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Density of states as a probe of electrostatic confinement in graphene
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We theoretically analyze the possibility to confine electrons in single-layer graphene with the help of metallic
gates, via the evaluation of the density of states of such a gate-defined quantum dot in the presence of a ring-shaped
metallic contact. The possibility to electrostatically confine electrons in a gate-defined “quantum dot” with
finite-carrier density, surrounded by an undoped graphene sheet, strongly depends on the integrability of the
electron dynamics in the quantum dot. With the present calculations, we can quantitatively compare confinement
in dots with integrable and chaotic dynamics, and verify the prediction that the Berry phase associated with
the pseudospin leads to partial confinement in situations where no confinement is expected according to the
arguments relying on the classical dynamics only.

DOI: 10.1103/PhysRevB.89.205437 PACS number(s): 72.80.Vp, 73.63.Kv

I. INTRODUCTION

The controlled fabrication of high-quality nanostructures
as well as its strictly two-dimensional nature have established
graphene as an outstanding candidate for future nanoelectronic
devices [1–6]. At the same time, because of its gapless
quasirelativistic dispersion, graphene lacks the possibility to
create a depletion region by means of electrostatic gating. It
is for this reason that experimental activity aimed at confining
electrons in graphene nanostructures focuses on quantum
dots realized in etched structures [7–12]. The difficulty to
confine electrons using electrostatic means is closely related
to the phenomenon of Klein tunneling [13–15]: Electrons that
approach a potential barrier at perpendicular incidence will
always be transmitted with unit probability, irrespective of the
height and type of the barrier.

As was pointed out by Bardarson, Titov, and one of the
authors [16], this argument leaves open the possibility to
electrostatically confine electrons in states in which they are
prevented from approaching the boundary of the confinement
area at perpendicular incidence [17]. Such a scenario is
possible, e.g., in a disk-shaped “quantum dot” that is locally
gated such that it has a finite carrier density, surrounded by an
“intrinsic” region of zero carrier density; see Fig. 1. Because
of the circular symmetry, the angle of incidence at the dot’s
boundary is a constant of the motion, so that electrons in
states with nonzero angular momentum are confined inside
the quantum dot [16,18]. On the other hand, in geometries
with a chaotic classical dynamics, one expects that there are
no bound states because all classical trajectories eventually
approach the boundary arbitrarily close to perpendicular
incidence.

The presence of the pseudospin degree of freedom and
the associated Berry phase in graphene calls for a further
refinement of this essentially classical argument [19]. The
Berry phase is responsible for a quantization of the kinematic
angular momenta m to half-integer values, which excludes
the presence of a zero angular momentum state, that would
correspond to strict normal incidence in the Klein tunneling
picture. As a result, all states in a quantum dot, irrespective of
its shape, are confined to some degree [20,21]. The insertion
of a π flux shifts the kinematic angular momentum to integer
values and restores the classical picture of Ref. [16], according

to which electrostatic confinement is possible in quantum dots
with integrable classical dynamics only [19].

As a quantitative test of confinement, Refs.
[16,19,20,22,23] theoretically investigated the two-terminal
conductance of an otherwise undoped graphene sheet with
a gate-defined quantum dot [24]. Upon scanning the gate
voltage, bound states at zero energy then cause conductance
resonances that become narrower if the size L of the undoped
graphene sheet containing the quantum dot is increased; see
Fig. 1. For the disk-shaped quantum dot, the resonance widths
� have different L dependencies, � ∝ 1/L2|m|, consistent
with the expectation that the confinement is stronger for
states with higher angular momenta. For a quantum dot with
chaotic classical dynamics, the widths of all resonances scale
with L in the same manner as the broadest resonances of the
disk-shaped dot, � ∝ 1/L, consistent with the semiclassical
picture [20]. Upon insertion of a π flux, all resonances for
the chaotic dot disappear, whereas for the disk-shaped dot,
only some of the resonances disappear—the resonances that
correspond to the zero angular momentum states [19].

While the previous studies were focused on the signatures of
confinement in the two-terminal conductance [16,19,20], the
goal of this paper is to extend and complement these studies by
investigating how information about confinement is revealed in
the density of states or, equivalently, the quantum capacitance
of the quantum dot. Density of states measurements provide a
valuable experimental technique in the study of nanosystems
and have also been widely used in the context of graphene. One
way to gain information is by local probes such as scanning
tunneling spectroscopy or scanable single-electron transistors,
which give access to the local density of states or the local
compressibility of the system; see, e.g., Refs. [25–27]. Other
works also employ capacitive measurements that extend to
the analysis of the total compressibility of the system; see,
e.g., Refs. [28–32]. Similar to the study of two-terminal
conductance, where the resonant tunneling between dot and
leads opens an additional conducting channel and leads to
a resonant feature, for the density of states, the presence of
well-quantized states in the quantum dot leads to an additional
peak structure.

A second motivation to study the density of states, rather
than the two-terminal conductance, is of a more technical
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FIG. 1. (Color online) (a) Gate-defined graphene quantum dot
(yellow) surrounded by an intrinsic graphene sheet and coupled to
source and drain reservoirs (blue). (b) The setup considered here:
A quantum dot (yellow) surrounded by an undoped graphene sheet
and coupled to a ring-shaped metallic contact (blue). The distance
between the dot’s center and the contact is denoted L. The dot in (a)
is disk shaped and has an integrable classical dynamics, for which the
reflection angles at the dot’s boundary are a constant of the motion.
The dot in (b) is stadium shaped. In this case, classical trajectories
sooner or later hit the dot’s boundary arbitrarily close to perpendicular
incidence.

nature: The theoretical formalism to compute the two-terminal
conductance is quite involved [20,23] and is not easily adapted
to include the π -flux tube that was used to bring out the role of
the Berry phase. For this reason, Ref. [19] performed a direct
numerical simulation of the quantum-dot structure, which does
not allow one to go to the limit of very narrow resonances. On
the other hand, measurement of the density of states involves
only one contact (in addition to the electrostatic gate) and
can be described theoretically without breaking the rotational
symmetry. As we show below, this allows for a considerable
simplification of the analysis, making it possible to reach the
narrow-resonance limit with a π -flux line, too.

The setup that we study consists of a gate-defined quantum
dot, surrounded by undoped graphene and connected to a
ring-shaped metallic contact at distance L from the center
of the quantum dot, shown schematically in Fig. 1(b). An
unambiguous identification of bound states requires the limit
of large L, in which the dot is well separated from the

metallic contact. It is for this limit that the method presented
in this paper proves to be particularly effective. Although
the rotational symmetry of the leads is chosen primarily for
technical reasons, we note that it has no consequence for the
qualitative L dependence of the resonances (which can be seen,
e.g., by comparing the results of the present paper with that of
Ref. [20]), and that ring-shaped contacts for graphene can be
fabricated in principle [33], whereas local gating of suspended
graphene has also been demonstrated recently [34,35].

This paper is arranged as follows: We first consider the
signatures of bound states in the density of states for a circular
quantum dot in Sec. II. For this situation, a fully analytic
solution is amenable. We then contrast the results to the
situation of a chaotic quantum dot, which is investigated with
the help of a numerical method. In Sec. III, we complement
our studies by introducing a π flux into the system in order to
understand the effect of the Berry phase. In this case, we are
able to go considerably beyond our previous studies by going
deep to the regime of quantum dots that are weakly coupled to
the leads. We conclude in Sec. IV.

II. GRAPHENE QUANTUM DOT

The setup that we study consists of a gate-defined graphene
quantum dot, surrounded by an intrinsic graphene layer, which
is connected to a ring-shaped metallic contact. The electronic
wave function satisfies the two-dimensional Dirac equation

Hψε = εψε, H = vFp · σ + V (r), (1)

where vF is the Fermi velocity, σ = (σx,σy) are Pauli matrices,
p ≡ −i�∇ is the momentum operator, and ε is the energy of
the quasiparticle. We take the gate potential to be of the form

V (r) =
⎧⎨
⎩

−�vFV0, r ∈ R
−�vFV∞, r > L

0, else,
(2)

where the parameters V0 and V∞ have the dimension of an
inverse length, and, for definiteness, we choose them to be
positive such that dot and lead region are electron doped. The
region R denotes the area of the dot. For a circular dot, R
consists of all coordinates r with r < R, with R being the dot
radius. The ring-shaped metallic contact for r > L is modeled
by taking the limit V∞ → ∞. While our choice of a piecewise
uniform potential considerably simplifies the calculations, it
is not necessary for the existence of bound states [36,37],
and our general conclusions will remain valid in the more
general case of a central potential V (r). The only condition
is that any steps in the potential—such as in our Eq. (2)—
should be smooth on the scale of the lattice constant, such
that intervalley scattering can be neglected and a description
in terms of a single valley Hamiltonian is appropriate. As
long as the “width” of a step is small in comparison to the
electronic wavelength inside the quantum dot, its presence can
be neglected for the determination of possible bound states.

Scattering states can be defined in the ring-shaped ideal
contact; see Eq. (7) below. In order to calculate the density of
states, we use the relation between the local density of states
ν(r,ε) and the derivative of the scattering matrix S(ε) with

205437-2



DENSITY OF STATES AS A PROBE OF ELECTROSTATIC . . . PHYSICAL REVIEW B 89, 205437 (2014)

respect to the potential V (r) at position r [38–40],

ν(r,ε) = − 1

2πi
trS† δS

δV (r)
. (3)

The total density of states of the dot is then obtained by
integration over the region r < L [41],

νdot(ε) = − 1

2πi

∫
r<L

drtrS† δS
δV (r)

. (4)

The density of states νdot is defined as the density of states
per spin and valley. The expression (4) is related to the
Wigner-Smith time delay [42,43]. It is also related to the dot’s
capacitance [44], which can be measured from the current
response to an alternating bias on the ring-shaped metallic
contact, at fixed value of the gate voltage V0.

The calculation of the density of states νdot at zero energy
as a function of the dot potential V0 requires one to solve
the Dirac equation (1) at small, but finite, energy ε. Dealing
with a finite energy also in the region between dot and lead
goes beyond previous studies that addressed the two-terminal
conductance [16,19,20,23].

A. Circular quantum dot

We begin our discussion with a circular quantum dot, where
the region R equals a disk of radius R centered at the origin.
In this case, the angular momentum jz = (r × p)z + �

2 σz

is conserved, and the solutions of the Dirac equation (1)
can be labeled by the angular momentum m�, where m

is half integer as a consequence of the pseudospin degree
of freedom for graphene. Writing Hamiltonian (1) in polar
coordinates,

H = −i�vF

(
0 ∂−
∂+ 0

)
+ V (r), (5)

with the operators

∂± = e±iθ
(
∂r ± i 1

r
∂θ

)
, (6)

we solve the Dirac equation Hψε = εψε in the three regions
0 < r < R, R < r < L, and r > L in which the potential
V is constant. In each region, we obtain two linearly

independent solutions,

ψ
(±)
k,m(r) = eimθ

√
k

8vF

(
e−iθ/2H

(±)
|m−1/2|(kr)

i sgn(m)eiθ/2H
(±)
|m+1/2|(kr)

)
, (7)

which describe incoming (−) or outgoing (+) circular waves
of wave number k = (ε − V )/�vF in the conduction band,
normalized to unit flux. (Without loss of generality, we assume
that the energy ε is positive. We checked that our final results
remain valid for negative ε.) Further, the H (±)

n are Hankel
functions of the first (+) and second kind (−), respectively.
The Hankel functions are related to the Bessel (Neumann)
function Jn (Yn) as H (±)

n = Jn ± iYn.
The precise value of the wave number k is different for the

three regions in which the solutions (7) apply. For r < R, one
has k ≡ k0 = ε/�vF + V0; for R < r < L, one has k = ε/�vF;
and for r > L, one has k ≡ k∞ = ε/�vF + V∞. For r > L, the
wave function can be written as a linear combination of the
two solutions of Eq. (7),

ψε,m(r) = am(ε)ψ (−)
k∞,m(r) + bm(ε)ψ (+)

k∞,m(r). (8)

The coefficients am(ε) and bm(ε) can be determined using
continuity of the wave function at r = L and r = R, as well as
regularity at r = 0. They define the scattering matrix Smn(ε) =
Sm(ε)δm,n through the relation

bm(ε) = Sm(ε)am(ε). (9)

The scattering matrix S is then used to calculate the density of
states; see Eq. (4).

To simplify the further analysis, we consider the limit of
a highly doped lead k∞L � 1. In this regime, we make use
of the asymptotic behavior of the Hankel functions for large
arguments, H (±)

n (x) ≈ (2/πx)1/2e±i(x−n π
2 − π

4 ), for the wave
function in the lead region r > L. The smallness of the energy
ε furthermore allows one to expand in the wave number k

in the region R < r < L, corresponding to the undoped layer
separating the quantum dot from the lead. One then finds

Sm(ε) = e−2ik∞L+i|m|π [
S (0)

m + kLS (1)
m + O(ε2)

]
, (10)

where k is the wave number in the region R < r < L,

S (0)
m = L2|m| + iJmR2|m|

L2|m| − iJmR2|m| , (11)

and

S (1)
m = − 2i

2|m| − 1
S (0)

m + 8i|m|L4|m| + 2i[(2|m| + 1)J 2
m − (2|m| − 1)]R2|m|+1L2|m|−1

(4|m|2 − 1)(L2|m| − iJmR2|m|)2
, (12)

if |m| 	= 1/2, whereas

S (1)
±1/2 =

i(L2 − R2) + 2iJ 2
1
2
R2 log(L/R)(

L − iJ 1
2
R

)2 . (13)

In Eqs. (11)–(13), we used the abbreviation

Jm = J|m|+1/2(k0R)

J|m|−1/2(k0R)
. (14)

We now use Eq. (4) to calculate the density of states νdot at
zero energy,

νdot = 1

2πi�vF

∑
m

S (0)∗
m

[
∂S (0)

m

∂V0
+ LS (1)

m

]
, (15)

where V0 has been defined in Eq. (2). The first term in Eq. (15)
represents the integral of the local density of states inside the
quantum-dot region r < R; the second term is the integral of
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the local density of states in the undoped layer that separates
the dot and the metallic contact.

Let us now analyze the density of states (DOS) as a function
of the gate voltage V0. In the limit R � L (weak coupling to
the ring-shaped contact), the DOS exhibits isolated resonances
at gate voltages V0 = V ′

0, satisfying the condition

J|m|−1/2(V ′
0R) = 0. (16)

Close to resonance, we have that Jm ≈ −1/[R(V0 − V ′
0)], and

the density of states has a Lorentzian dependence on V0. For a
generic resonance with |m| 	= 1/2, the zero-energy density of
states has the form

νdot = 4R|m|
π�vF(2|m| − 1)

�

4R2(V0 − V ′
0)2 + �2

, (17)

where the dimensionless resonance width is given by

� = 2(R/L)2|m|. (18)

Resonances are well separated if R � L. In the lowest angular
momentum channel |m| = 1/2, the expression for the density
of states reads

νdot = 2R

π�vF

(
1 + log

L

R

)
�

4R2(V0 − V ′
0)2 + �2

, (19)

with � = 2R/L. We remark that the position of the resonances,
as well as the scaling of the width, agree with the results for
the two-terminal conductance [16,23], where L is the distance
between source and drain.

We note that the resonant part of νdot that comes from the
first term in Eq. (15) integrates to 1/�vF, when integrated
over V0, corresponding to a 2π shift of the scattering phase
upon tuning V0 through a resonance. The second term in
Eq. (15) gives an additional contribution to the density of
states, whose weight decays for higher angular momentum.
Remarkably, in the lowest angular momentum channel, this
additional contribution has a large factor log(L/R) in the
prefactor. We relate the presence of this large factor to the
fact that the bound states of the lowest angular momentum
have only a slow decay ∝ 1/r , such that the wave function is
marginally non-normalizable [16].

We show a plot of the density of states for a circular quantum
dot as a function of the gate voltage in Fig. 2. As discussed,
the DOS exhibits resonant peaks that can be labeled according

FIG. 2. (Color online) Density of states for a circular quantum
dot. Resonances are labeled according to their angular momentum
|m| (R/L = 0.2).

FIG. 3. (Color online) Density of states for a stadium quantum
dot. (R/L = 0.2, 2a/R = √

3.)

to their angular momentum channel, and the position is given
by Eq. (16). The higher the angular momentum, the sharper
the resonances, consistent with the scaling of the width given
by Eq. (18).

B. Chaotic quantum dot

We now extend our analysis to a quantum dot of arbitrary
geometry. For the generic situation, the scattering matrix
is no longer diagonal in the angular momentum basis and
an analytical solution is no longer available. We pursue a
numerical approach for the calculation of the scattering matrix
instead.

Our numerical method follows the calculation of the
scattering matrix in Ref. [20]. The problem is broken up into
thin circular slices, for which the scattering effect is weak and
may be captured in Born approximation. The scattering matrix
of the full system is then obtained by subsequent concatenation
of the scattering matrices of the slices. A difference with
Ref. [20] is that we have to calculate the scattering matrix at
a finite energy or potential in order to evaluate Eq. (4). Since
the quantum dot has a finite size, the numerical evaluation
is necessary up to a distance R̃ away from the origin only.
(For the geometry shown in Fig. 3, one has R̃ = R + a.)
For R̃ < r < L, the analytical calculations outlined above can
be used. We refer to the Appendix for further details of the
numerical implementation.

As a prototypical example of a chaotic dot, we now
investigate the density of states for a stadium-shaped quantum
dot. In Fig. 3, we show the result of a calculation of the density
of states as a function of the gate voltage V0. We find a series of
resonances of similar width. The width is comparable to that
of the broadest resonances for the circular dot, in agreement
with the general expectation that confinement is suppressed in
chaotic dots.

To further analyze the situation, we zoom in on the first
resonance and investigate its dependence on the strength of
the dot-lead coupling R/L; see Fig. 4. We extract height and
width of the resonance by fitting to a Lorentzian,

νdot = 2RA
�πvF

�

4R2(V0 − V ′
0)2 + �2

, (20)

where V ′
0 is the resonance position. For the chaotic structure,

we expect the resonant states to be composed as a mixture
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FIG. 4. (Color online) Density of states for the first resonance, as
well as resonance height A and width � (insets) of the stadium dot
for various values of the ratio R/L. (2a/R = √

3.)

of all angular momentum channels. In the limit of large L/R,
we expect that the lowest possible angular momentum channel
|m| = 1

2 is dominant. The behavior of the resonances should
then resemble those of a |m| = 1

2 resonance of a circular dot,
i.e., we expect width and amplitude to scale as

� = a
R

L
, (21)

A = b + c log
L

R
, (22)

with coefficients a, b, and c of the order of unity. The numerical
study indeed verifies this assertion, as can be seen from the
inset of Fig. 4. We further checked that the other resonances of
Fig. 3 show the same behavior for sufficiently small values of
R/L, although the onset of the asymptotic small-R/L behavior
and the precise values of the numerical coefficients a, b, and c

vary from resonance to resonance. We attribute these variations
to the different constitutions of the resonances, indicating the
relative weight of the |m| = 1

2 channel for a certain resonance
in comparison to higher angular momentum channels. We
further verified that the position of the resonances agrees
with the ones obtained in a calculation of the conductance
(Ref. [20]).

In summary, for a regular quantum dot, we find signatures of
well-confined states that become very sharp in the limit of weak
coupling between dot and lead, as well as broad resonances
with a width scaling ∝ R/L upon changing the coupling to the
lead. For the chaotic dot, we observe such “broad” resonances
only. The results for the density of states are consistent with
the results for a two-terminal conductance setup.

III. EFFECT OF A π FLUX

The difference between regular and chaotic quantum dots in
graphene becomes much more pronounced when we introduce
a magnetic flux carrying half a flux quantum. Electrons
encircling this flux tube acquire an Aharonov-Bohm phase
of π , which cancels the Berry phase that the electronic
wave function collects via the pseudospin upon performing a
circular motion. The magnetic flux shifts the kinematic angular
momentum to integer values, allowing for a state that cannot
be confined by gate potentials.

We now analyze the density of states for a graphene
quantum dot in the presence of such π flux. For this, we add
the vector potential

A(r) = �

e

1

2r
êθ . (23)

Inclusion of A(r) into the Dirac equation amounts to making
the replacement ∂± → D± in Eq. (5), with

D± = e±iθ
(
∂r ± i 1

r
∂θ ∓ 1

2r

)
. (24)

We further introduce the kinematic angular momentum,

jz,kin = [r × (p + eA)]z + �

2 σz, (25)

which takes into account the effect of the magnetic flux, and,
as a gauge-invariant quantity, has a direct interpretation on a
classical level. This is in contrast to the canonical angular
momentum, defined without the vector potential, which is
relevant on a quantum-mechanical level only, where formally it
is used to generate rotations of the electron but has no classical
counterpart, as its value depends on the specific gauge. For the
π flux (23), the kinematic angular momentum is related to
the canonical angular momentum as jz,kin = jz + �/2, and
therefore is quantized in integer multiples of �. We now
consider the effect of a π -flux line on the density of states
in a circular and chaotic quantum dot separately.

A. Circular dot

For the circular dot, the flux line is positioned in the origin
so that rotational symmetry is preserved. The calculation for
the density of states proceeds in an analogous way as in the
case without flux line. The presence of the flux modifies
the basis wave functions (7). We label the new basis states
by the integer index of the kinematic angular momentum μ,

jz,kinψ
(±)
k,μ = μ�ψ

(±)
k,μ. (26)

For nonzero μ, the basis states now read

ψ
(±)
k,μ(r) =

√
k

8vF

(
ei(μ−1)θH

(±)
|μ−1/2|(kr)

i sgn(μ)eiμθH
(±)
|μ+1/2|(kr)

)
, (27)

while for zero kinematic angular momentum, we find

ψ
(±)
k,0 (r) = e±ikr

√
4πrvF

(±e−iθ

1

)
. (28)

The state with zero kinematic angular momentum needs
to be discussed separately and will be responsible for the
crucial difference caused by the magnetic flux. Let us discuss
the states with nonzero kinematic angular momentum first,
where the magnetic flux only leads to slight modifications.
Indeed, one finds that the results of Eqs. (11) and (12) remain
valid, provided the half-integer index m is replaced by the
integer index μ, which labels kinematic angular momentum.
In particular, resonances in the density of states now appear
at roots of half-integer Bessel function J|μ|−1/2(V0R) = 0, and
the resonance width is � = 2(R/L)2|μ|.

For the case μ = 0, regularity of the wave function at the
origin is not sufficient to determine the scattering matrix S0(ε).
This problem can be cured by a suitable regularization of the
flux line. Taking a flux line of extended diameter, we find
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FIG. 5. (Color online) Density of states for a circular quantum
dot in the presence of a flux tube. Resonances are labeled according
to their kinematic angular momentum |μ|. (R/L = 0.2.)

the condition that the upper component of the wave function
has to vanish at the origin [19]. With this regularization, the
calculation of the scattering matrix S0(ε) is straightforward
and has the result

S0 = e−2i(k∞−k0)Re−2i(k∞−k)(L−R), (29)

where k = ε/�vF and k0 = ε/�vF + V0. This scattering matrix
gives a constant, nonresonant contribution to the density of
states, which will be disregarded in the considerations that
follow because it is independent of the gate voltage V0.

We show the density of states for a circular quantum dot
in the presence of a flux tube in Fig. 5. It contains resonances
originating from nonzero angular momentum channels. The
position and the width of such resonances has been discussed
above. The zero angular momentum channel has no V0-
dependent contribution to the density of states. Our findings
are consistent with a simulation of the two-terminal transport,
concerning the position and the scaling of the width upon
changing R/L of the resonances [19], although the regime of
small R/L could not be accessed there.

B. Chaotic dot

The numerical method described in Sec. II B and the
Appendix can be easily carried over to the case with the π

flux by taking the wave functions given by Eqs. (27) and (28)
instead of Eq. (7). One has to pay attention to the boundary
condition at the origin for the zero angular momentum channel,
as discussed above.

We show the result of a calculation of the density of states
of a stadium-shaped quantum dot in the presence of a flux
tube in Fig. 6, as a function of the dot’s potential. The flux
tube is placed off center in order to lift a twofold rotation
symmetry. We observe a density of states with broad peaks,
with the peak widths typically being much larger than for the
circular dot (compare with Fig. 5). The analysis can be made
quantitative by considering a specific “peak” as a function of
R/L; see Fig. 7. Remarkably, the density of states saturates
in the limit R/L → 0 that corresponds to a weak coupling
between the quantum dot and the ring-shaped metallic contact.
This behavior is a qualitative difference with the case of a
circular dot and clearly distinguishes resonances of a chaotic
dot with flux from those of a regular dot or the situation without
flux. We explain this feature by the special role of the zero

FIG. 6. (Color online) Density of states for a stadium-shaped
quantum dot in the presence of a π -flux tube. The flux is shifted
from the center of the stadium in order to break inversion symmetry
and obtain a truly chaotic structure; see also Ref. [19]. (R/L =
0.2, 2a/R = √

3, d = 2a/3.)

angular momentum channel, which becomes the dominant
decay channel in the limit of small R/L. As this channel is
not capable of binding (or backscattering) states, the density
of states becomes insensitive of the distance L to the metallic
contact. The transient behavior for R/L of the order of unity
is attributed to the contribution from finite angular momentum
channels to the resonance width, which gradually disappears
if R/L becomes small.

For the specific resonance shown in Fig. 7, the saturation of
the density of states takes place only for very small dot sizes.
On the other hand, the absence of a bound state may also be
inferred from an analysis of the width of the resonancelike
feature as a function of R/L. Obtaining the width � from a
Lorentzian fit, the inset of Fig. 7 shows that � approaches a
finite value as R/L goes to zero, with a leading correction
∝ (R/L)2, which we attribute to a contribution from the
angular momentum channel |μ| = 1. Such behavior is in stark
contrast to the scenario without flux tube, where the width
goes to zero in the limit R/L → 0. We verified the same
qualitative behavior for the other resonancelike features shown
in Fig. 6, where the value of R/L, at which the width saturates,
varies considerably for different resonances, expressing the
variations of the relative contribution in the channel of zero
angular momentum. We also found rough agreement in the

FIG. 7. (Color online) Density of states for the first “resonance”
and the corresponding resonance width (inset) of the stadium dot for
various values of the ratio R/L. Both height and width of the feature
saturate in the limit R/L → 0. (2a/R = √

3, d = 2a/3.)
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positions of the resonances with the ones obtained in the
calculation of the conductance (Ref. [19]), although no precise
comparison is possible here since the resonances cannot be
made arbitrarily narrow upon making the dot smaller. We note
that our calculation of the density of states allows us to access
for much smaller values of R/L as compared to the numerical
study of the two-terminal conductance in Ref. [19], including
access to the regime, where the line shape of the density of
states saturates.

IV. CONCLUSION

Although graphene has no gap in its electronic excitation
spectrum, it is possible to confine electrons electrostatically
in a gated region of finite carrier density, if that region is
surrounded by a large undoped graphene sheet and if its shape
or potential are such that the electron dynamics is integrable.
In order to make this statement quantitative, previous studies
investigated the conductance of such a quantum dot if placed
between two metallic electrodes [16,20,23]. In this paper, we
explore the density of states as an alternative signature of
confinement. As we have shown, the calculation of the density
of states is significantly easier than the calculation of the two
terminal conductance, which allows us to extend the analysis
to quantum dots with a flux line (in order to highlight the role
of the Berry phase associated with the graphene pseudospin)
and to access the regime of well-isolated resonances, which
requires the limit that the metallic contacts are far away from
the quantum dot. This limit could not be reached in numerical
simulations of the two-terminal transport of Refs. [16,19].

The geometry strongly influences the capability of the
quantum dot to confine states. While both regular and chaotic
dots have resonant signatures in the density of states, the
scaling of the width of these features with the (linear) size L of
the undoped graphene layer separating the dot and the metallic
contacts allows one to discern the geometries: While for the
chaotic dot, all resonances have a width scaling proportionally
to 1/L, indicating a weak confinement, for the regular dot,
most of the resonances have a width that vanishes faster
upon increasing L, indicating well-confined states [20]. The
difference between chaotic and integrable geometries becomes
much more pronounced when a flux tube carrying half a flux
quantum is introduced into the system. In this case, in the
limit of large L, the line shape for the density of states for the
chaotic dot saturates—corresponding to a “resonance width”
that is independent of L. Such behavior signals the absence
of confined states, in contrast to the case of a disk-shaped dot
that continues to show sharp resonances after a flux tube has
been inserted.

The analysis carried out in this paper considered the density
of states integrated over the dot and the surrounding un-
doped graphene sheet. On the other hand, scanning tunneling
microscope experiments measure a local density of states
for the region covered by the tunneling tip. The formalism
that we developed here can easily be extended to this kind
of measurement setup. As far as a qualitative analysis of
peak widths and peak positions goes, however, we expect no
difference between the local density of states and the integrated
density of states that was studied here.
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APPENDIX : NUMERICAL METHOD

In this appendix, we provide details concerning the numer-
ical calculation of the scattering matrix for a gate-defined dot
or arbitrary shape. We first choose a disk of radius R that fully
covers the quantum dot. Inside this disk, i.e., for r < R, the
scattering matrix needs to be determined numerically, while
outside the disk, the Dirac equation can be solved analytically;
see Sec. II A.

For r < R, we rewrite the Dirac equation as

[vFp · σ + U (r)] ψ = �vFkrefψ, (A1)

where kref is a reference wave number that can, in principle,
be chosen arbitrarily, and the potential U (r) is defined as

U (r) = V (r) − ε + �vFkref . (A2)

We regard Eq. (A1) as a scattering problem of an electron
with wave number kref on the potential U (r). For the solution
of this scattering problem, we divide the disk of radius R

in N circular slices, ri < |r| < ri+1, where 0 ≡ r0 < r1 < r2

< . . . < rN−1 < rN ≡ R. We first calculate the scattering
matrix S (i) of the ith slice, which is defined for a scattering
problem for which the potential U (r) is set to zero everywhere
except for ri−1 < r < ri . The scattering matrix S (i) is defined
with respect to flux-normalized scattering states defined for
r < ri−1 and r > ri , taken at wave number kref . If we choose
the slices to be thin enough, a treatment of the scattering
problem in the Born approximation is sufficient. The wave
number kref should be chosen to be large enough that these
scattering states are well defined. A too small value of kref

disturbs the numerical procedure, since the Hankel function
is divergent at small arguments. On the other hand, too large
values for kref require a finer slicing. After the calculation of the
scattering matrices S (i) for the individual slices, concatenation
of those yields the full scattering matrix SR(ε) for the potential
U (r) inside the disk of radius R. This procedure is very similar
to the calculation in Ref. [20], to which we refer the reader for
a more detailed description.

For the further calculation, we only need the scattering
matrix at small energies. We thus expand

SR(ε) = S
(0)
R + S

(1)
R ε + O(ε2), (A3)

where the matrices S
(0)
R and S

(1)
R are obtained from the numerics

by setting the energy ε in the potential U (r) [Eq. (A2)] first to
zero, and then to a very small value.

To calculate the density of states, we need the full scattering
matrix S that relates in- and outgoing states in the metallic
lead, i.e., we still need to account for the undoped graphene
region R < r < L. Since the problem is circularly symmetric
outside the disk of radius R, one can establish an explicit
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connection between S and SR . For r > L, the wave function
for an electron incident in angular momentum channel m has
the form

ψε(r) = ψ
(−)
k∞,m(r) +

∑
n

Snm(ε)ψ (+)
k∞,n(r), (A4)

which defines the scattering matrix Snm in the general case
that angular momentum is not conserved. For R < r < L, we
may expand the solution of the Dirac equation as

ψε(r) =
∑

n

[anmψ
(−)
k,n (r) + bnmψ

(+)
k,n (r)], (A5)

with k = ε/�vF, whereas for the limit r ↑ R, the wave function

may be written as

ψε(r) =
∑

n

cnm

[
ψ

(−)
kref ,n

(r) +
∑

p

SR,pn(ε)ψ (+)
kref ,p

(r)

]
, (A6)

with the scattering matrixSR(ε) as defined above. By imposing
continuity of the wave function at r = R and r = L, we can
eliminate the coefficients anm, bnm, and cnm and expressS(ε) in
terms of SR(ε). This program can be carried out analytically,
including the expansion in k relevant for the application of
Eq. (15) of the main text. The resulting equations can be
obtained in a straightforward manner, but they are too lengthy
to be reported here.

We checked that our results do not depend on the choices of
R and kref that were introduced into the numerical procedure
as auxiliary parameters.
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