139,017 research outputs found

    Online partial evaluation of sheet-defined functions

    Get PDF
    We present a spreadsheet implementation, extended with sheet-defined functions, that allows users to define functions using only standard spreadsheet concepts such as cells, formulas and references, requiring no new syntax. This implements an idea proposed by Peyton-Jones and others. As the main contribution of this paper, we then show how to add an online partial evaluator for such sheet-defined functions. The result is a higher-order functional language that is dynamically typed, in keeping with spreadsheet traditions, and an interactive platform for function definition and function specialization. We describe an implementation of these ideas, present some performance data from microbenchmarks, and outline desirable improvements and extensions.Comment: In Proceedings Festschrift for Dave Schmidt, arXiv:1309.455

    Wiener-Hopf solution for impenetrable wedges at skew incidence

    Get PDF
    A new Wiener-Hopf approach for the solution of impenetrable wedges at skew incidence is presented. Mathematical aspects are described in a unified and consistent theory for angular region problems. Solutions are obtained using analytical and numerical-analytical approaches. Several numerical tests from the scientific literature validate the new technique, and new solutions for anisotropic surface impedance wedges are solved at skew incidence. The solutions are presented considering the geometrical and uniform theory of diffraction coefficients, total fields, and possible surface wave contribution

    Fermi surface of MoO2 studied by angle-resolved photoemission spectroscopy, de Haas-van Alphen measurements, and electronic structure calculations

    Full text link
    A comprehensive study of the electronic properties of monoclinic MoO2 from both an experimental and a theoretical point of view is presented. We focus on the investigation of the Fermi body and the band structure using angle resolved photoemission spectroscopy, de Haas-van Alphen measurements, and electronic structure calculations. For the latter, the new full-potential augmented spherical wave (ASW) method has been applied. Very good agreement between the experimental and theoretical results is found. In particular, all Fermi surface sheets are correctly identified by all three approaches. Previous controversies concerning additional hole-like surfaces centered around the Z- and B-point could be resolved; these surfaces were an artefact of the atomic-sphere approximation used in the old calculations. Our results underline the importance of electronic structure calculations for the understanding of MoO2 and the neighbouring rutile-type early transition-metal dioxides. This includes the low-temperature insulating phases of VO2 and NbO2, which have crystal structures very similar to that of molybdenum dioxide and display the well-known prominent metal-insulator transitions.Comment: 17 pages, 21 figures, more information at http://www.physik.uni-augsburg.de/~eyert

    Conjugate two-dimensional electric potential maps

    Full text link
    Two dimensional electric potential maps based on voltage detection in conducting paper are common practice in many physics courses in college. Most frequently, students work on `capacitor-like' geometries with current flowing between two opposite electrodes. A `topographical' investigation across the embedding medium (map of equipotential curves) allows to reassure a number of physical properties. This paper focuses on some less common configurations that bear pedagogical interest. We analyze `open-geometries' with electrodes in the form of long strips with slits. They provide a natural groundwork to bring the student to complex variable methods. Aided by this, we show that shaping the conducting paper board one may analyze finite size effects, as well as some meaningful discontinuities in the measured potential. The concept of conjugate electric potentials is exploited. Equipotentials and electric field lines acquire interchangeable roles and may be obtained in complementary `dual' experiments. A feasible theoretical analysis based on introductory complex variables and standardized numerics gives a remarkable quantification of the experimental results.Comment: 15 pages, 8 figure

    Density of states as a probe of electrostatic confinement in graphene

    Get PDF
    We theoretically analyze the possibility to confine electrons in single-layer graphene with the help of metallic gates, via the evaluation of the density of states of such a gate-defined quantum dot in the presence of a ring-shaped metallic contact. The possibility to electrostatically confine electrons in a gate-defined ``quantum dot'' with finite-carrier density, surrounded by an undoped graphene sheet, strongly depends on the integrability of the electron dynamics in the quantum dot. With the present calculations we can quantitatively compare confinement in dots with integrable and chaotic dynamics, and verify the prediction that the Berry phase associated with the pseudospin leads to partial confinement in situations where no confinement is expected according to the arguments relying on the classical dynamics only.Comment: 9 pages, 7 figure

    The ECB's monetary analysis revisited

    Get PDF
    Monetary aggregates continue to play an important role in the ECB's policy strategy. This paper revisits the case for money, surveying the ongoing theoretical and empirical debate. The key conclusion is that an exclusive focus on non-monetary factors alone may leave the ECB with an incomplete picture of the economy. However, treating monetary factors as a separate matter is a second-best solution. Instead, a general-equilibrium inspired analytical framework that merges the economic and monetary pillars of the ECB's policy strategy appears the most promising way forward. The role played by monetary aggregates in such unified framework may be rather limited. However, an integrated framework would facilitate the presentation of policy decisions by providing a clearer narrative of the relative role of money in the interaction with other economic and financial sector variables, including asset prices, and their impact on consumer prices. --ECB,monetary analysis,monetary pillar,New Keynesian model,DSGE model,P* model,Twopillar Phillips curve,VAR model,generalized dynamic factor model
    corecore