27,413 research outputs found

    Connectionist simulation of attitude learning: Asymmetries in the acquisition of positive and negative evaluations

    Get PDF
    Connectionist computer simulation was employed to explore the notion that, if attitudes guide approach and avoidance behaviors, false negative beliefs are likely to remain uncorrected for longer than false positive beliefs. In Study 1, the authors trained a three-layer neural network to discriminate "good" and "bad" inputs distributed across a two-dimensional space. "Full feedback" training, whereby connection weights were modified to reduce error after every trial, resulted in perfect discrimination. "Contingent feedback," whereby connection weights were only updated following outputs representing approach behavior, led to several false negative errors (good inputs misclassified as bad). In Study 2, the network was redesigned to distinguish a system for learning evaluations from a mechanism for selecting actions. Biasing action selection toward approach eliminated the asymmetry between learning of good and bad inputs under contingent feedback. Implications for various attitudinal phenomena and biases in social cognition are discussed

    Approximations of Algorithmic and Structural Complexity Validate Cognitive-behavioural Experimental Results

    Full text link
    We apply methods for estimating the algorithmic complexity of sequences to behavioural sequences of three landmark studies of animal behavior each of increasing sophistication, including foraging communication by ants, flight patterns of fruit flies, and tactical deception and competition strategies in rodents. In each case, we demonstrate that approximations of Logical Depth and Kolmogorv-Chaitin complexity capture and validate previously reported results, in contrast to other measures such as Shannon Entropy, compression or ad hoc. Our method is practically useful when dealing with short sequences, such as those often encountered in cognitive-behavioural research. Our analysis supports and reveals non-random behavior (LD and K complexity) in flies even in the absence of external stimuli, and confirms the "stochastic" behaviour of transgenic rats when faced that they cannot defeat by counter prediction. The method constitutes a formal approach for testing hypotheses about the mechanisms underlying animal behaviour.Comment: 28 pages, 7 figures and 2 table

    Design for a Darwinian Brain: Part 1. Philosophy and Neuroscience

    Full text link
    Physical symbol systems are needed for open-ended cognition. A good way to understand physical symbol systems is by comparison of thought to chemistry. Both have systematicity, productivity and compositionality. The state of the art in cognitive architectures for open-ended cognition is critically assessed. I conclude that a cognitive architecture that evolves symbol structures in the brain is a promising candidate to explain open-ended cognition. Part 2 of the paper presents such a cognitive architecture.Comment: Darwinian Neurodynamics. Submitted as a two part paper to Living Machines 2013 Natural History Museum, Londo

    The Cat Is On the Mat. Or Is It a Dog? Dynamic Competition in Perceptual Decision Making

    Get PDF
    Recent neurobiological findings suggest that the brain solves simple perceptual decision-making tasks by means of a dynamic competition in which evidence is accumulated in favor of the alternatives. However, it is unclear if and how the same process applies in more complex, real-world tasks, such as the categorization of ambiguous visual scenes and what elements are considered as evidence in this case. Furthermore, dynamic decision models typically consider evidence accumulation as a passive process disregarding the role of active perception strategies. In this paper, we adopt the principles of dynamic competition and active vision for the realization of a biologically- motivated computational model, which we test in a visual catego- rization task. Moreover, our system uses predictive power of the features as the main dimension for both evidence accumulation and the guidance of active vision. Comparison of human and synthetic data in a common experimental setup suggests that the proposed model captures essential aspects of how the brain solves perceptual ambiguities in time. Our results point to the importance of the proposed principles of dynamic competi- tion, parallel specification, and selection of multiple alternatives through prediction, as well as active guidance of perceptual strategies for perceptual decision-making and the resolution of perceptual ambiguities. These principles could apply to both the simple perceptual decision problems studied in neuroscience and the more complex ones addressed by vision research.Peer reviewe

    Building Machines That Learn and Think Like People

    Get PDF
    Recent progress in artificial intelligence (AI) has renewed interest in building systems that learn and think like people. Many advances have come from using deep neural networks trained end-to-end in tasks such as object recognition, video games, and board games, achieving performance that equals or even beats humans in some respects. Despite their biological inspiration and performance achievements, these systems differ from human intelligence in crucial ways. We review progress in cognitive science suggesting that truly human-like learning and thinking machines will have to reach beyond current engineering trends in both what they learn, and how they learn it. Specifically, we argue that these machines should (a) build causal models of the world that support explanation and understanding, rather than merely solving pattern recognition problems; (b) ground learning in intuitive theories of physics and psychology, to support and enrich the knowledge that is learned; and (c) harness compositionality and learning-to-learn to rapidly acquire and generalize knowledge to new tasks and situations. We suggest concrete challenges and promising routes towards these goals that can combine the strengths of recent neural network advances with more structured cognitive models.Comment: In press at Behavioral and Brain Sciences. Open call for commentary proposals (until Nov. 22, 2016). https://www.cambridge.org/core/journals/behavioral-and-brain-sciences/information/calls-for-commentary/open-calls-for-commentar
    • …
    corecore