250,169 research outputs found

    The Form of Organization for Small Business

    Get PDF
    Matching and integrating ontologies has been a desirable technique in areas such as data fusion, knowledge integration, the Semantic Web and the development of advanced services in distributed system. Unfortunately, the heterogeneities of ontologies cause big obstacles in the development of this technique. This licentiate thesis describes an approach to tackle the problem of ontology integration using description logics and production rules, both on a syntactic level and on a semantic level. Concepts in ontologies are matched and integrated to generate ontology intersections. Context is extracted and rules for handling heterogeneous ontology reasoning with contexts are developed. Ontologies are integrated by two processes. The first integration is to generate an ontology intersection from two OWL ontologies. The result is an ontology intersection, which is an independent ontology containing non-contradictory assertions based on the original ontologies. The second integration is carried out by rules that extract context, such as ontology content and ontology description data, e.g. time and ontology creator. The integration is designed for conceptual ontology integration. The information of instances isn't considered, neither in the integrating process nor in the integrating results. An ontology reasoner is used in the integration process for non-violation check of two OWL ontologies and a rule engine for handling conflicts according to production rules. The ontology reasoner checks the satisfiability of concepts with the help of anchors, i.e. synonyms and string-identical entities; production rules are applied to integrate ontologies, with the constraint that the original ontologies should not be violated. The second integration process is carried out with production rules with context data of the ontologies. Ontology reasoning, in a repository, is conducted within the boundary of each ontology. Nonetheless, with context rules, reasoning is carried out across ontologies. The contents of an ontology provide context for its defined entities and are extracted to provide context with the help of an ontology reasoner. Metadata of ontologies are criteria that are useful for describing ontologies. Rules using context, also called context rules, are developed and in-built in the repository. New rules can also be added. The scientific contribution of the thesis is the suggested approach applying semantic based techniques to provide a complementary method for ontology matching and integrating semantically. With the illustration of the ontology integration process and the context rules and a few manually integrated ontology results, the approach shows the potential to help to develop advanced knowledge-based services.QC 20130201</p

    Context modeling and constraints binding in web service business processes

    Get PDF
    Context awareness is a principle used in pervasive services applications to enhance their exibility and adaptability to changing conditions and dynamic environments. Ontologies provide a suitable framework for context modeling and reasoning. We develop a context model for executable business processes { captured as an ontology for the web services domain. A web service description is attached to a service context profile, which is bound to the context ontology. Context instances can be generated dynamically at services runtime and are bound to context constraint services. Constraint services facilitate both setting up constraint properties and constraint checkers, which determine the dynamic validity of context instances. Data collectors focus on capturing context instances. Runtime integration of both constraint services and data collectors permit the business process to achieve dynamic business goals

    The Information-Flow Approach to Ontology-Based Semantic Integration

    No full text
    In this article we argue for the lack of formal foundations for ontology-based semantic alignment. We analyse and formalise the basic notions of semantic matching and alignment and we situate them in the context of ontology-based alignment in open-ended and distributed environments, like the Web. We then use the mathematical notion of information flow in a distributed system to ground three hypotheses that enable semantic alignment. We draw our exemplar applications of this work from a variety of interoperability scenarios including ontology mapping, theory of semantic interoperability, progressive ontology alignment, and situated semantic alignment

    Generating and visualizing a soccer knowledge base

    Get PDF
    This demo abstract describes the SmartWeb Ontology-based Information Extraction System (SOBIE). A key feature of SOBIE is that all information is extracted and stored with respect to the SmartWeb ontology. In this way, other components of the systems, which use the same ontology, can access this information in a straightforward way. We will show how information extracted by SOBIE is visualized within its original context, thus enhancing the browsing experience of the end user

    Participatory design of a continuous care ontology : towards a user-driven ontology engineering methodology

    Get PDF
    The patient room of the future would be able to sense the needs and preferences of the patients and nurses and adapt itself accordingly by combining all the heterogeneous data offered by the different technologies. This goal can be achieved by developing a context-aware framework, which exploits and integrates the heterogeneous data by utilizing a continuous care ontology. The existing ontology engineering methodologies are rather extreme in their choices to include domain experts. On the one hand, there are methodologies that only discuss the scope, use and requirements of the ontology with the domain experts. On the other hand, there are approaches in which the ontology is completely constructed by the domain experts by providing them with user-friendly and collaborative tools. In this paper, a participatory ontology engineering methodology is presented that finds a middle ground between these two extremes. The methodology actively involves social scientists, ontology engineers and stakeholders. The stakeholders participate in each step of the ontology life cycle without having to construct the ontology themselves or attribute a large amount of their time. The applicability of the methodology is illustrated by presenting the co-created continuous care ontology

    A Double Classification of Common Pitfalls in Ontologies

    Get PDF
    The application of methodologies for building ontologies has improved the ontology quality. However, such a quality is not totally guaranteed because of the difficulties involved in ontology modelling. These difficulties are related to the inclusion of anomalies or worst practices in the modelling. In this context, our aim in this paper is twofold: (1) to provide a catalogue of common worst practices, which we call pitfalls, and (2) to present a double classification of such pitfalls. These two products will serve in the ontology development in two ways: (a) to avoid the appearance of pitfalls in the ontology modelling, and (b) to evaluate and correct ontologies to improve their quality
    corecore