sicherheitsvorhersage. Das vorgestellte Framework erlaubt es, die Lücke zwischen wissensbasierten und datengetriebenen Testplattformen zu schließen, um die Wissensbasis für die Abdeckung der Operational Design Domains konsequent zu erweitern. Zusammenfassend zeigen die Ergebnisse den Nutzen und die Herausforderungen des entwickelten Frameworks für messbare Sicherheit durch ein Vertrauensmaß der Risikobewertung. Dies ermöglicht eine kosteneffiziente Erweiterung der Validität der Testdomäne im gesamten Softwareentwicklungsprozess, um die erforderlichen Testabbruchkriterien zu erreichen
    • …
    corecore