19 research outputs found

    Fast Machine Learning Algorithms for Massive Datasets with Applications in the Biomedical Domain

    Get PDF
    The continuous increase in the size of datasets introduces computational challenges for machine learning algorithms. In this dissertation, we cover the machine learning algorithms and applications in large-scale data analysis in manufacturing and healthcare. We begin with introducing a multilevel framework to scale the support vector machine (SVM), a popular supervised learning algorithm with a few tunable hyperparameters and highly accurate prediction. The computational complexity of nonlinear SVM is prohibitive on large-scale datasets compared to the linear SVM, which is more scalable for massive datasets. The nonlinear SVM has shown to produce significantly higher classification quality on complex and highly imbalanced datasets. However, a higher classification quality requires a computationally expensive quadratic programming solver and extra kernel parameters for model selection. We introduce a generalized fast multilevel framework for regular, weighted, and instance weighted SVM that achieves similar or better classification quality compared to the state-of-the-art SVM libraries such as LIBSVM. Our framework improves the runtime more than two orders of magnitude for some of the well-known benchmark datasets. We cover multiple versions of our proposed framework and its implementation in detail. The framework is implemented using PETSc library which allows easy integration with scientific computing tasks. Next, we propose an adaptive multilevel learning framework for SVM to reduce the variance between prediction qualities across the levels, improve the overall prediction accuracy, and boost the runtime. We implement multi-threaded support to speed up the parameter fitting runtime that results in more than an order of magnitude speed-up. We design an early stopping criteria to reduce the extra computational cost when we achieve expected prediction quality. This approach provides significant speed-up, especially for massive datasets. Finally, we propose an efficient low dimensional feature extraction over massive knowledge networks. Knowledge networks are becoming more popular in the biomedical domain for knowledge representation. Each layer in knowledge networks can store the information from one or multiple sources of data. The relationships between concepts or between layers represent valuable information. The proposed feature engineering approach provides an efficient and highly accurate prediction of the relationship between biomedical concepts on massive datasets. Our proposed approach utilizes semantics and probabilities to reduce the potential search space for the exploration and learning of machine learning algorithms. The calculation of probabilities is highly scalable with the size of the knowledge network. The number of features is fixed and equivalent to the number of relationships or classes in the data. A comprehensive comparison of well-known classifiers such as random forest, SVM, and deep learning over various features extracted from the same dataset, provides an overview for performance and computational trade-offs. Our source code, documentation and parameters will be available at https://github.com/esadr/

    Graph Deep Learning: State of the Art and Challenges

    Get PDF
    The last half-decade has seen a surge in deep learning research on irregular domains and efforts to extend convolutional neural networks (CNNs) to work on irregularly structured data. The graph has emerged as a particularly useful geometrical object in deep learning, able to represent a variety of irregular domains well. Graphs can represent various complex systems, from molecular structure, to computer and social and traffic networks. Consequent on the extension of CNNs to graphs, a great amount of research has been published that improves the inferential power and computational efficiency of graph- based convolutional neural networks (GCNNs).The research is incipient, however, and our understanding is relatively rudimentary. The majority of GCNNs are designed to operate with certain properties. In this survey we review of the state of graph representation learning from the perspective of deep learning. We consider challenges in graph deep learning that have been neglected in the majority of work, largely because of the numerous theoretical difficulties they present. We identify four major challenges in graph deep learning: dynamic and evolving graphs, learning with edge signals and information, graph estimation, and the generalization of graph models. For each problem we discuss the theoretical and practical issues, survey the relevant research, while highlighting the limitations of the state of the art. Advances on these challenges would permit GCNNs to be applied to wider range of domains, in situations where graph models have previously been limited owing to the obstructions to applying a model owing to the domains’ natures

    Towards Cognition-Guided Patient-Specific Numerical Simulation for Cardiac Surgery Assistance

    Get PDF
    Motivation. Patient-specific, knowledge-based, holistic surgical treatment planning is of utmost importance when dealing with complex surgery. Surgeons need to account for all available medical patient data, keep track of technical developments, and stay on top of current surgical expert knowledge to define a suitable surgical treatment strategy. There is a large potential for computer assistance, also, and in particular, regarding surgery simulation which gives surgeons the opportunity not only to plan but to simulate, too, some steps of an intervention and to forecast relevant surgical situations. Purpose. In this work, we particularly look at mitral valve reconstruction (MVR) surgery, which is to re-establish the functionality of an incompetent mitral valve (MV) through implantation of an artificial ring that reshapes the valvular morphology. We aim at supporting MVR by providing surgeons with biomechanical FEM-based MVR surgery simulations that enable them to assess the simulated behavior of the MV after an MVR. However, according to the above requirements, such surgery simulation is really beneficial to surgeons only if it is patient-specific, surgical expert knowledge-based, comprehensive in terms of the underlying model and the patient’s data, and if its setup and execution is fully automated and integrated into the surgical treatment workflow. Methods. This PhD work conducts research on simulation-enhanced, cognition-guided, patient-specific cardiac surgery assistance. First, we derive a biomechanical MV/MVR model and develop an FEM-based MVR surgery simulation using the FEM software toolkit HiFlow3. Following, we outline the functionality and features of the Medical Simulation Markup Language (MSML) and how it simplifies the biomechanical modeling workflow. It is then detailed, how, by means of the MSML and a set of dedicated MVR simulation reprocessing operators, patient-individual medical data can comprehensively be analyzed and processed in order for the fully automated setup of MVR simulation scenarios. Finally, the presented work is integrated into the cognitive system architecture of the joint research project Cognition-Guided Surgery. We particularly look at its semantic knowledge and data infrastructure as well as at the setup of its cognitive software components, which eventually facilitate cognition-guidance and patient-specifity for the overall simulation-enhanced MVR assistance pipeline. Results and Discussion. We have proposed and implemented, for the first time, a prototypic system for simulation-enhanced, cognition-guided, patient-specific cardiac surgery assistance. The overall system was evaluated in terms of functionality and performance. Through its cognitive, data-driven pipeline setup, medical patient data and surgical information is analyzed and processed comprehensively, efficiently and fully automatically, and the hence set-up simulation scenarios yield reliable, patient-specific MVR surgery simulation results. This indicates the system’s usability and applicability. The proposed work thus presents an important step towards a simulation-enhanced, cognition-guided, patient-specific cardiac surgery assistance, and can – once operative – be expected to significantly enhance MVR surgery. Concluding, we discuss possible further research contents and promising applications to build upon the presented work

    31th International Conference on Information Modelling and Knowledge Bases

    Get PDF
    Information modelling is becoming more and more important topic for researchers, designers, and users of information systems.The amount and complexity of information itself, the number of abstractionlevels of information, and the size of databases and knowledge bases arecontinuously growing. Conceptual modelling is one of the sub-areas ofinformation modelling. The aim of this conference is to bring together experts from different areas of computer science and other disciplines, who have a common interest in understanding and solving problems on information modelling and knowledge bases, as well as applying the results of research to practice. We also aim to recognize and study new areas on modelling and knowledge bases to which more attention should be paid. Therefore philosophy and logic, cognitive science, knowledge management, linguistics and management science are relevant areas, too. In the conference, there will be three categories of presentations, i.e. full papers, short papers and position papers

    MS FT-2-2 7 Orthogonal polynomials and quadrature: Theory, computation, and applications

    Get PDF
    Quadrature rules find many applications in science and engineering. Their analysis is a classical area of applied mathematics and continues to attract considerable attention. This seminar brings together speakers with expertise in a large variety of quadrature rules. It is the aim of the seminar to provide an overview of recent developments in the analysis of quadrature rules. The computation of error estimates and novel applications also are described

    Generalized averaged Gaussian quadrature and applications

    Get PDF
    A simple numerical method for constructing the optimal generalized averaged Gaussian quadrature formulas will be presented. These formulas exist in many cases in which real positive GaussKronrod formulas do not exist, and can be used as an adequate alternative in order to estimate the error of a Gaussian rule. We also investigate the conditions under which the optimal averaged Gaussian quadrature formulas and their truncated variants are internal
    corecore