17,022 research outputs found

    Online parameter estimation in dynamic Markov Random Fields for image sequence analysis

    Get PDF
    pre-printMarkov Random Fields (MRF) have proven to be extremely useful models for efficient and accurate image segmentation.Recent literature points to an increased effort towards incorporating useful priors (shape, geometry, context) in a MRF framework. However, topological priors, considered extremely crucial in biological and natural image sequences have been less explored. This work proposes a strategy wherein free parameters of the MRF are used to make it topology aware using a semantic graphical model working in conjunction with the MRF. Estimation of free parameters is constrained by prior knowledge of an object's topological dynamics encoded by the graphical model. Maximizing a regional conformance measure yields parameters for the frame under consideration. The application motivating this work is the tracing of neuronal structures across 3D serial section Transmission Electron Micrograph (ssTEM) stacks. Applicability of the proposed method is demonstrated by tracing 3D structures in ssTEM stacks

    Inference via low-dimensional couplings

    Full text link
    We investigate the low-dimensional structure of deterministic transformations between random variables, i.e., transport maps between probability measures. In the context of statistics and machine learning, these transformations can be used to couple a tractable "reference" measure (e.g., a standard Gaussian) with a target measure of interest. Direct simulation from the desired measure can then be achieved by pushing forward reference samples through the map. Yet characterizing such a map---e.g., representing and evaluating it---grows challenging in high dimensions. The central contribution of this paper is to establish a link between the Markov properties of the target measure and the existence of low-dimensional couplings, induced by transport maps that are sparse and/or decomposable. Our analysis not only facilitates the construction of transformations in high-dimensional settings, but also suggests new inference methodologies for continuous non-Gaussian graphical models. For instance, in the context of nonlinear state-space models, we describe new variational algorithms for filtering, smoothing, and sequential parameter inference. These algorithms can be understood as the natural generalization---to the non-Gaussian case---of the square-root Rauch-Tung-Striebel Gaussian smoother.Comment: 78 pages, 25 figure

    Video foreground detection based on symmetric alpha-stable mixture models.

    Get PDF
    Background subtraction (BS) is an efficient technique for detecting moving objects in video sequences. A simple BS process involves building a model of the background and extracting regions of the foreground (moving objects) with the assumptions that the camera remains stationary and there exist no movements in the background. These assumptions restrict the applicability of BS methods to real-time object detection in video. In this paper, we propose an extended cluster BS technique with a mixture of symmetric alpha stable (SS) distributions. An on-line self-adaptive mechanism is presented that allows automated estimation of the model parameters using the log moment method. Results over real video sequences from indoor and outdoor environments, with data from static and moving video cameras are presented. The SS mixture model is shown to improve the detection performance compared with a cluster BS method using a Gaussian mixture model and the method of Li et al. [11]

    Adaptive Gaussian Markov Random Fields with Applications in Human Brain Mapping

    Get PDF
    Functional magnetic resonance imaging (fMRI) has become the standard technology in human brain mapping. Analyses of the massive spatio-temporal fMRI data sets often focus on parametric or nonparametric modeling of the temporal component, while spatial smoothing is based on Gaussian kernels or random fields. A weakness of Gaussian spatial smoothing is underestimation of activation peaks or blurring of high-curvature transitions between activated and non-activated brain regions. In this paper, we introduce a class of inhomogeneous Markov random fields (MRF) with spatially adaptive interaction weights in a space-varying coefficient model for fMRI data. For given weights, the random field is conditionally Gaussian, but marginally it is non-Gaussian. Fully Bayesian inference, including estimation of weights and variance parameters, is carried out through efficient MCMC simulation. An application to fMRI data from a visual stimulation experiment demonstrates the performance of our approach in comparison to Gaussian and robustified non-Gaussian Markov random field models

    A survey of statistical network models

    Full text link
    Networks are ubiquitous in science and have become a focal point for discussion in everyday life. Formal statistical models for the analysis of network data have emerged as a major topic of interest in diverse areas of study, and most of these involve a form of graphical representation. Probability models on graphs date back to 1959. Along with empirical studies in social psychology and sociology from the 1960s, these early works generated an active network community and a substantial literature in the 1970s. This effort moved into the statistical literature in the late 1970s and 1980s, and the past decade has seen a burgeoning network literature in statistical physics and computer science. The growth of the World Wide Web and the emergence of online networking communities such as Facebook, MySpace, and LinkedIn, and a host of more specialized professional network communities has intensified interest in the study of networks and network data. Our goal in this review is to provide the reader with an entry point to this burgeoning literature. We begin with an overview of the historical development of statistical network modeling and then we introduce a number of examples that have been studied in the network literature. Our subsequent discussion focuses on a number of prominent static and dynamic network models and their interconnections. We emphasize formal model descriptions, and pay special attention to the interpretation of parameters and their estimation. We end with a description of some open problems and challenges for machine learning and statistics.Comment: 96 pages, 14 figures, 333 reference

    Analytic Properties and Covariance Functions of a New Class of Generalized Gibbs Random Fields

    Full text link
    Spartan Spatial Random Fields (SSRFs) are generalized Gibbs random fields, equipped with a coarse-graining kernel that acts as a low-pass filter for the fluctuations. SSRFs are defined by means of physically motivated spatial interactions and a small set of free parameters (interaction couplings). This paper focuses on the FGC-SSRF model, which is defined on the Euclidean space Rd\mathbb{R}^{d} by means of interactions proportional to the squares of the field realizations, as well as their gradient and curvature. The permissibility criteria of FGC-SSRFs are extended by considering the impact of a finite-bandwidth kernel. It is proved that the FGC-SSRFs are almost surely differentiable in the case of finite bandwidth. Asymptotic explicit expressions for the Spartan covariance function are derived for d=1d=1 and d=3d=3; both known and new covariance functions are obtained depending on the value of the FGC-SSRF shape parameter. Nonlinear dependence of the covariance integral scale on the FGC-SSRF characteristic length is established, and it is shown that the relation becomes linear asymptotically. The results presented in this paper are useful in random field parameter inference, as well as in spatial interpolation of irregularly-spaced samples.Comment: 24 pages; 4 figures Submitted for publication to IEEE Transactions on Information Theor
    corecore