13 research outputs found

    Estimation of Working Memory Load using EEG Connectivity Measures

    Get PDF
    Working memory load can be estimated using features extracted from the electroencephalogram (EEG). Connectivity measures, that evaluate the interaction between signals, can be used to extract such features and therefore provide information about the interconnection of brain areas and electrode sites. To our knowledge, there is no literature regarding a direct comparison of the relevance of several connectivity measures for working memory load estimation. This study intends to overcome this lack of literature by proposing a direct comparison of four connectivity measures on data extracted from a working memory load experiment performed by 20 participants. These features are extracted using pattern-based or vector-based methods, and classified using an FLDA classifier and a 10-fold cross-validation procedure. The relevance of the connectivity measures was assessed by statistically comparing the obtained classification accuracy. Additional investigations were performed regarding the best set of electrodes and the best frequency band. The main results are that covariance seems to be the best connectivity measure to estimate working memory load from EEG signals, even more so with signals filtered in the beta band. point

    Robust Models for Operator Workload Estimation

    Get PDF
    When human-machine system operators are overwhelmed, judicious employment of automation can be beneficial. Ideally, a system which can accurately estimate current operator workload can make better choices when to employ automation. Supervised machine learning models can be trained to estimate workload in real time from operator physiological data. Unfortunately, estimating operator workload using trained models is limited: using a model trained in one context can yield poor estimation of workload in another. This research examines the utility of three algorithms (linear regression, regression trees, and Artificial Neural Networks) in terms of cross-application workload prediction. The study is conducted for a remotely piloted aircraft simulation under several context-switch scenarios -- across two tasks, four task conditions, and seven human operators. Regression tree models were able to cross predict both task conditions of one task type within a reasonable level of error, and could accurately predict workload for one operator when trained on data from the other six. Six physiological input subsets were identified based on method of measurement, and were shown to produce superior cross-application models compared to models utilizing all input features in certain instances. Models utilizing only EEG features show the most potential for decreasing cross application error

    Human Factors and Neurophysiological Metrics in Air Traffic Control: a Critical Review

    Get PDF
    International audienceThis article provides the reader a focused and organised review of the research progresses on neurophysiological indicators, also called “neurometrics”, to show how neurometrics could effectively address some of the most important Human Factors (HFs) needs in the Air Traffic Management (ATM) field. The state of the art on the most involved HFs and related cognitive processes (e.g. mental workload, cognitive training) is presented together with examples of possible applications in the current and future ATM scenarios, in order to better understand and highlight the available opportunities of such neuroscientific applications. Furthermore, the paper will discuss the potential enhancement that further research and development activities could bring to the efficiency and safety of the ATM service

    An Investigation of the Correlation Between Mental Workload and Web User’s Interaction

    Get PDF
    Mental Workload, a psychological concept, was identified as being linked with task’s and system’s performance. In the context of Human-Computer Interaction, recent research has identified Mental Workload as an important measure in the designing and evaluation of web interfaces, and as an additional and supplemental insight to typical usability evaluation methods. Simultaneously, web logs containing data related to web users’ interaction (e.g. scrolling; mouse clicks) have been proved useful in evaluating the usability of web sites by analysing the data tracked for hundreds of users. In order to study if the potential of logs of user interaction can be applied in the study of Mental Workload in Web design, an online experiment with 145 participants was performed. Additionally, the experiment, composed of alternative interfaces, sought to assess the role of Mental Workload in the evaluation of interfaces using interactive Infographics, which were identified by literature as bringing new challenges and concerns in the field of Web Design. The online experiment’s results suggested that correlations between mental demands and users’ interaction can only be observed when taking in consideration the web interface used or the profile of the users. Moreover, the used measurement methods for assessing Mental Workload were not capable of predicting task performance, as previous research suggested (in the context of other types of web interfaces)

    An investigation of the correlation between Mental Workload and Web User’s Interaction

    Get PDF
    Mental Workload, a Psychology concept, was identified as being linked with task’s and system’s performance. In the context of Human-Computer Interaction, recent research has identified Mental Workload as an important measure in the designing and evaluation of web interfaces, and as an additional and supplemental insight to typical Usability evaluation methods. Simultaneously, web logs containing data related to web users’ interaction (e.g. scrolling; mouse clicks) have been proved useful in evaluating the Usability of web sites by levering the data tracked for hundreds of users. In order to study if the potential of logs of user interaction can be applied in the study of Mental Workload in Web design, an online experiment with 145 participations was performed. Additionally, the experiment, composed of alternative interfaces, sought to assess the role of Mental Workload in the evaluation of interfaces using interactive Infographics, which were identified by literature as bringing new challenges and concerns in the field of Web Design. The online experiment’s results suggested that correlations between mental demands and users’ interaction can only be observed when taking in consideration the web interface used or the profile of the users. Moreover, the used measurement methods for assessing Mental Workload were not capable of predicting task performance, as previous research suggested (in the context of other types of web interfaces)

    Advancing Pattern Recognition Techniques for Brain-Computer Interfaces: Optimizing Discriminability, Compactness, and Robustness

    Get PDF
    In dieser Dissertation formulieren wir drei zentrale Zielkriterien zur systematischen Weiterentwicklung der Mustererkennung moderner Brain-Computer Interfaces (BCIs). Darauf aufbauend wird ein Rahmenwerk zur Mustererkennung von BCIs entwickelt, das die drei Zielkriterien durch einen neuen Optimierungsalgorithmus vereint. DarĂŒber hinaus zeigen wir die erfolgreiche Umsetzung unseres Ansatzes fĂŒr zwei innovative BCI Paradigmen, fĂŒr die es bisher keine etablierte Mustererkennungsmethodik gibt

    Ubiquitous Integration and Temporal Synchronisation (UbilTS) framework : a solution for building complex multimodal data capture and interactive systems

    Get PDF
    Contemporary Data Capture and Interactive Systems (DCIS) systems are tied in with various technical complexities such as multimodal data types, diverse hardware and software components, time synchronisation issues and distributed deployment configurations. Building these systems is inherently difficult and requires addressing of these complexities before the intended and purposeful functionalities can be attained. The technical issues are often common and similar among diverse applications. This thesis presents the Ubiquitous Integration and Temporal Synchronisation (UbiITS) framework, a generic solution to address the technical complexities in building DCISs. The proposed solution is an abstract software framework that can be extended and customised to any application requirements. UbiITS includes all fundamental software components, techniques, system level layer abstractions and reference architecture as a collection to enable the systematic construction of complex DCISs. This work details four case studies to showcase the versatility and extensibility of UbiITS framework’s functionalities and demonstrate how it was employed to successfully solve a range of technical requirements. In each case UbiITS operated as the core element of each application. Additionally, these case studies are novel systems by themselves in each of their domains. Longstanding technical issues such as flexibly integrating and interoperating multimodal tools, precise time synchronisation, etc., were resolved in each application by employing UbiITS. The framework enabled establishing a functional system infrastructure in these cases, essentially opening up new lines of research in each discipline where these research approaches would not have been possible without the infrastructure provided by the framework. The thesis further presents a sample implementation of the framework on a device firmware exhibiting its capability to be directly implemented on a hardware platform. Summary metrics are also produced to establish the complexity, reusability, extendibility, implementation and maintainability characteristics of the framework.Engineering and Physical Sciences Research Council (EPSRC) grants - EP/F02553X/1, 114433 and 11394

    Valutazione degli stati mentali attraverso l'utilizzo di interfacce cervello-computer passive

    Get PDF
    The monitoring of cognitive functions aims at gaining information about the current cognitive state of the user by decoding brain signals. In recent years, this approach allowed to acquire valuable information about the cognitive aspects regarding the interaction of humans with external world. From this consideration, researchers started to consider passive application of brain–computer interface (BCI) in order to provide a novel input modality for technical systems solely based on brain activity. The objective of this thesis is to demonstrate how the passive Brain Computer Interfaces (BCIs) applications can be used to assess the mental states of the users, in order to improve the human machine interaction. Two main studies has been proposed. The first one allows to investigate whatever the Event Related Potentials (ERPs) morphological variations can be used to predict the users’ mental states (e.g. attentional resources, mental workload) during different reactive BCI tasks (e.g. P300-based BCIs), and if these information can predict the subjects’ performance in performing the tasks. In the second study, a passive BCI system able to online estimate the mental workload of the user by relying on the combination of the EEG and the ECG biosignals has been proposed. The latter study has been performed by simulating an operative scenario, in which the occurrence of errors or lack of performance could have significant consequences. The results showed that the proposed system is able to estimate online the mental workload of the subjects discriminating three different difficulty level of the tasks ensuring a high reliability.La valutazione delle funzioni cognitive ha l’obbiettivo di ottenere informazioni sullo stato mentale attuale dell'utente, attraverso la decodifica dei segnali cerebrali. Negli ultimi anni, questo approccio ha consentito di indagare informazioni preziose sugli aspetti cognitivi riguardanti l'interazione tra l’uomo ed il mondo esterno. In base a queste considerazioni, recentemente si ù considerata in letteratura la possibilità di utilizzare le interfacce cervello computer passive (BCI passivi) per interagire con dispositivi esterni, sfruttando l’attività spontanea dell’utente. L'obiettivo di questa tesi ù quello di dimostrare come le interfacce cervello computer passive possano essere utilizzate per valutare lo stato mentale dell’utente, al fine di migliorare l'interazione uomo-macchina. Sono stati presentati due studi principali. Il primo ha l’obbiettivo di investigare le variazioni morfologiche dei potenziali evento correlati (ERP), al fine di associarle agli stati mentali dell’utente (es. attenzione, carico di lavoro mentale) durante l’utilizzo di BCI reattive, e come predittori delle performance raggiunte dai soggetti. Nel secondo studio ù stato sviluppato e validato un sistema BCI passivo in grado di stimare il carico di lavoro mentale dell'utente durante task operative, attraverso la combinazione del segnale elettroencefalografico (EEG) ed elettrocardiografico (ECG). Quest'ultimo studio ù stato effettuato simulando uno scenario operativo, in cui il verificarsi di errori da parte dell’operatore o il calo di prestazioni poteva avere conseguenze importanti. I risultati hanno mostrato che il sistema proposto ù in grado di discriminare il carico di lavoro mentale percepito dall’utente su tre livelli di difficoltà, garantendo un’elevata affidabilità

    Prediction of drivers’ performance in highly automated vehicles

    Get PDF
    Purpose: The aim of this research was to assess the predictability of driver’s response to critical hazards during the transition from automated to manual driving in highly automated vehicles using their physiological data.Method: A driving simulator experiment was conducted to collect drivers’ physiological data before, during and after the transition from automated to manual driving. A total of 33 participants between 20 and 30 years old were recruited. Participants went through a driving scenario under the influence of different non-driving related tasks. The repeated measures approach was used to assess the effect of repeatability on the driver’s physiological data. Statistical and machine learning methods were used to assess the predictability of drivers’ response quality based on their physiological data collected before responding to a critical hazard. Findings: - The results showed that the observed physiological data that was gathered before the transition formed strong indicators of the drivers’ ability to respond successfully to a potential hazard after the transition. In addition, physiological behaviour was influenced by driver’s secondary tasks engagement and correlated with the driver’s subjective measures to the difficulty of the task. The study proposes new quality measures to assess the driver’s response to critical hazards in highly automated driving. Machine learning results showed that response time is predictable using regression methods. In addition, the classification methods were able to classify drivers into low, medium and high-risk groups based on their quality measures values. Research Implications: Proposed models help increase the safety of automated driving systems by providing insights into the drivers’ ability to respond to future critical hazards. More research is required to find the influence of age, drivers’ experience of the automated vehicles and traffic density on the stability of the proposed models. Originality: The main contribution to knowledge of this study is the feasibility of predicting drivers’ ability to respond to critical hazards using the physiological behavioural data collected before the transition from automated to manual driving. With the findings, automation systems could change the transition time based on the driver’s physiological state to allow for the safest transition possible. In addition, it provides an insight into driver’s readiness and therefore, allows the automated system to adopt the correct driving strategy and plan to enhance drivers experience and make the transition phase safer for everyone.</div
    corecore