1,701 research outputs found

    Modular converter system for low-cost off-grid energy storage using second life Li-ion batteries

    Full text link
    Lithium ion batteries are promising for small off- grid energy storage applications in developing countries because of their high energy density and long life. However, costs are prohibitive. Instead, we consider 'used' Li-ion batteries for this application, finding experimentally that many discarded laptop cells, for example, still have good capacity and cycle life. In order to make safe and optimal use of such cells, we present a modular power management system using a separate power converter for every cell. This novel approach allows individual batteries to be used to their full capacity. The power converters operate in voltage droop control mode to provide easy charge balancing and implement a battery management system to estimate the capacity of each cell, as we demonstrate experimentally.Comment: Presented at IEEE GHTC Oct 10-14, 2014, Silicon Valle

    Passive Balancing Battery Management System for Cal Poly Racing\u27s Formula SAE Electric Vehicle

    Get PDF
    This senior project aims to replace the current battery management system (BMS) on Cal Poly’s Formula SAE electric vehicle with a more versatile, advanced, and reliable system. A BMS manages a rechargeable battery by ensuring the battery device operator’s safety, protecting battery cell integrity, prolonging battery lifetime, maintaining functional design requirements, and sending optimal usage information to the application controller. Passive balancing maximizes a battery pack’s capacity by dissipating excess energy through heat to regulate cell state of charge

    Advances in Batteries, Battery Modeling, Battery Management System, Battery Thermal Management, SOC, SOH, and Charge/Discharge Characteristics in EV Applications

    Get PDF
    The second-generation hybrid and Electric Vehicles are currently leading the paradigm shift in the automobile industry, replacing conventional diesel and gasoline-powered vehicles. The Battery Management System is crucial in these electric vehicles and also essential for renewable energy storage systems. This review paper focuses on batteries and addresses concerns, difficulties, and solutions associated with them. It explores key technologies of Battery Management System, including battery modeling, state estimation, and battery charging. A thorough analysis of numerous battery models, including electric, thermal, and electro-thermal models, is provided in the article. Additionally, it surveys battery state estimations for a charge and health. Furthermore, the different battery charging approaches and optimization methods are discussed. The Battery Management System performs a wide range of tasks, including as monitoring voltage and current, estimating charge and discharge, equalizing and protecting the battery, managing temperature conditions, and managing battery data. It also looks at various cell balancing circuit types, current and voltage stressors, control reliability, power loss, efficiency, as well as their advantages and disadvantages. The paper also discusses research gaps in battery management systems.publishedVersio

    Functional Safety BMS Design Methodology for Automotive Lithium-Based Batteries

    Get PDF
    The increasing use of lithium batteries and the necessary integration of battery management systems (BMS) has led international standards to demand functional safety in electromobility applications, with a special focus on electric vehicles. This work covers the complete design of an enhanced automotive BMS with functional safety from the concept phase to verification activities. Firstly, a detailed analysis of the intrinsic hazards of lithium-based batteries is performed. Secondly, a hazard and risk assessment of an automotive lithium-based battery is carried out to address the specific risks deriving from the automotive application and the safety goals to be fulfilled to keep it under control. Safety goals lead to the technical safety requirements for the next hardware design and prototyping of a BMS Slave. Finally, the failure rate of the BMS Slave is assessed to verify the compliance of the developed enhanced BMS Slave with the functional safety Automotive Safety Integrity Level (ASIL) C. This paper contributes the design methodology of a BMS complying with ISO 26262 functional safety standard requirements for automotive lithium-based batteries

    A comparison of online electrochemical spectroscopy impedance estimation of batteries

    Get PDF
    This paper compares methods of undertaking on-line electrochemical impedance spectroscopy that have been published in literature. This work describes the different published methodologies and sorts these into categories. The paper looks at the theoretical analysis of the circuits and control techniques and follows up with simulation and/or experimental studies of these methods. This work focuses on battery systems

    Investigation of different methods of online impedance spectroscopy of batteries

    Get PDF
    A key challenge in a battery energy storage system is understanding the availability and reliability of the system from the perspective of the end customer. A key task in this process is recognising when a battery or a module within a system starts to degrade and then mitigating against this using the control system or battery management system. Battery characterisation parameters such as internal impedance and state of health and state of charge of the battery are a useful representation of the battery conditions. This thesis investigates the feasibility of undertaking Electrochemical Impedance Spectroscopy (EIS) methods online to generate an understanding of battery impedance. In order to perform an EIS measurement, an excitation signal of fixed frequency must be generated and the voltage and current measured and used to calculate the impedance. This thesis proposed different methods of generating a low-frequency excitation signal using hardware found in most battery systems to extract the harmonic impedance of a battery cell to aim towards a low cost on-line impedance estimation. This work focuses on producing impedance spectroscopy measurements through the power electronics system, a battery balancing system and the earth leakage monitoring system to attempt to get comparable results to off-line EIS measurements under similar conditions. To generate an excitation signal through the power electronic circuit, different control methods were used including varying; the duty cycle, the switching frequency and the starting position of the switched wave and the addition of an impulse type function. Although utilising a variable duty cycle to generate a harmonic impedance has been previously published in literature, the other techniques analysed within this these have not previously been considered. The thesis looks at the theoretical analysis of the circuits and control techniques and then follows this up with simulation and experimental studies. The results showed that all the methods investigated have the capability to generate a low frequency perturbation signal to undertake online EIS measurement. However, there are potential trade-offs, for example increased inductor ripple current. Not all of the methods produce sufficiently accurate results experimentally .However, five of the methods were used to generate EIS plots similar to those undertaken offline

    Design and Implementation of A Three-Level Boost converter for Battery Impedance Spectroscopy

    Get PDF
    Lithium-ion batteries are the most are widely used as electrical storage device in various applications such as portable electronics, electric vehicles, Photovoltaic application, telecommunication etc due to the characteristics of the batterie such as high-power density, long cycling and high-power efficiency. Extensive condition monitoring of the battery should be implemented due to the usage of the battery so that there will be an increase in all the overall performance and expectancy. This research is focused on implementing an online condition monitoring on the Li-ion battery using a signal injection through a power converter. The implemented technique in this research is known as the Electrochemical Impedance Spectroscopy (EIS). The EIS is a widely known technique used in determining the internal impedance of a battery cell. The estimated impedance can be used to determine the state of charge (Soc) and State of health (SoH) of a battery. The EIS is used to characterize the electrochemical behaviour thereby monitoring the change in the impedance of the cell of the battery. The EIS technique is accomplished by sinusoidally injecting current at different frequencies and measuring the voltage response. A standard Frequency Response Analyser (FRA) is used as an offline test while the battery is disconnected from the Load. The limitation of this standard FRA analyser is that it is bulky and Expensive. Attempts have been made to migrate the techniques to online operations, each having their own challenges. For an online Implementation, the interfacing power converter is used for Signal injection to measure the impedance of the battery. This work explores the low current ripple advantage of a threelevel boost converter to implement EIS on lithium ion battery

    E-transportation: the role of embedded systems in electric energy transfer from grid to vehicle

    Get PDF
    Electric vehicles (EVs) are a promising solution to reduce the transportation dependency on oil, as well as the environmental concerns. Realization of E-transportation relies on providing electrical energy to the EVs in an effective way. Energy storage system (ESS) technologies, including batteries and ultra-capacitors, have been significantly improved in terms of stored energy and power. Beside technology advancements, a battery management system is necessary to enhance safety, reliability and efficiency of the battery. Moreover, charging infrastructure is crucial to transfer electrical energy from the grid to the EV in an effective and reliable way. Every aspect of E-transportation is permeated by the presence of an intelligent hardware platform, which is embedded in the vehicle components, provided with the proper interfaces to address the communication, control and sensing needs. This embedded system controls the power electronics devices, negotiates with the partners in multi-agent scenarios, and performs fundamental tasks such as power flow control and battery management. The aim of this paper is to give an overview of the open challenges in E-transportation and to show the fundamental role played by embedded systems. The conclusion is that transportation electrification cannot fully be realized without the inclusion of the recent advancements in embedded systems
    • …
    corecore