20,185 research outputs found

    Boosted Random ferns for object detection

    Get PDF
    © 20xx IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.In this paper we introduce the Boosted Random Ferns (BRFs) to rapidly build discriminative classifiers for learning and detecting object categories. At the core of our approach we use standard random ferns, but we introduce four main innovations that let us bring ferns from an instance to a category level, and still retain efficiency. First, we define binary features on the histogram of oriented gradients-domain (as opposed to intensity-), allowing for a better representation of intra-class variability. Second, both the positions where ferns are evaluated within the sliding window, and the location of the binary features for each fern are not chosen completely at random, but instead we use a boosting strategy to pick the most discriminative combination of them. This is further enhanced by our third contribution, that is to adapt the boosting strategy to enable sharing of binary features among different ferns, yielding high recognition rates at a low computational cost. And finally, we show that training can be performed online, for sequentially arriving images. Overall, the resulting classifier can be very efficiently trained, densely evaluated for all image locations in about 0.1 seconds, and provides detection rates similar to competing approaches that require expensive and significantly slower processing times. We demonstrate the effectiveness of our approach by thorough experimentation in publicly available datasets in which we compare against state-of-the-art, and for tasks of both 2D detection and 3D multi-view estimation.Peer ReviewedPostprint (author's final draft

    Exemplar-based Linear Discriminant Analysis for Robust Object Tracking

    Full text link
    Tracking-by-detection has become an attractive tracking technique, which treats tracking as a category detection problem. However, the task in tracking is to search for a specific object, rather than an object category as in detection. In this paper, we propose a novel tracking framework based on exemplar detector rather than category detector. The proposed tracker is an ensemble of exemplar-based linear discriminant analysis (ELDA) detectors. Each detector is quite specific and discriminative, because it is trained by a single object instance and massive negatives. To improve its adaptivity, we update both object and background models. Experimental results on several challenging video sequences demonstrate the effectiveness and robustness of our tracking algorithm.Comment: ICIP201

    Active Collaborative Ensemble Tracking

    Full text link
    A discriminative ensemble tracker employs multiple classifiers, each of which casts a vote on all of the obtained samples. The votes are then aggregated in an attempt to localize the target object. Such method relies on collective competence and the diversity of the ensemble to approach the target/non-target classification task from different views. However, by updating all of the ensemble using a shared set of samples and their final labels, such diversity is lost or reduced to the diversity provided by the underlying features or internal classifiers' dynamics. Additionally, the classifiers do not exchange information with each other while striving to serve the collective goal, i.e., better classification. In this study, we propose an active collaborative information exchange scheme for ensemble tracking. This, not only orchestrates different classifier towards a common goal but also provides an intelligent update mechanism to keep the diversity of classifiers and to mitigate the shortcomings of one with the others. The data exchange is optimized with regard to an ensemble uncertainty utility function, and the ensemble is updated via co-training. The evaluations demonstrate promising results realized by the proposed algorithm for the real-world online tracking.Comment: AVSS 2017 Submissio

    Online learning and detection of faces with low human supervision

    Get PDF
    The final publication is available at link.springer.comWe present an efficient,online,and interactive approach for computing a classifier, called Wild Lady Ferns (WiLFs), for face learning and detection using small human supervision. More precisely, on the one hand, WiLFs combine online boosting and extremely randomized trees (Random Ferns) to compute progressively an efficient and discriminative classifier. On the other hand, WiLFs use an interactive human-machine approach that combines two complementary learning strategies to reduce considerably the degree of human supervision during learning. While the first strategy corresponds to query-by-boosting active learning, that requests human assistance over difficult samples in function of the classifier confidence, the second strategy refers to a memory-based learning which uses ¿ Exemplar-based Nearest Neighbors (¿ENN) to assist automatically the classifier. A pre-trained Convolutional Neural Network (CNN) is used to perform ¿ENN with high-level feature descriptors. The proposed approach is therefore fast (WilFs run in 1 FPS using a code not fully optimized), accurate (we obtain detection rates over 82% in complex datasets), and labor-saving (human assistance percentages of less than 20%). As a byproduct, we demonstrate that WiLFs also perform semi-automatic annotation during learning, as while the classifier is being computed, WiLFs are discovering faces instances in input images which are used subsequently for training online the classifier. The advantages of our approach are demonstrated in synthetic and publicly available databases, showing comparable detection rates as offline approaches that require larger amounts of handmade training data.Peer ReviewedPostprint (author's final draft

    Object Tracking with Multiple Instance Learning and Gaussian Mixture Model

    Get PDF
    Recently, Multiple Instance Learning (MIL) technique has been introduced for object tracking\linebreak applications, which has shown its good performance to handle drifting problem. While some instances in positive bags not only contain objects, but also contain the background, it is not reliable to simply assume that each feature of instances in positive bags obeys a single Gaussian distribution. In this paper, a tracker based on online multiple instance boosting has been developed, which employs Gaussian Mixture Model (GMM) and single Gaussian distribution respectively to model features of instances in positive and negative bags. The differences between samples and the model are integrated into the process of updating the parameters for GMM. With the Haar-like features extracted from the bags, a set of weak classifiers are trained to construct a strong classifier, which is used to track the object location at a new frame. And the classifier can be updated online frame by frame. Experimental results have shown that our tracker is more stable and efficient when dealing with the illumination, rotation, pose and appearance changes

    Efficient Version-Space Reduction for Visual Tracking

    Full text link
    Discrminative trackers, employ a classification approach to separate the target from its background. To cope with variations of the target shape and appearance, the classifier is updated online with different samples of the target and the background. Sample selection, labeling and updating the classifier is prone to various sources of errors that drift the tracker. We introduce the use of an efficient version space shrinking strategy to reduce the labeling errors and enhance its sampling strategy by measuring the uncertainty of the tracker about the samples. The proposed tracker, utilize an ensemble of classifiers that represents different hypotheses about the target, diversify them using boosting to provide a larger and more consistent coverage of the version-space and tune the classifiers' weights in voting. The proposed system adjusts the model update rate by promoting the co-training of the short-memory ensemble with a long-memory oracle. The proposed tracker outperformed state-of-the-art trackers on different sequences bearing various tracking challenges.Comment: CRV'17 Conferenc
    • …
    corecore