36,118 research outputs found

    Enhancement of synthetic jets by means of an integrated valve-less pump Part II. Numerical and experimental studies

    Get PDF
    The paper studies the performance of the new fluid jet actuator based on the novel principle of the generation of fluid jet, which has been presented in [Z. Travnicek, A.I. Fedorchenko, A.-B. Wang, Enhancement of synthetic jets by means of an integrated valve-less fluid pump. Part I. Design of the actuator, Sens. Actuators A, 120 (2005) 232-240]. The fluid jet actuator consists of a synthetic jet actuator and a valve-less pump. The resulting periodical fluid jet is intrinsically non-zero-net-mass-flux, in contrast to the traditional synthetic jet. The numerical results have been compared with the laboratory experiments comprising phase-locked smoke visualization and time-mean velocity measurements. The results have confirmed the satisfactory performance of the actuator

    Annular synthetic jet used for impinging flow mass-transfer

    Get PDF
    An annular synthetic jet was investigated experimentally, both with and without an opposing impingement wall. The experiments involved smoke visualization and mass transfer measurement on the wall by means of naphthalene sublimation technique. Two qualitatively different flow field patterns were identified, depending upon the driving amplitude level. With small amplitudes, vortical puffs maintain their identity for a relatively long time. If the amplitudes are large, breakdown and coalescence of the vortical train is much faster. Also the resultant mass transfer to the impingement wall is then much higher. Furthermore, a fundamental change of the whole flow field was observed at the high end of the investigated frequency range, associated with radical reduction of the size of the recirculation bubble

    Scaling regimes in spherical shell rotating convection

    Full text link
    Rayleigh-B\'enard convection in rotating spherical shells can be considered as a simplified analogue of many astrophysical and geophysical fluid flows. Here, we use three-dimensional direct numerical simulations to study this physical process. We construct a dataset of more than 200 numerical models that cover a broad parameter range with Ekman numbers spanning 3×107E1013\times 10^{-7} \leq E \leq 10^{-1}, Rayleigh numbers within the range 103<Ra<2×101010^3 < Ra < 2\times 10^{10} and a Prandtl number unity. We investigate the scaling behaviours of both local (length scales, boundary layers) and global (Nusselt and Reynolds numbers) properties across various physical regimes from onset of rotating convection to weakly-rotating convection. Close to critical, the convective flow is dominated by a triple force balance between viscosity, Coriolis force and buoyancy. For larger supercriticalities, a subset of our numerical data approaches the asymptotic diffusivity-free scaling of rotating convection NuRa3/2E2Nu\sim Ra^{3/2}E^{2} in a narrow fraction of the parameter space delimited by 6RacRa0.4E8/56\,Ra_c \leq Ra \leq 0.4\,E^{-8/5}. Using a decomposition of the viscous dissipation rate into bulk and boundary layer contributions, we establish a theoretical scaling of the flow velocity that accurately describes the numerical data. In rapidly-rotating turbulent convection, the fluid bulk is controlled by a triple force balance between Coriolis, inertia and buoyancy, while the remaining fraction of the dissipation can be attributed to the viscous friction in the Ekman layers. Beyond RaE8/5Ra \simeq E^{-8/5}, the rotational constraint on the convective flow is gradually lost and the flow properties vary to match the regime changes between rotation-dominated and non-rotating convection. The quantity RaE12/7Ra E^{12/7} provides an accurate transition parameter to separate rotating and non-rotating convection.Comment: 42 pages, 20 figures, 3 tables, accepted for publication in JF

    Drying air-induced disturbances in multi-layer coating systems

    Get PDF
    A range of new experimental techniques is developed to quantify drying-air induced disturbances on low viscosity single and multi-layer coating systems. Experiments on prototype slide-bead coating systems show that the surface disturbances take the form of a wavelike pattern and quantify precisely how its amplitude increases rapidly with wet thickness and decreases with viscosity. Heat transfer measurements show that the redistribution of water to form an additional lower viscosity carrier layer while increasing the solids concentration of the upper layer or layers enables the maximum drying rate, for which drying-air induced surface disturbances are acceptably small, to be increased with significant commercial benefits

    No-moving-part hybrid-synthetic jet actuator

    Get PDF
    In contrast to usual synthetic jets, the “hybrid-synthetic jets” of non-zero timemean nozzle mass flow rate are increasingly often considered for control of flow separation and/or transition to turbulence as well as heat and mass transfer. The paper describes tests of a scaled-up laboratory model of a new actuator version, generating the hybrid-synthetic jets without any moving components. Self-excited flow oscillation is produced by aerodynamic instability in fixed-wall cavities. The return flow in the exit nozzles is generated by jet-pumping effect. Elimination of the delicate and easily damaged moving parts in the actuator simplifies its manufacture and assembly. Operating frequency is adjusted by the length of feedback loop path. Laboratory investigations concentrated on the propagation processes taking place in the loop

    Experimental assessment of a helical coil heat exchanger operating at subcritical and supercritical conditions in a small-scale solar organic rankine cycle

    Get PDF
    In this study, the performance of a helical coil heat exchanger operating at subcritical and supercritical conditions is analysed. The counter-current heat exchanger was specially designed to operate at a maximal pressure and temperature of 42 bar and 200 °C, respectively. The small-scale solar organic Rankine cycle (ORC) installation has a net power output of 3 kWe. The first tests were done in a laboratory where an electrical heater was used instead of the concentrated photovoltaic/thermal (CPV/T) collectors. The inlet heating fluid temperature of the water was 95 °C. The effects of different parameters on the heat transfer rate in the heat exchanger were investigated. Particularly, the performance analysis was elaborated considering the changes of the mass flow rate of the working fluid (R-404A) in the range of 0.20–0.33 kg/s and the inlet pressure varying from 18 bar up to 41 bar. Hence, the variation of the heat flux was in the range of 5–9 kW/m2. The results show that the working fluid’s mass flow rate has significant influence on the heat transfer rate rather than the operational pressure. Furthermore, from the comparison between the experimental results with the heat transfer correlations from the literature, the experimental results fall within the uncertainty range for the supercritical analysis but there is a deviation of the investigated subcritical correlations

    The Dynamics of Liquid Drops and their Interaction with Solids of Varying Wettabilites

    Get PDF
    Microdrop impact and spreading phenomena are explored as an interface formation process using a recently developed computational framework. The accuracy of the results obtained from this framework for the simulation of high deformation free-surface flows is confirmed by a comparison with previous numerical studies for the large amplitude oscillations of free liquid drops. Our code's ability to produce high resolution benchmark calculations for dynamic wetting flows is then demonstrated by simulating microdrop impact and spreading on surfaces of greatly differing wettability. The simulations allow one to see features of the process which go beyond the resolution available to experimental analysis. Strong interfacial effects which are observed at the microfluidic scale are then harnessed by designing surfaces of varying wettability that allow new methods of flow control to be developed

    Aspect ratio dependence of heat transport by turbulent Rayleigh-B\'{e}nard convection in rectangular cells

    Full text link
    We report high-precision measurements of the Nusselt number NuNu as a function of the Rayleigh number RaRa in water-filled rectangular Rayleigh-B\'{e}nard convection cells. The horizontal length LL and width WW of the cells are 50.0 cm and 15.0 cm, respectively, and the heights H=49.9H=49.9, 25.0, 12.5, 6.9, 3.5, and 2.4 cm, corresponding to the aspect ratios (ΓxL/H,ΓyW/H)=(1,0.3)(\Gamma_x\equiv L/H,\Gamma_y\equiv W/H)=(1,0.3), (2,0.6)(2,0.6), (4,1.2)(4,1.2), (7.3,2.2)(7.3,2.2), (14.3,4.3)(14.3,4.3), and (20.8,6.3)(20.8,6.3). The measurements were carried out over the Rayleigh number range 6×105Ra10116\times10^5\lesssim Ra\lesssim10^{11} and the Prandtl number range 5.2Pr75.2\lesssim Pr\lesssim7. Our results show that for rectangular geometry turbulent heat transport is independent of the cells' aspect ratios and hence is insensitive to the nature and structures of the large-scale mean flows of the system. This is slightly different from the observations in cylindrical cells where NuNu is found to be in general a decreasing function of Γ\Gamma, at least for Γ=1\Gamma=1 and larger. Such a difference is probably a manifestation of the finite plate conductivity effect. Corrections for the influence of the finite conductivity of the top and bottom plates are made to obtain the estimates of NuNu_{\infty} for plates with perfect conductivity. The local scaling exponents βl\beta_l of NuRaβlNu_{\infty}\sim Ra^{\beta_l} are calculated and found to increase from 0.243 at Ra9×105Ra\simeq9\times10^5 to 0.327 at Ra4×1010Ra\simeq4\times10^{10}.Comment: 15 pages, 7 figures, Accepted by Journal of Fluid Mechanic
    corecore