43,183 research outputs found

    The Form of Organization for Small Business

    Get PDF
    Matching and integrating ontologies has been a desirable technique in areas such as data fusion, knowledge integration, the Semantic Web and the development of advanced services in distributed system. Unfortunately, the heterogeneities of ontologies cause big obstacles in the development of this technique. This licentiate thesis describes an approach to tackle the problem of ontology integration using description logics and production rules, both on a syntactic level and on a semantic level. Concepts in ontologies are matched and integrated to generate ontology intersections. Context is extracted and rules for handling heterogeneous ontology reasoning with contexts are developed. Ontologies are integrated by two processes. The first integration is to generate an ontology intersection from two OWL ontologies. The result is an ontology intersection, which is an independent ontology containing non-contradictory assertions based on the original ontologies. The second integration is carried out by rules that extract context, such as ontology content and ontology description data, e.g. time and ontology creator. The integration is designed for conceptual ontology integration. The information of instances isn't considered, neither in the integrating process nor in the integrating results. An ontology reasoner is used in the integration process for non-violation check of two OWL ontologies and a rule engine for handling conflicts according to production rules. The ontology reasoner checks the satisfiability of concepts with the help of anchors, i.e. synonyms and string-identical entities; production rules are applied to integrate ontologies, with the constraint that the original ontologies should not be violated. The second integration process is carried out with production rules with context data of the ontologies. Ontology reasoning, in a repository, is conducted within the boundary of each ontology. Nonetheless, with context rules, reasoning is carried out across ontologies. The contents of an ontology provide context for its defined entities and are extracted to provide context with the help of an ontology reasoner. Metadata of ontologies are criteria that are useful for describing ontologies. Rules using context, also called context rules, are developed and in-built in the repository. New rules can also be added. The scientific contribution of the thesis is the suggested approach applying semantic based techniques to provide a complementary method for ontology matching and integrating semantically. With the illustration of the ontology integration process and the context rules and a few manually integrated ontology results, the approach shows the potential to help to develop advanced knowledge-based services.QC 20130201</p

    Some Issues on Ontology Integration

    Get PDF
    The word integration has been used with different meanings in the ontology field. This article aims at clarifying the meaning of the word “integration” and presenting some of the relevant work done in integration. We identify three meanings of ontology “integration”: when building a new ontology reusing (by assembling, extending, specializing or adapting) other ontologies already available; when building an ontology by merging several ontologies into a single one that unifies all of them; when building an application using one or more ontologies. We discuss the different meanings of “integration”, identify the main characteristics of the three different processes and proposethree words to distinguish among those meanings:integration, merge and use

    Semantic Web Techniques to Support Interoperability in Distributed Networked Environments

    No full text
    We explore two Semantic Web techniques arising from ITA research into semantic alignment and interoperability in distributed networks. The first is POAF (Portable Ontology Aligned Fragments) which addresses issues relating to the portability and usage of ontology alignments. POAF uses an ontology fragmentation strategy to achieve portability, and enables subsequent usage through a form of automated ontology modularization. The second technique, SWEDER (Semantic Wrapping of Existing Data sources with Embedded Rules), is grounded in the creation of lightweight ontologies to semantically wrap existing data sources, to facilitate rapid semantic integration through representational homogeneity. The semantic integration is achieved through the creation of context ontologies which define the integrations and provide a portable definition of the integration rules in the form of embedded SPARQL construct clauses. These two Semantic Web techniques address important practical issues relevant to the potential future adoption of ontologies in distributed network environments

    Semantically intelligent semi-automated ontology integration

    Get PDF
    An ontology is a way of information categorization and storage. Web Ontologies provide help in retrieving the required and precise information over the web. However, the problem of heterogeneity between ontologies may occur in the use of multiple ontologies of the same domain. The integration of ontologies provides a solution for the heterogeneity problem. Ontology integration is a solution to problem of interoperability in the knowledge based systems. Ontology integration provides a mechanism to find the semantic association between a pair of reference ontologies based on their concepts. Many researchers have been working on the problem of ontology integration; however, multiple issues related to ontology integration are still not addressed. This dissertation involves the investigation of the ontology integration problem and proposes a layer based enhanced framework as a solution to the problem. The comparison between concepts of reference ontologies is based on their semantics along with their syntax in the concept matching process of ontology integration. The semantic relationship of a concept with other concepts between ontologies and the provision of user confirmation (only for the problematic cases) are also taken into account in this process. The proposed framework is implemented and validated by providing a comparison of the proposed concept matching technique with the existing techniques. The test case scenarios are provided in order to compare and analyse the proposed framework in the analysis phase. The results of the experiments completed demonstrate the efficacy and success of the proposed framework

    How do Ontology Mappings Change in the Life Sciences?

    Full text link
    Mappings between related ontologies are increasingly used to support data integration and analysis tasks. Changes in the ontologies also require the adaptation of ontology mappings. So far the evolution of ontology mappings has received little attention albeit ontologies change continuously especially in the life sciences. We therefore analyze how mappings between popular life science ontologies evolve for different match algorithms. We also evaluate which semantic ontology changes primarily affect the mappings. We further investigate alternatives to predict or estimate the degree of future mapping changes based on previous ontology and mapping transitions.Comment: Keywords: mapping evolution, ontology matching, ontology evolutio

    Measuring Expert Performance at Manually Classifying Domain Entities under Upper Ontology Classes

    Full text link
    Classifying entities in domain ontologies under upper ontology classes is a recommended task in ontology engineering to facilitate semantic interoperability and modelling consistency. Integrating upper ontologies this way is difficult and, despite emerging automated methods, remains a largely manual task. Little is known about how well experts perform at upper ontology integration. To develop methodological and tool support, we first need to understand how well experts do this task. We designed a study to measure the performance of human experts at manually classifying classes in a general knowledge domain ontology with entities in the Basic Formal Ontology (BFO), an upper ontology used widely in the biomedical domain. We conclude that manually classifying domain entities under upper ontology classes is indeed very difficult to do correctly. Given the importance of the task and the high degree of inconsistent classifications we encountered, we further conclude that it is necessary to improve the methodological framework surrounding the manual integration of domain and upper ontologies

    A New role of ontologies and advanced scientific visualization in big data analytics

    Get PDF
    Accessing and contextual semantic searching structured, semi-structured and unstructured information resources and their ontology based analysis in a uniform way across text-free Big Data query implementation is a main feature of approach under discussion. To increase the semantic power of query results’ analysis the ontology based implementation of multiplatform adaptive tools of scientific visualization are demonstrated. The ontologies are used not for integration of heterogeneous resources in traditional way but for parallel analysis of recourses and its related ontologies to achieve the effect of a virtual integration

    Building Integrated Ontological Knowledge Structures with Efficient Approximation Algorithms

    Get PDF
    Publisher’s version made available under a Creative Commons license.The integration of ontologies builds knowledge structures which brings new understanding on existing terminologies and their associations. With the steady increase in the number of ontologies, automatic integration of ontologies is preferable over manual solutions in many applications. However, available works on ontology integration are largely heuristic without guarantees on the quality of the integration results. In this work, we focus on the integration of ontologies with hierarchical structures. We identified optimal structures in this problem and proposed optimal and efficient approximation algorithms for integrating a pair of ontologies. Furthermore, we extend the basic problem to address the integration of a large number of ontologies, and correspondingly we proposed an efficient approximation algorithm for integrating multiple ontologies. The empirical study on both real ontologies and synthetic data demonstrates the effectiveness of our proposed approaches. In addition, the results of integration between gene ontology and National Drug File Reference Terminology suggest that our method provides a novel way to perform association studies between biomedical terms
    • …
    corecore