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ABSTRACT 

The monitoring of cognitive functions aims at gaining information about the 

current cognitive state of the user by decoding brain signals. In recent years, this 

approach allowed to acquire valuable information about the cognitive aspects 

regarding the interaction of humans with external world. From this consideration, 

researchers started to consider passive application of brain–computer interface (BCI) 

in order to provide a novel input modality for technical systems solely based on brain 

activity. The objective of this thesis is to demonstrate how the passive Brain Computer 

Interfaces (BCIs) applications can be used to assess the mental states of the users, in 

order to improve the human machine interaction. Two main studies has been proposed. 

The first one allows to investigate whatever the Event Related Potentials (ERPs) 

morphological variations can be used to predict the users’ mental states (e.g. 

attentional resources, mental workload) during different reactive BCI tasks (e.g. P300-

based BCIs), and if these information can predict the subjects’ performance in 

performing the tasks. In the second study, a passive BCI system able to online estimate 

the mental workload of the user by relying on the combination of the EEG and the 

ECG biosignals has been proposed. The latter study has been performed by simulating 

an operative scenario, in which the occurrence of errors or lack of performance could 

have significant consequences. The results showed that the proposed system is able to 

estimate online the mental workload of the subjects discriminating three different 

difficulty level of the tasks ensuring a high reliability. 
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1 INTRODUCTION 

Simultaneous control of multiple devices, while maintaining high attentional levels, 

represents an important feature in several operating environment. For example, pilot a 

plane or drive a car represents the classic situations where the operator has to manage 

simultaneously the available devices, while maintaining a high level of attention. 

There are also situations in which the required cognitive load can become very high, 

for example in safety-critical applications. These considerations point out the 

usefulness of a system that continuously monitors the user's mental states and that at 

the same time can act on the system itself using the subjective collected information. 

A BCI is typically defined as a communication system, which relies on brain activity 

to control an external device bypassing muscular and nerves pathway (e.g., using 

electroencephalogram (EEG) technique, Wolpaw et al. 2002). BCI research was 

originally driven by the goal to provide an alternative/additional channel to restore 

communication and interaction with the external world in people with severe motor 

disabilities. More recently, Wolpaw and Wolpaw (2012) defined a Brain-Computer 

Interface as “a system that measures Central Nervous System (CNS) activity and 

converts it into artificial output that replaces, restores, enhances, supplements, or 

improves natural CNS output and thereby changes the ongoing interactions between 

the CNS and its external or internal environment”. Thus, researchers suggested new 

application fields for BCI systems, developing applications that also involve subjects 

in operational environments, as military and commercial pilots and car drivers (Zander 

et al., 2009; Mueller et al., 2008; Blankertz et al. 2010). In fact, the meaning of the 
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term “BCI” (which originally only included the translation of the users’ intentions 

through the classification of their voluntarily modulated brain activity) was broadened 

to comprise monitoring of cognitive states (e.g. mental workload, attention levels) 

identified through the users’ spontaneous brain activity. 

The objective of this PhD thesis is to design and validate a passive Brain Computer 

Interface (BCI) system able to estimate the user's mental state through the analysis of 

neurophysiological signals. 

This thesis is organized in five main sections: 

 In the first part basic concepts about the nervous system, the EEG signal and 

the ECG signal will be provided. In addition, a review of the state of the art 

concerning the covert and the overt attention modalities, the mental workload 

and the Brain Computer Interface (BCI) systems will be reported. 

 In the second section, the studies regarding the event-related potentials and 

changes in their morphology during the use of two BCI interfaces used in 

overt and covert attention modalities will be reported and discussed. 

 The third section will deal the design and the development of a monitoring 

system of the user's mental workload in operational environments using EEG 

rhythms and the ECG signal. 

 In the fourth section, the general conclusions about the carried out research will 

be discussed. 
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2 PRELIMINARY CONCEPTS  

2.1 The nervous system 

Before discussing physiological measures, it is important to have at least a brief 

understanding of the extremely complex human nervous system (NS). The NS is a 

complex network of nerves and cells that carry messages to and from the brain and 

spinal cord to various parts of the body (Figure 2.1). The nervous system includes both 

the Central nervous system and Peripheral nervous system. The Central nervous 

system is made up of the brain and spinal cord and The Peripheral nervous system is 

made up of the Somatic and the Autonomic nervous systems. 

 

Figure 2.1: Schematic overview of the nervous system 
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2.1.1 The Central Nervous System 

The Central Nervous System (CNS) gathers information about the environment 

through sensations, controls thought and motor control. Central to this effort and to the 

understanding of our existence is the brain. First, it is important to discuss the basic 

functions of the brain as related to its anatomy. The brain is made up of several 

components, which work in concert to perform the myriad of functions, which we use 

to survive (Figure 2.2). 

 

Figure 2.2: Structures of the brain 



Mental states monitoring through passive brain-computer interface systems 

5 

 

2.1.2 Temporal Lobes 

The temporal lobes are highly associated with memory skills and are involved in the 

primary organization of sensory input (Read, 1981). This area of the brain is involved 

with emotional response, memory, and speech recognition. The responsibility of these 

lobes also includes language functions such as naming and verbal comprehension. 

Evidence suggests that the temporal lobes are involved in high-level visual processing 

of complex stimuli and scenes as well as object perception and recognition. This part 

of the brain handles the transfer of memory from short to long term and control spatial 

memory. 

2.1.3 Occipital Lobe 

The ability to process visual images is located in the occipital lobe. This part of the 

brain handles the perception of motion, color discrimination and visual/spatial 

processing. 

2.1.4 Parietal Lobe 

There are several functions carried out by this part of the brain. First, the cognitive 

functions of sensation and perception. This sensory input is then integrated to form a 

corresponding spatial coordinate system to the environment. The parietal lobe has 

been associated with various visuo-spatial abilities and analogical mental rotations 

(Dehaene et al., 1999). 
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2.1.5 Frontal Lobe 

The frontal lobe area of the brain involved several important activities including motor 

function, problem solving, memory, language, judgment, impulse control, and social 

behavior. The left and right frontal lobes are involved in different behaviors, for 

example, the left controls language related movement (e.g. muscle activation 

necessary for speech) and the right lobe is involved with non-verbal abilities. 

2.2 The Neuron 

There are about 1010 neurons in CNS organized in a multilevel hierarchical system 

(Shepherd, 1998). The nervous system provides a lot of diversity of neuron type, 

connectivity, functionality, etc. Therefore, pretty much all of what is said refers to the 

most common behaviour despite the whole variability present (Figure 2.3).  
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Figure 2.3: Schematic representation of a neuron. 

The three main parts of a neuron are the dendrites, the soma (cell body) and the axon. 

Most of the incoming current to a neuron comes from the dendrites. Probably the great 

distinctive features of neurons is the presence of large dendritic trees. They are 

responsible for most of the variety in neuron size, shape and types. The dendritic tree 

contains many post synaptic terminals of chemical synapses. Several functions (Stuart 

et al., 1999) have also been claimed to be performed by dendritic arbors such as 

biological gates and coincidence detectors, learning signaling by dendritic spikes, to 

increase the learning capacity of the neuron (Poirazi and Mel, 2001) or to increase the 
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ability to differ incoming stimulus intensity into a neuron (or enhance the dynamic, 

Gollo et al., 2012). However such dendritic computation properties are still far away 

from been clearly understood. The cell body (soma) contains the nucleus and most of 

the cytoplasmic organelles. It is mainly where the metabolic process occur. The axon 

goes very far away from the soma. It might have different size (from 0.1 to 2.000 mm) 

depending on its functionality (Kandel et al., 2000). It starts at the axon hillock where 

the action potential is generated and present ramifications at the extremities. From 

those terminal buttons come out most of the pre synaptic terminals. It might be 

involved by myelin to protect and control some properties as the propagation velocity. 

2.2.1 The action potential 

The neurons are nonlinear excitable elements, i.e., they generate a spike when its 

membrane potential goes above a defined threshold (about 20-30 mV above the rest 

potential, Gerstner and Kistler, 2002). This excitation is also called action potential 

(Figure 2.4). When the membrane potential of a given neuron is perturbed, for instance 

via the incoming activity from a neighbour, it relaxes back to its rest potential in a 

time scale determined by the membrane time (τm) if it does not exceed the threshold. 

The spike is generated in a particular region called axon hillock located in between the 

soma and the axon. The pulse propagates (Bishop and Davis, 1960) mainly throw the 

axon (forward propagation) but may also propagate in the other direction 

(backpropagating spike, Falkenburger et al., 2001). The spike occurs in a very narrow 

time window followed by a fall of the membrane potential bellow the rest state. At that 

point, the neuron is hyperpolarized and its potential difference is greater with respect 

to the exterior region (arbitrarily defined as 0 mV). This stage is called refractory 

period and the neuron is typically not allowed to reach the threshold and consequently 
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to spike. Typically, the membrane potential relaxes to the rest potential before another 

cycle happens. 

 

Figure 2.4: The action potential 

2.3 The electroencephalography 

The EEG is a recording of the brain’s electrical activity, in most cases, made from 

electrodes over the surface of the scalp or from needle electrodes inserted into the 

brain. One of the first ever reports about EEG was by Richard Caton (1875), who 

recorded the EEG oscillations from monkeys and rabbits. In 1929, Hans Berger 

reported the first reliable recording of the EEG from a human scalp and a first 

categorization of EEG oscillation into alpha (8-13 Hz) and beta waves (14-30 Hz). 

Here, we refer EEG only to that measured from the head surface. Generally, the EEG 

recordings could be categorized into two types: the spontaneous activity and the 
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evoked potentials. Spontaneous activity is often referred to the unprovoked occurrence 

of brain activity, in terms of the absence of an identifiable stimulus, with or without 

behaviour manifestation. The bandwidth of this signal is from under 1 Hz to over 100 

Hz. The evoked potentials are time-locked components in the EEG that arise in 

response to a stimulus, which may be electric, visual, auditory, tactile, etc. Such 

signals are often evaluated by averaging a number of trials to improve the signal-to-

noise ratio. EEG is measured using scalp electrodes, which record the difference in the 

electric potential between an electrode with an active neural signal and an electrode 

placed over a supposedly inactive region that serves as a reference. These recordings 

are the resultant field potentials containing many active neurons. However, the action 

potential in axons is revealed to contribute little to the scalp surface records, as they 

are asynchronous while the axons run in many different directions. Surface records are 

thought to be the net effect of local postsynaptic potentials of the cortical cells. 

Mostly, the EEG measures the currents that flow during synaptic excitations of the 

dendrites of many pyramidal neurons, a type of neuron found in areas of the brain 

including the cerebral cortex (Teplan, 2002). Although there are various EEG 

recording systems in the market, such systems conventionally include four parts: 

electrodes with conductive media, amplifiers with filters, A/D converter, and 

recording device. Electrodes are used to read the signal from the scalp; amplifiers 

increase the magnitude of the microvolt signals into a range which can be digitalized 

accurately; the converter changes the signals from analog to digital form; and the 

recorder system (normally personal computer) stores and displays the obtained data 

(Teplan, 2002). Additionally, a 10-20 system (Figure 2.5) EEG measurement has been 

adopted by the International Federation in Electroencephalography and Clinical 
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Neurophysiology (Jasper, 1958). Such a system provides the standardized physical 

placement of electrodes on the scalp. The electrodes are labelled according to adjacent 

brain areas: F (frontal), C (central), T (temporal), P (posterior), and O (occipital), with 

odd numbers on the left side and even numbers on the right side. 

 

Figure 2.5: 10-20 system for the standardized electrode placement. 

Two basic approaches are commonly used for the EEG analysis: (i) the analysis of 

evoked potentials (EPs); and (ii) the power spectrum analysis (EEG rhythms). These 

two methods have been applied in various experimental or field researches into human 

cognitive activities. 
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2.3.1 The evoked potentials 

The evoked potential (EP) is a response induced by the presentation of an external 

stimulus that can be isolated from the electroencephalographic spontaneous activity. 

This means that, for any external stimulation, the brain reacts with a specific wave, 

characterized by a particular latency, an amplitude and a polarity. A given evoked 

potential appears at a time interval approximately constant from the presentation of the 

stimulus. Because the amplitude of each EP is smaller than the fluctuations in the 

amplitude of the spontaneous EEG, normally the EP is extracted from the EEG as the 

average of a series of single responses (synchronized averaging) in order to remove 

the random fluctuations of the EEG. In this way, the EEG variations which are not 

synchronized with the stimulus are deleted, while the EPs become more visible. From 

a morphological point of view, the EP is named according to the polarity of the peak 

that can be positive or negative (P or N) and to the latency with respect to the onset of 

the external stimuli. From the physiological point of view, the evoked potentials are 

defined as the electrical changes that occur in the central nervous system in response 

to an external stimulus: in this way, their latency and amplitude depend on the 

physical characteristics of the stimulus applied (e.g. tone and intensity for the auditory 

system; contrast, luminance, and spatial frequency for the visual system; intensity and 

stimulation mode for the somatosensory system). The evoked potentials are 

categorized into two basic types: the evoked potentials stimulus related (e.g. visual 

EPs, VEPs), which morphology depends from the physical characteristics of the 

stimulus, and the event related potentials (ERPs), which generation is independent 

from the physical characteristics of the stimulus but reflects the attentional resources 

of the subject. 
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2.1.1.3 Visual Evoked Potentials (VEPs) 

The terms visually evoked potential (VEP), visually evoked response (VER) and 

visually evoked cortical potential (VECP) are equivalent. They refer to electrical 

potentials, initiated by brief visual stimuli, which are recorded from the scalp 

overlying visual cortex, VEP waveforms are extracted from the electroencephalogram 

(EEG) by means of a signal averaging synchronized to the onset of the stimuli. VEPs 

are used primarily to measure the functional integrity of the visual pathways from 

retina via the optic nerves to the visual cortex of the brain. Visually evoked potentials 

elicited by flash stimuli can be recorded from many scalp locations in humans. Visual 

stimuli stimulate both primary visual cortices and secondary areas. Clinical VEPs are 

usually recorded from occipital scalp overlying the calcarine fissure. This is the closest 

location to primary visual cortex. The time period analyzed is usually between 50 and 

300 milliseconds following the onset of each visual stimulus. The most common 

stimulus used is a checkerboard pattern, which reverses every half-second. Pattern 

reversal is a preferred stimulus because there is more inter-subject VEP reliability than 

with flash or pattern onset stimuli. 

In the morphology of a VEP it is possible to differentiate few components (Figure 

2.4): there is a prominent negative component at peak latency of about 70 ms (N1), a 

larger amplitude positive component at about 100 ms (P1) and a more variable 

negative component at about 140 ms (N2). The major component of the VEP is the 

large positive wave peaking at about 100 milliseconds. This “P100″ or P1 in the jargon 

of evoked potentials, is very reliable between individuals and stable from about age 5 

years to 60 years. The mean peak latency of the “P100″ only slows about one 

millisecond per decade from 5 years old until 60 years old. 



Mental states monitoring through passive brain-computer interface systems 

14 

 

 

Figure 2.6: Representative normal pattern reversal VEP recorded from mid-

occipital scalp using 50′ checkerboard pattern stimuli. 

 

2.1.2.3 Event Related Potentials (ERPs) 

Event-related potentials (ERPs) represent the voltage fluctuations that are associated in 

time with some physical or mental occurrence (Picton et al., 2000). ERP is a complex 

potential consisting of both time-locked fast and slow components, which could both 

precede an event or follow it (Kotchoubey, 2006). Since the late 1950s, the ERP 

analysis has been established as a psychophysiological approach to provide 

information about the cognitive processing of an event or a stimulus in the brain. ERP 

components are supposed to allow obtaining information about how the intact human 

brain processes signals and prepares actions. 
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Specifically, the event related potential (ERP) P300 is a positive deflection of the EEG 

signal elicited in the process of decision-making (Fabiani et al., 1987). The P300 (P3) 

wave is an event related potential (ERP) component elicited in the process of decision-

making. It is assumed an endogenous potential, as its occurrence links not to the 

physical attributes of a stimulus, but to a person's reaction to it. More specifically, the 

P300 is thought to reflect processes involved in stimulus evaluation or categorization. 

It is usually elicited using the oddball paradigm, in which low-probability target items 

are mixed with high-probability non-target (or "standard") items. The P300 component 

is measured by assessing its amplitude and latency. Amplitude is defined as the 

difference between the mean pre-stimulus baseline voltage and the largest positive-

going peak of the ERP waveform within a time window (e.g., 250–500 ms, although 

the range can vary depending on stimulus modality, task conditions, subject age, etc.). 

Latency (ms) is defined as the time from stimulus onset to the point of maximum 

positive amplitude within a time window. P300 scalp distribution is defined as the 

amplitude change over the midline electrodes (Fz, Cz, Pz), which typically increases 

in magnitude from the frontal to parietal electrode sites (Johnson, 1996). The P300 

potential can be evoked through different paradigms: The single-stimulus task presents 

an infrequent target (T) in the absence of any other stimuli. The oddball task presents 

two different stimuli in a random sequence, with one occurring less frequently than the 

other does (target = T, standard = S). In each task, the subject has to respond only to 

the target and otherwise to refrain from responding. 
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Figure 2.7: Schematic illustration of the single-stimulus (top) and oddball 

(bottom), with the elicited ERPs from the stimuli of each task at the right. 

Latency and amplitude of the P300 potential can be influenced by several internal and 

external factors. Some of the determinants affecting P300 amplitude and latency 

include exercise and fatigue (Yagi et al., 1999), commonly used drugs, age, IQ, 

handedness, and gender, as well as some personality variables (Polich and Kok, 1995). 

Subjects who have eaten recently show a higher amplitude and a shorter latency than 

those who have not. Recent nicotine consumption affects both behavioral and P300 

measures in some tasks (Houlihan et al., 1996). Caffeine, alcohol, and other 

substances have also been shown to influence the P300 morphology (Sommer et al., 

1999). The amplitude and the latency of the P300 potential is reported to change with 

the age: latency increases of 1.8 ms/year and the amplitude decreases of 0.2μV/year. 

(Goodin et al., 1978). Rare no-target stimuli elicit different ERP components in 
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children and adults, while equally rare, target stimuli elicit similar components in 

children and adults (Courchesne, 1977). Also, the P300 increases in amplitude and 

decreases in latency with age (Polich et al., 1990). Auditory P300 has a centro-parietal 

distribution that increases in amplitude and decreases in latency (Martin et al., 1988) 

steadily from age 5 to age 19. Apart the physiological aspect, the P300 morphology is 

also dependent from the stimulation timing: the time between stimuli affects P300 

amplitude, in particular the P300 potentials elicited with shorter timing within the 

stimuli have smaller amplitudes and longer latencies than those obtained with longer 

timing (Picton et al., 2000). The P300 potential is a measure of the attentional 

resources of the subject. In particular, the amplitude of the P300 is proportional to the 

amount of attentional resources engaged in processing a given stimulus (Johnson, 

1986) and it is not influenced by factors related to response selection or execution 

(Crites et al., 1995). Gray et al., (2003) reported that the P300 amplitude therefore 

served as our covert measure of attention that arises independently of behavioral 

responding. Further, P300 latency is thought to reflect stimulus classification speed, 

such that it serves as a temporal measure of neural activity underlying attention 

allocation and immediate memory operations (Duncan and Johnson, 1981; Magliero et 

al., 1984; Polich, 1986). Finally, a large number of studies using ERPs to evaluate the 

mental user’s load have been conducted which proved that the amplitude and latency 

of P300 provide effective tools for the assessment of mental workload (Johnson, 1986, 

for further details refer to the 2.6.1 section). 

The ERPs serve as important adjuncts to studies of human information processing, a 

fundamental problem with this method is the signal-noise ratio. The magnitude of the 

ERP signal is around 5-10 µV, which is far smaller than the amplitude of the 
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background EEG (0-100 µV ; Hagemann, 2008). Therefore, the classic approach for 

ERP extraction is to average the signal over a number of trials in order to obtain a 

stable response with a sufficient signal-to-noise ratio. In this regard, in the section 3.3 

a method to enhance the signal to noise ratio (SNR) and to extract the single epoch 

P300 potential was reported (Aricò et al., 2014, [J 1], [C 3]). 

2.1.3.3 Oddball paradigm 

The oddball paradigm is a method used in evoked potential research in which trains of 

stimuli (usually auditory or visual) are used to assess the neural reactions to 

unpredictable but recognizable events (Figure 2.6). It has been found that the P300 

event related potential across the parieto-central area of the skull is larger after the 

target stimulus (Polich et al., 2007). In the oddball paradigm, two stimuli are presented 

in a random series such that one of them occurs relatively infrequently (target stimuli). 

The subject is required to distinguish between the stimuli by noting the occurrence of 

every target mentally counting, button press and by not responding to the standard 

stimulus (Polich and Margala, 1997). For example, in a visual oddball task, there 

might be a 95% chance for a square to be presented and a 5% chance for a circle. 

When the targets (e.g. circles) appear, the subject must make a response, such as 

pressing a button or updating a mental count. This task has provided much of the 

fundamental data for the theoretical interpretation of P300 in terms of memory 

updating (Johnson, 1986), as well as in studies that suggest P300 amplitude is 

proportional to the amount of attentional resources required for a given task (Wickens 

et al., 1983; Kramer and Strayer, 1988). The oddball paradigm was widely used in 

several works in the brain computer interface (BCI) field (see section 2.7 for further 

details). 
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2.3.2 EEG rhythms analyses 

The oscillatory activity of the spontaneous EEG is typically categorized into five 

different frequency bands: delta (0-4 Hz), theta (4-7), alpha (8-12), beta (12-30) and 

gamma (30-100 Hz), as shown in Figure 2.8. These frequency bands are suggested to 

be a result of different cognitive functions. 
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Figure 2.8: Comparison of EEG bands over one second of activity. Gamma 

(30-100Hz), Beta (12-30Hz), Alpha (8-12Hz), Theta (4-7Hz), and Delta (0-4Hz). 

 

 Delta (0 -4 Hz): The delta activity is characterized as high amplitude and low 

frequency. It is usually associated with the slow-wave sleep in the sleep 

research. It is suggested that delta waves represent the onset of deep sleep 

phases in healthy adults (Rechtschaffen and Kales, 1968). In addition, 

contamination of the eye activity is mostly represented in the delta frequency 

band. 

 Theta (4-7Hz): The generation of theta power is associated with the 

hippocampus (Buzsáki, 2002) as well as neocortex (Cantero et al., 2003). The 

theta band is thought to be associated with deep relaxation or meditation (e.g. 

Hebert and Lehmann, 1977; Kubota et al., 2001) and it has been observed at 

the transition stage between wake and sleep (Hagemann, 2008). However, 

theta rhythms are suggested to be important for learning and memory functions 

(Sammer et al., 2007), encoding and retrieval (Ward, 2003) which involve high 

concentration (Hagemann, 2008). It has also been suggested that theta 

oscillations are associated with the  attentional control mechanism in the 

anterior cingulated cortex (Kubota et al., 2001; Smith et al., 2001) and is often 

shown to increase with a higher cognitive task demand (e.g. Gundel and 

Wilson, 1992; Gevins et al., 1998). 
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 Alpha (8-12Hz): The alpha band activity is found at the visual cortex (occipital 

lobe) during periods of relaxation or idling (eyes closed but awake). It is 

characterized by high amplitude and regular oscillations with a maximum over 

parietal and occipital electrodes in the continuous EEG. The modulation of 

alpha activity is thought to be a result of resonation or oscillation of the neuron 

groups (Lopes da Silva et al., 1980; Smith et al., 2001). High alpha power has 

been assumed to reflect a state of relaxation or cortical idling. However, when 

the operator devotes more effort to the task, different regions of the cortex may 

be recruited in the transient function network leading to passive oscillation of 

the local alpha generators in synchrony with a reduction in alpha power (Smith 

et al., 2001). Recent results suggested that alpha is involved in auditory 

attention processes and the inhibition of task irrelevant areas to enhance signal-

to-noise ratio (Cooper et al., 2006; Klimesch et al., 2007; Hagemann, 2008). 

Additionally, some researchers divide the alpha activity further into sub-bands 

to achieve a finer grained description of its functionality (e.g. Klimesch et al., 

1999). For instance, the “mu” band (10-12 Hz) occurs with actual motor 

movement and intent to move with an associated diminished activation of the 

motor cortex (Dooley 2009). 

 Beta (13-30Hz): The beta wave is predominant when the human is awake. 

Spatially, it predominates in the frontal and central areas of the brain. It has 

been described that the high power in the beta band is associated with the 

increased arousal and activity. Dooley (2009) pointed out that the beta wave 

represents cognitive consciousness and an active, busy, or anxious thinking. 

Furthermore, it has been revealed to reflect visual concentration and the 
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orienting of attention (Birbaumer and Schmidt, 1996). The beta band can be 

further divided into several sub-bands: low beta wave (12.5-15 Hz); middle 

beta wave (15-18 Hz); high beta wave (> 18 Hz). These three sub-bands are 

associated with separate physiological processes. For instance, the high beta 

waves are suggested to be linked with the dopaminergic system (Gruzelier et 

al., 1990; Hagemann, 2008), while the low beta activities are thought to reflect 

the inhibition of phasic movements during sleep (Hagemann, 2008). 

 Gamma (30-100Hz): The gamma band is the fastest activity in EEG and is 

thought to be infrequent during waking states of consciousness (Dooley, 2009). 

It is reported that gamma waves are associated with perceptual blinding 

problem (Gray et al., 1989). More specifically, Tallon-Baudry et al. (2005) 

revealed that areas of lateral occipital cortex play an important role in visual 

stimulus encoding and show large gamma oscillations differently affected by 

attentional modulation. Recent studies reveal that gamma is linked with many 

other cognitive functions such as attention, learning, memory (Jensen, et al., 

2007), and language perception (Eulitz et al., 1996). 

2.4 The electrocardiography 

The electrocardiogram (ECG) interprets the electrical activity caused by 

depolarization and polarization of the heart muscle. It reflects the electrical impulses 

produced by heart contraction. The ECG can be analyzed by means of three 

approaches: (a) time domain measures; (b) amplitude measures; and (c) frequency 

domain measures. 
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A typical time-domain ECG tracing of the cardiac cycle (heartbeat) consists of a P 

wave, a QRS complex, a T-wave, and a U-wave (Figure 2.9). The QRS complex is 

often used to detect peaks while the time between peaks i.e. namely, Inter-Beat-

Interval (IBI), can be extracted. Typically, heart rate (HR) and heart rate variability 

(HRV) are widely used for the representation of the mental workload. HR is 

determined by the number of heart beats within a fixed period of time (usually per 

minute) and is non-linearly related to IBI. Compared with IBI, HR is less normally 

distributed in samples (Jennings et al., 1974). Additionally, the amplitude of T-wave 

(TWA) is another variable in the ECG signal reflecting sympathetic nervous system 

(SNS) activity (Furedy, 1987). Müller et al. (1992) reported that the amplitude of 

TWA decreased with increases in SNS activity 

 

Figure 2.9: The typical time-domain ECG tracing of the cardiac cycle 

Compared with HR and TWA, the analysis of HRV is more complex. HRV is usually 

defined as the changes in the interval between heart beats in either time or frequency 

domain. It reflects the irregularities in heart rate caused by a continuous feedback 
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between the CNS and peripheral autonomic receptors. Three frequency components 

have been defined: a very low frequency range (VLF; 0.02-0.06 Hz), a low frequency 

range (LF; 0.06-0.15 Hz; also called ‘0.1 Hz’ component), and a high frequency range 

(HF; 0.15-0.4 Hz). The VLF is believed to be linked to the regulation of the body 

temperature; LF is assumed to be involved in the regulation of short-term blood 

pressure; HF is shown to be related to respiratory fluctuations reflecting 

parasympathetic influences that are dependent on respiration frequency (Kramer, 

1990; Grossman, 1992). 

2.5 The attention: Overt vs Covert 

Each time we open our eyes we are confronted with an overwhelming amount of 

information. Despite this, we experience a seemingly effortless understanding of our 

visual world. This requires selecting relevant information out of irrelevant noise. 

Attention is the key to this process; it is the mechanism that turns looking into seeing. 

In perception, ignoring irrelevant information is what makes it possible for us to attend 

to and interpret the important parts of what we see. Attention allows us to selectively 

process the vast amount of information with which we are confronted, prioritizing 

some aspects of information while ignoring others by focusing on a certain location or 

aspect of the visual scene. In general, three typologies of attention modalities can be 

identified:  

 Selective attention: The ability to process or focus on one message in the 

presence of distracting information. 

 Divided attention: The ability to process more than one message at a time. 
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 Visual attention: The mechanism determining what information is or is not 

extracted from our visual field. 

The appeal of visual attention seems to be related to an observation that is likely to 

disconcert a traditional vision scientist: changing an observer’s attentional state while 

keeping the retinal image constant can affect perceptual performance and the activity 

of ‘sensory’ neurons throughout visual cortex. For over a century, the study of visual 

attention has attracted some of the greatest thinkers in psychology, neurophysiology 

and perceptual sciences, including Hermann von Helmholtz, Wilhelm Wundt and 

William James. More recently (1960–1980s), many psychologists, including Michael 

Posner, Anne Treisman, Donald Broadbent and Ulric Neisser, have provided distinct 

theories and developed experimental paradigms to investigate what attention does and 

what perceptual processes it affects. Initially, there was a great deal of interest in 

categorizing mechanisms of vision as pre-attentive or attentive. The interest in that 

distinction has waned as many studies have shown that attention actually affects tasks 

that were once considered pre-attentive, such as contrast discrimination, texture 

segmentation and acuity. The influence of attention increases along the hierarchy of 

the cortical visual areas, resulting in a neural representation of the visual world 

affected by behavioral relevance of the information, at the expense of an accurate and 

complete description of it (e.g., Treue, 2001). Attention can affect perception by 

altering performance – how well we perform on a given task –and/or by altering the 

subjective appearance of a stimulus or object. These aspects will be discussed in the 

sections 3.1 and 3.2, in which the effects of the overt and covert attention modalities in 

the performance of two P300 BCI systems will be reported (Aloise et al., 2012a, [J 1] 

[J 6] [J 7] [J 10] [C 7] [C 28]). 
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There are three main types of visual attention: i) spatial attention, which can be either 

overt, when an observer moves his/her eyes to a relevant location and the focus of 

attention coincides with the movement of the eyes, or covert, when attention is 

deployed to relevant locations without accompanying eye movements; ii) feature-

based attention (FBA), which can be deployed covertly to specific aspects (e.g., color, 

orientation or motion direction) of objects in the environment, regardless of their 

location; and iii) object-based attention in which attention is influenced or guided by 

object structure (Olson, 2001; Scholl, 2001). 

2.5.1 Spatial (c)overt attention 

Attention can be allocated by moving one’s eyes toward a location (overt attention) or 

by attending to an area in the periphery without actually directing one’s gaze toward it 

(covert attention). The deployment of covert attention aids us in monitoring the 

environment and can inform subsequent eye movements. Hermann von Helmholtz was 

the first scientist to provide an experimental demonstration of covert attention (Suzuki 

and Cavanagh, 1997). Looking into a wooden box through two pinholes, Helmholtz 

would attend to a particular region of his visual field (without moving his eyes in that 

direction). When a spark was lit to briefly illuminate the box, he found an impression 

of only the objects in the region he had been attending to, thus showing that attention 

could be deployed independently of eye position and accommodation. In general, to 

investigate covert attention, it is necessary to ensure that observers’ eyes remain 

fixated at one location, and to keep both the task and stimuli constant across 

conditions while manipulating attention. Spatial resolution, our ability to discriminate 

fine patterns, is not uniform across locations in the visual field. It decreases with 
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eccentricity. Correspondingly, signals from the central parts of the visual field are 

processed with greater accuracy and faster reaction times (e.g., Cannon, 1985; 

Carrasco, Evert et al., 1995; Rijsdijk et al., 1980). In many tasks, these performance 

differences are eliminated when stimulus size is enlarged according to the cortical 

magnification factor, which equates the size of the cortical representation for stimuli 

presented at different eccentricities (e.g., Rovamo and Virsu, 1979). There are several 

factors contributing to differences in spatial resolution across eccentricities. A greater 

proportion of the cortex is devoted to processing input from the central part of the 

visual field than from the periphery (cortical magnification) in many cortical visual 

areas (Sutter, 1992). 

2.6 The mental workload 

The mental workload is a measure of the resources required to process information 

during a specific task (O’Donnell and Eggemeier, 1986). Workload concept can be 

divided into five dimensions: instantaneous workload, peak workload, accumulated 

workload, average workload, and overall workload. The instantaneous workload 

measures dynamic changes in the workload values during task performance. The 

typical examples for such measures are the physiological markers. The peak workload 

is referred to as the maximal value of instantaneous workload. Accumulated workload 

is the total amount of instantaneous workload. The average workload is defined as the 

average of the instantaneous workload. Finally, the overall workload is the 

individual’s experienced mental workload which maps instantaneous workload (or 

accumulated and averaged workload) in the operator’s brain (Xie and Salvendy, 

2000). In general, the mental workload is thought of as a mental construct, a latent 
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variable, or perhaps an “intervening variable” (Gopher and Donchin 1986), reflecting 

the interaction of mental demands imposed on operators by tasks they attend to. The 

capabilities and the effort of the operators in the context of specific situations all 

moderate the workload experienced by the operator. Workload is thought to be 

multidimensional and multifaceted. Workload results from the aggregation of many 

different demands and so is difficult to define uniquely. Casali and Wierwille (1984) 

note that as workload cannot be directly observed, it must be inferred from observation 

of overt behavior or measurement of psychological and physiological processes. 

Gopher and Donchin (1986) feel that no single, representative measure of workload 

exists or is likely to be of general use, although they do not provide guidance on how 

many workload measures they feel are necessary or sufficient (Cain, 2007). Mental 

workload can be influenced by numerous factors that make a definitive measurement 

difficult. Jex (1988) implies that mental workload derives from the operator’s meta-

controller activities: the cognitive “device” that directs attention, copes with 

interacting goals, selects strategies, adjusts to task complexity, sets performance 

tolerances, etc. This supports the intuitive notion that workload can be represented as a 

function, and the utility of univariate workload measures as globally sensitive 

estimates of workload, while acknowledging that tasks of differing characteristics 

interfere differently. Alternatively, Wierwille (1988) suggests that an operator faced 

with a task is fully engaged until the task is done, then is idle or engages in another 

task. 
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2.6.1 Workload measurement techniques 

The principal reason for measuring workload is to quantify the mental cost of 

performing tasks in order to predict operator and system performance. As such, it is an 

interim measure and one that should provide insight into where increased task 

demands may lead to unacceptable performance. In the comparison of system designs, 

procedures, or manning requirements, workload measurement can be used to assess 

the desirability of a system if performance measures fail to differentiate among the 

choices. Implicit in this approach is the belief that as task difficulty (workload) 

increases: performance usually decreases; response times and errors increase; control 

variability increases; fewer tasks are completed per unit time; task performance 

strategies change (Huey and Wickens 1993); and, there is less residual capacity to deal 

with other issues.The mental workload can be evaluated using mainly three 

approaches: i) subjective or self-assessment evaluation, ii) performance evaluation and 

iii) psychophysiological variables assessment. 

2.6.2 Subjective evaluation 

Subjective measures have been used extensively to assess operator workload in many 

studies (Tsang and Johnson, 1989; Zaklad, and Christ, 1989; Eggemeier and Stadler, 

1984). The reasons for the frequent use of subjective procedures include their practical 

advantages (ease of implementation, non-intrusiveness) and current data which 

support their capability to provide sensitive measures of operator load. Many 

subjective procedures exist to measure mental workload. The most outstanding among 

them are the Cooper-Harper Scale (Cooper and Harper, 1969), the Bedford Scale 
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(Roscoe and Ellis, 1990), the SWAT (Subjective Assessment Technique) (Reid and 

Nygren, 1988) and the NASA-TLX (Task Load Index) (Hart and Staveland, 1988). 

Between these procedures, we will take into account only the NASA-TLX 

questionnaire that we used in many reported works (See section 2.2.1.6). Self-

assessments involve rating demands on numerical or graphical scales, typically 

anchored either at one or two extremes per scale. Some subjective techniques use 

scales that are categorical, with definitions at every level, such as the Modified 

Cooper-Harper scale. Other techniques use an open-ended rating with a “standard” 

reference task as an anchor and subjects rate other tasks relative to the reference task. 

Despite this kind of measure is quite direct because the subject him/herself assesses 

the perceived workload, the repeatability and validity of such quantitative subjective 

techniques are sometimes uncertain and data manipulations are often questioned as 

being inappropriate. 

2.2.1.6 NASA-Task Load Index (TLX) 

The NASA Task Load Index (Hart and Staveland, 1988) uses six dimensions to assess 

mental workload:  

1. Mental demand: How much mental and perceptual activity was required? Was 

the task easy or demanding, simple or complex? 

2. Physical demand: How much physical activity was required? Was the task easy 

or demanding, slack or strenuous? 

3. Temporal demand: How much time pressure did you feel due to the pace at 

which the tasks or task elements occurred? Was the pace slow or rapid? 
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4. Performance: How successful were you in performing the task? How satisfied 

were you with your performance? 

5. Effort: How hard did you have to work (mentally and physically) to 

accomplish your level of performance? 

6. Frustration: How irritated, stresses, and annoyed versus content, relaxed, and 

complacent did you feel during the task? 

Twenty-step bipolar scales are used to obtain ratings for these dimensions. A score 

from 0 to 100 (assigned to the nearest point 5) is obtained on each scale. A weighting 

procedure is used to combine the six individual scale ratings into a global score; this 

procedure requires a paired comparison task to be per-formed prior to the workload 

assessments. Paired comparisons require the operator to choose which dimension is 

more relevant to workload across all pairs of the six dimensions. The number of times 

a dimension is chosen as more relevant is the weighting of that dimension scale for a 

given task for that operator. A workload score from 0 to 100 is obtained for each rated 

task by multiplying the weight by the individual dimension scale score, summing 

across scales, and dividing by 15 (the total number of paired comparisons). 

2.6.3 Performance evaluation 

The performance evaluation provides a direct correlation between the performance 

achieved by the subject during the task and the required mental workload. It can be 

classified into two major types: primary task measures and secondary task measures. 

In most investigations, performance of the primary task will always be of interest as its 

generalization to in-service performance is central to the study. Primary task measures 
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attempt to assess the operator’s performance on the task of interest directly, and this is 

useful where the demands exceed the operator’s capacity such that performance 

degrades from baseline or ideal levels. Speed, accuracy, reaction or response times, 

and error rates are often used to assess primary task performance (e.g. Multi Attribute 

Task Battery, MATB, Comstock, 1994).  

In secondary task methods, performance of the secondary task itself may have no 

practical importance and serves only to load or measure the load of the operator. 

Secondary task measures provide an index of the remaining operator capacity while 

performing primary tasks, and are more diagnostic than primary task measures alone. 

The characteristics of the secondary task are used to infer the interaction between the 

primary and secondary tasks and this approach is frequently used when the operator 

can adapt to demand manipulations such that primary-task performance is apparently 

unaffected (Colle and Reid,1999). 

2.3.1.6 Multi Attribute Task Battery (MATB) 

The Multi-Attribute Task Battery (MATB, Figure 2.10) provides a benchmark set of 

tasks for use in a wide range of laboratory studies about operator performance and 

workload (Comstock, 1994). The MATB simulates the activities inside an aircraft’s 

cockpit and provides a high degree of experimental tasks control in terms of 

complexity and difficulty. Furthermore, task features include an auditory 

communications task (to simulate Air-Traffic-Control communications), a fuel 

resources management task of maintaining target performance (e.g. to keep the fuel 

level around 2500 lbs), an emergency lights control and a task of cursor tracking, that 
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is, it simulates the control of the aircraft flight level (this can be switched from manual 

to automatic mode). 

 

Figure 2.10: Screenshot of the Multi Attribute Task Battery (MATB) 

interface. On the top left corner, there is the emergency lights task; on the top, in the 

center, there is the task of cursor tracking; on the left bottom corner, there is the radio 

communication task and, finally, in the center on the bottom, there is the fuel levels 

managing. 

2.6.4 Psychophysiological variables assessment 

Finally, the psycho - physiological measure, consists in the evaluation of the 

variability (and of the correlation) of one or more neurophysiological signals 
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(electroencephalogram (EEG), electrocardiogram (ECG), galvanic skin response 

(GSR), etc.) with respect to the mental workload required to the subject during the task 

(Kramer, 1990; Hancock and Desmond, 2001). This class of measures is based on the 

concept that increasing workload, for example by means of the increment of mental 

demand, leads to an activation in physical response from the body. Normally, a 

requirement of most psychophysiological measures is for reference data that 

establishes the operator’s unstressed background state. Such background states are 

subject to many factors and may change markedly over time so an operational baseline 

state is often used. For the purpose of this work, we will take into account only the 

EEG and the ECG signals as a measure of the user’s mental workload. 

2.4.1.6 Electroencephalography 

Characteristic changes in the EEG reflecting levels of mental workload have been 

identified in different works. In general, two kind of EEG features can be took into 

account for the representation of the human operator mental workload: ERPs and EEG 

rhythms modulation. 

Event Related Potentials measurement 

In the last decades, a large number of studies using ERPs to evaluate the mental 

workload have been conducted which proved that the amplitude and latency of P300 

provide effective tools for the assessment of mental workload (Johnson, 1986; 

Schultheis and Jameson, 2004). For the workload assessment, three features from the 

P300, the latency, the latency jitter and the amplitude, are used. 
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P300 latency: Different studies demonstrated that the P300 latency provides a 

chronometric index for assess the duration of perceptual processing (Leuthold and 

Sommer, 1998). Kramer and Parasuraman (2007) also pointed out that the latency of 

P300 reflects the timing of stimulus identification and categorization processes. 

Previous research indicated that increasing the mental workload may lead to an 

extension of the P300 latency. Kutas et al. (1977) stated that increasing the difficulty 

of identifying the target stimulus also increased the latency of the P300 wave. Such 

conclusion was confirmed also by Fowler (1994). However, an increasing in the 

difficulty of response selection do not affect P300 latency (Magliero, 1984). This led 

to a discussion on whether the latency of the P300 provides a relatively pure 

measurement of perceptual processing and categorization time, independent of 

response selection and execution stages (Kutas et al., 1977; McCarthy and Donchin, 

1981). 

P300 latency jitter: This phenomenon happens when the lag between the onset of the 

stimulus of interest and the evoked P300 potential peak is not constant over the 

different stimuli. In different studies, the authors demonstrated that large latency 

variations were observed when the attention was divided between two tasks (Polich, 

2007, Kutas et al., 1977). Aricò et al., (2014) demonstrated that a ERP-BCI used in 

covert attention modality, increase the workload perceived with respect to the overt 

attention, and at the same time the P300 latency jitter over the target stimuli 

significantly increases (for further details, please refer to the section 3.3).  

P300 amplitude: It has been assumed that the amplitude of P300 is proportional to the 

amount of attentional resource allocation for the task performance (Johnson, 1986). 
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This assumption is in line with the findings in the oddball paradigm that the amplitude 

of P300 is sensitive to the probability of the presentation of stimulus. Gopher and 

Donchin (1986) suggested that the P300 amplitude could index the perceptual/central 

processing load, until the moment performance declines, in which case the amplitude 

remains unaffected. It is assumed that the amplitude of P300 may show different 

changes in the single and dual task performance. In a primary-task-only-condition, it 

was suggested that the P300 amplitude increases with task complexity. In a dual-task 

paradigm, the diversion of processing resources away from target discrimination leads 

to a reduction in P300 amplitude (Kramer and Parasuraman, 2007). 

EEG rhythms modulation 

An extensive body of literatures exists concerning the EEG spectra modulation 

according to the variation of the cognitive workload and the allocation of mental effort 

(Gundel and Wilson, 1992; Berka et al., 2007; Lei et al., 2009; Lei and Roetting, 

2011) and applied settings (Wilson, 2002; Kohlmorgen et al., 2007; Aricò et al., 

2013). Several studies described the correlation of spectral power of the 

electroencephalogram (EEG) with the complexity of the task that the subject is 

performing. In fact, an increase of the theta band spectral power (4 - 7 (Hz)) especially 

on the frontal cortex and a decrease in alpha band (8-12 (Hz)) over the parietal and 

occipital cortexes have been observed when the required mental workload increases 

(Lei and Roetting, 2011; Borghini et al., 2012). Specifically, at the Fz site the theta 

power was increased during high-load task relative to low-load task, whereas alpha 

power tended to be attenuated in the high-load task compared to low-load tasks. 

Consistent results have been found not only in similar working memory (WM) task 
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(Gundel and Wilson, 1992; Gevins et al., 1998), but also in more complex cognitive 

tasks (Smith et al., 2001; Wilson, 2002; Wilson and Russell, 2003). Smith et al. (2001) 

recorded continuous EEG while 16 participants performed versions of the compute 

based flight simulation task, the Multiple-Attribute Task Battery (MATB; Comstock, 

1994), in low, moderate and high difficulty. As task difficulty increased, frontal 

midline theta EEG activity increased while parietal midline alpha decreased. In field 

research, Wilson (2002) reported a study involving ten pilots who flew an 

approximately 90-minute scenario containing both visual and instrument flight 

conditions. Multiple variables including EEG parameters were analyzed. Wilson 

(1992) found that parietal alpha band showed significant reduction in high workload 

condition, but an increasing in the theta power spectrum could only be observed at a 

few scattered electrode sites. However, disputing voices on theta power can be also 

heard. Decreases in theta activity were found with transitions from single to dual-

tasks. Pigeau et al. (1987) revealed that theta power initially increases with increments 

in the task difficulty of an additional task and then decreases at high levels of 

difficulty. Alpha oscillation was found to systematically decrease in power as the task 

load increases. This inverse proportion has been found in numerous earlier studies 

(Sterman et al., 1988; Gevins et al., 1998) and is consistent with current understanding 

of the underlying neural mechanisms in the generation of the alpha rhythms. 

Many studies attempted to combine the EEG parameters for a reliable index of neural 

activity, for example, using the ratio of the different band powers (Brookhuis and De 

Waard, 1993; Pope el al., 1995; Prinzel et al., 2000). Pope et al. (1995), who reported 

the first brain-based adaptive system, established a system to index the task 

engagement based upon ratios of EEG power bands (theta, alpha, beta, etc.). While 
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these changes are reproducible across subjects, and stable over the time, their 

estimations are relatively slow (more than five minutes in order to highlight 

differences between different mental workload levels). 

Another approach towards real-time assessment of mental workload, instead of the 

EEG spectral components, is to use Brain-Computer-Interaction (BCI) technology, 

e.g. linear discriminate analysis (LDA), support vector machine (SVM), artificial 

neural network (ANN), etc. These studies classified workload into several levels (e.g. 

low, moderate and high) using the various EEG parameters in either a simple, single-

task (Wilson and Fisher, 1995; Gevins et al., 1998; Nikolaev et al., 1998; Gevins and 

Smith, 1997) or complex tasks with skilled operators (Noel, et al., 2005; Russell and 

Wilson, 1998; Wilson and Russell, 2003; Grimes et al., 2008; Heger et al., 2010; Putze 

et al., 2010; Aricò et al., 2013). The use of the machine learning techniques allows to 

assess the subject's mental workload in a short time (few seconds) reaching a high 

accuracy (>90%) (Aricò et al., 2013, Kohlmogoren et al., 2007). 

2.4.2.6 Electrocardiography 

Heart Rate (HR): Since the hearth rate (HR) measure is easy to obtain and less 

sensitive to artefacts (Kramer, 1990), it is one of the most popular physiological 

parameters for mental workload assessment within various environments (Backs and 

Seljos, 1994; Wilson, 2002; Brookhuis and De Waard, 1993; Mehler et al., 2009). It is 

assumed that an increased mental workload leads to an increased cardiovascular 

activity, a heightened cortical energy transformation, and corresponding enhanced 

metabolic demands (Backs and Seljos, 1994). Although this generalization is widely 

accepted, not all studies agree with the findings. Some articles are critical of the use of 
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heart rate to measure workload because of the various psychological, environmental, 

and emotional factors that can influence the response (Jorna, 1993; Lee and Park, 

1990; Roscoe, 1992). For example, “feelings of uncertainty and anxiety can 

significantly raise heart rate” (Jorna, 1993). Other research has determined that HR 

“does not appear to be of value as a sole measure of pilot workload but it can be 

strongly recommended as a technique to augment a good subjective rating scale” 

(Roscoe, 1992). HR is also sensitive to mental effort. Numerous studies have found 

correlations between cognitive demands and HR (Roscoe, 1992; Veltman and 

Gaillard, 1996, 1998; Caldwell et al., 1994). HR is sensitive to variations in task 

demand, but is also influenced by the contamination from physical effort, emotions 

and stress (Kramer, 1990). In a study on multitasking performance, Fairclough et al. 

(2005) explored the interaction between learning and task demand on 

psychophysiological reactivity. These authors used EEG activity, cardiac activity and 

respiration rate to evaluate the impact of task demand and learning and found that the 

sustained response to task demand was characterized by a reduction of 

parasympathetic inhibition (reduced vagal tone and increased heart rate), reduced eye 

blink duration. In another study, Wilson (2002) evaluated in a flight experimental 

scenario, ten pilots who were required to fly a 90-minute to test the reliability of 

psychophysiological measures of workload. Each pilot performed the same scenario 

twice to assess the test-retest reliability of the measures. Cardiac, electrodermal and 

electrical brain activity measures were highly correlated and exhibited changes in 

response to the demands of the flights. Wilson found that HR was more sensitive to 

the workload level than heart rate variability. Therefore, the majority of previous 
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researches consistently demonstrate that the increased workload leads to increased 

HR. 

Heart Rate Variability (HRV): Several studies investigated the relationship between 

HRV and mental workload. It was demonstrated that HRV is sensitively decreased 

with increased mental demands in a binary choice task (Backs and Seljos, 1994; Lee 

and Park, 1990; Mehler et al., 2009). For instance, Lee and Park showed that both 

increased physical load and mental load could lead to decreased HRV. Brookhuis and 

De Waard (2001) stated that HRV shows sensitivity to computational effort but not to 

compensatory effort, while HR has generally been sensitive to both. As reported by 

Miller (2001), in laboratory studies, HRV has consistently responded to changes from 

rest to task conditions and to a range of between-task manipulations (Aasman et al., 

1987; Sirevaag et al., 1987). In the experimental contexts, especially in flight-related 

studies, HRV increases as an indicator of the extent of task engagement in information 

processing requiring significant mental effort (Kramer, 1990; Sirevaag et al., 1987; 

Wilson and Eggemeier, 1991). HRV has been reported to respond rapidly to changes 

in operator workload and strategies, usually within seconds (Aasman et al., 1987; 

Coles and Sirevaag, 1987). Thus, HRV has been able to detect rapid transient shifts in 

mental workload (Kramer, 1990). 

2.7 Brain Computer Interfaces (BCIs) 

A BCI is a communication system in which messages or commands that an individual 

sends to the external world do not pass through the brain’s normal output pathways of 

peripheral nerves and muscles (Figure 2.11). For example, in an EEG-based BCI the 
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messages are encoded in EEG activity. A BCI provides its user with an alternative 

method for acting on the world (Wolpaw et al., 2002). More recently, Wolpaw and 

Wolpaw (2012) defined a Brain-Computer Interface as “a system that measures CNS 

activity and converts it into artificial output that replaces, restores, enhances, 

supplements, or improves natural CNS output and thereby changes the ongoing 

interactions between the CNS and its external or internal environment”. In particular, 

the electroencephalography (EEG) is the most commonly used technique to realize a 

BCI system, because the high temporal resolution and the portability, compared to 

other neuroimaging techniques (fMRI, MEG, etc.). A first categorization of the BCI 

systems can be made according to the invasiveness of the system. The invasive BCI 

systems are based on the use of electrodes implanted in the cerebral cortex of the user, 

which allow to obtain a high signal (control feature ) to noise (basic EEG) ratio. On 

the contrary, the non-invasive systems use the surface electrodes.  
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Figure 2.11: Basic design and operation of any BCI system. Signals from the 

brain are acquired by electrodes on the scalp or in the head and processed to extract 

specific signal features (e.g. amplitudes of evoked potentials or sensorimotor cortex 

rhythms, firing rates of cortical neurons) that reflect the user’s intent. These features 

are translated into commands that operate a device (e.g. a simple word processing 

program, a wheelchair, or a neuroprosthesis). 

Regarding the non-invasive BCI, a second categorization is referred to the EEG 

feature used for act the control. Present-day BCIs fall into 4 groups: slow cortical 

potentials, SSVEP, P300 evoked potentials and EEG rhythms based BCIs. 
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Slow Cortical Potentials based BCIs: Among the lowest frequency features of the 

scalp-recorded EEG are slow voltage changes generated in cortex. These potential 

shifts occur over 0.5–10.0 s and are called slow cortical potentials (SCPs). Negative 

SCPs are typically associated with movement and other functions involving cortical 

activation, while positive SCPs are usually associated with reduced cortical activation 

(Rockstroh et al., 1993; Birbaumer, 1997). In studies over more than 30 years, 

Birbaumer and his colleagues have shown that people can learn to control SCPs and 

thereby control movement of an object on a computer screen (Elbert et al., 1980, 

Birbaumer et al., 1999, 2000). This demonstration is the basis for a BCI referred to as 

a ‘thought translation device’ (TTD). The principal emphasis has been on developing 

clinical application of this BCI system. It has been tested extensively in people with 

late-stage ALS and has proved able to supply basic communication capability (Kübler 

et al., 2001). 

SSVEP based BCIs: It has long been established that any stimulus in the visual field 

that flickers at a specific frequency can cause neurons in visual areas to fire at the 

same frequency. These neural oscillations are called SSVEPs, also known as Steady 

State Visual Evoked Responses or SSVERs (Regan 1966). This effect is enhanced by 

attending to the flickering stimulus (Galloway 1990; Müller and Hillyard 2000). This 

suggests that users can indicate their interest in specific stimuli by choosing to attend 

or ignore it, thus providing the basis for a BCI (Ding et al. 2006). 

P300 ERPs based BCIs: Infrequent or particularly significant auditory, visual, or 

somatosensory stimuli, when interspersed with frequent or routine stimuli, typically 

evoke in the EEG over parietal cortex a positive peak at about 300 ms (Walter et al., 
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1964; Sutton et al., 1965). Donchin and his colleagues have used this ‘P300’, or 

‘oddball’ response to act BCI (Farwell and Donchin, 1988; Donchin et al., 2000). The 

most widespread approach of P300-based BCIs relies on the ‘P300 speller’ (P300 

Speller) paradigm, proposed by Farwell and Donchin (1988). The subject can choose 

among 36 alphanumeric characters, arranged in a 6 by 6 matrix. The stimulation 

entails the random intensification of the rows and columns on a computer screen. 

During this stimulation, the subject is required to focus his attention on the character 

(target) that he intends to select (for instance, mentally counting the occurrences of the 

target stimulus). The intensification of the target elicits a P300 potential, which is not 

detected when other characters (non-targets) are presented (Figure 2.12). 
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Figure 2.12: P300 Speller  matrix interface 

EEG rhythms based BCIs: In awake people, primary sensory or motor cortical areas 

often display 8–12 Hz EEG activity when they are not engaged in processing sensory 

input or producing motor output (Kozelka and Pedley, 1990). This idling activity, 

called mu rhythm when focused over somatosensory or motor cortex and visual alpha 

rhythm when focused over visual cortex, is thought to be produced by thalamocortical 

circuits (Lopes da Silva, 1991). Several factors suggest that mu rhythms could be good 

signal features for EEG-based communication. They are associated with those cortical 

areas most directly connected to the brain’s normal motor output channels. Movement 

or preparation for movement is typically accompanied by a decrease in mu and beta 

rhythms, particularly contralateral to the movement. This decrease has been labeled 

‘event-related desynchronization’ or ERD (Pfurtscheller and Lopes da Silva, 1999; 

Pfurtscheller, 1999). Its opposite, rhythm increase, or ‘event-related synchronization’ 

(ERS) occurs after movement and with relaxation (Pfurtscheller, 1999). Furthermore, 

and most relevant for BCI use, ERD and ERS do not require actual movement, they 

occur also with motor imagery (i.e. imagined movement) (Holmes, 2002; McFarland 

et al., 2000). This kind of BCI was also widely used for the neurorehabilitation of 

post-stroke patients (Pichiorri et al., 2011).  

At the state of the art, the BCI systems still suffer of a very low bit-rate in comparison 

with other types of communication systems (e.g., eye-tracker, keyboards, voice 

recognition). For this reason, potentially they constitute a functional support for people 

with severe motor disabilities (e.g., stroke, amyotrophic lateral sclerosis). Recently in 

the BCI community, has emerged the possibility of using the BCI systems in different 



Mental states monitoring through passive brain-computer interface systems 

46 

 

contexts from communication and control, developing applications that also involve 

healthy subjects (Zander et al., 2009; Mueller et al., 2008 Blankertz et al. 2011). In 

particular, the classic meaning of BCI, in which the user is to modulate voluntarily its 

brain activity to communicate its intention to the system was changed, but rather, it is 

the system itself to recognize the spontaneous activity of the user (not modulated by 

voluntary control) related to the current mental state (e.g., emotional state, workload, 

attentional levels), and to monitor and use these information to improve the human-

machine interaction. In this regard, Zander and colleagues (2011) proposed a 

categorization of BCI systems, dividing applications based on BCI technology into 

active, reactive and passive BCI systems. 

 Active BCI. An active BCI is one that derives its outputs from brain activity 

which is directly and consciously controlled by the user, independent of 

external events, for controlling an application. 

 Reactive BCI. A reactive BCI is one that derives its outputs from brain activity 

arising in reaction to external stimulation, which is indirectly modulated by the 

user for controlling an application. 

 Passive BCI. A passive BCI is one that derives its outputs from arbitrary brain 

activity arising without the purpose of voluntary control, for enriching a 

human–machine interaction with implicit information on the actual user state. 

2.7.1 Passive Brain Computer Interfaces 

A recent direction within the research field of BCI attempts to broaden the general BCI 

approach by substituting the user’s command with passively conveyed implicit 
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information (Zander et al., 2010; Zander and Kothe, 2011). Such a passive BCI 

derives its outputs from arbitrary brain activity arising without the purpose of 

voluntary control, for enriching a human-machine interaction with implicit 

information on the user state. Systems based on passive BCI can provide information 

about covert aspects of the user state, i.e. task-induced states which can only be 

detected with weak reliability using conventional methods such as behavioral 

measures (Zander and Jatzev, 2012). The signals extracted by these BCI techniques 

are then employed to exploit this novel information for improved man–machine 

interaction. This allows to optimize and to enhance human performance, and to 

achieve potentially novel types of skills. Mental state monitoring is of particular 

interest in safety-critical applications where human performance is often the least 

controllable factor. In this regard, there are many examples in which a passive BCI 

could be useful. For example, BCI technology can reveal valuable information about 

the user state in safety-critical applications, such as driving (Welke et al., 2009; 

Borghini et al., 2012), industrial environments or security surveillance. With respect to 

driving assistance applications, recent studies have explored the use of BCI systems in 

a driving simulation for assessing driving performance and inattentiveness (Schubert 

et al., 2008), as well as for robustly detecting emergency brakes before braking onset 

(Welke et al., 2009). In addition, BCI systems can potentially be used for cognitive 

monitoring in real time the mental workload of operators (Kohlmorgen et al., 2007, 

Aricò et al., 2013, [J 5]). In a different context, initial steps have been taken towards 

assistive technologies that use the current mental state of a user for avoiding accidents 

in industrial environments (Venthur et al., 2010). 
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3 OBJECTIVES 

The main objective of this thesis work is to design and develop a passive Brain 

Computer Interface (BCI) system able to estimate the user's mental state through the 

analysis of neurophysiological signals. Different methodologies to realize a passive 

BCI usable in operative environments have been defined and validated.  

In the following chapters, two main streams regarding the passive BCI systems have 

been taken into account, depending on the EEG characteristics and on the biosignals 

used for assess the mental states of the users.  

 In the first part (section 4), it was analyzed the variations in the morphology of 

the event-related potentials (ERPs) detected using two reactive BCI interfaces 

based on two different attention modalities. Possible correlations between 

variations in ERPs morphology and the current mental state of the user and/or 

BCI performance were investigates. The long-term purpose of this study is to 

use these physiological indexes in a closed loop, in order to automatically 

adapt the reactive BCI interfaces to the current users’ mental states [J 1; J 6; J 

7; J 10; C 3; C 7; C 24; C 28].  

 In the second part (section 5), a passive BCI system able to estimate online the 

mental workload of the user, by using the combination of several biosignals 

(EEG rhythms and the ECG signals) has been proposed. The long-term 
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purpose of this study is the estimation and the control of the workload level in 

operative environments and under high pressure and stress conditions [J 5]. 



Mental states monitoring through passive brain-computer interface systems 

50 

 

 

4 MORPHOLOGICAL VARIATIONS IN THE ERPS 

(C)OVERT ATTENTION MODALITIES 

4.1 A Covert Attention P300-based Brain-Computer 

Interface: GeoSpell 

4.1.1 Introduction 

People who suffer from neurodegenerative diseases, such as amyotrophic lateral 

sclerosis (ALS), experience a progressive loss of motor abilities. In their advanced 

stages, these pathologies can even affect the control of eye movement (complete 

locked-in syndrome). The application of brain-computer interfaces (BCIs) as 

communication aids for these patients has prompted the recent growing interest in new 

and more effective paradigms of gaze-independent stimulation. 

A BCI is a communication system in which messages and commands that a user 

wishes to send to the environment are not conveyed through the normal output 

channels of the central nervous system, such as peripheral nerves and muscles 

(Wolpaw et al. 2002); instead, the user’s intention is detected directly, based on the 

(electrical) activity of the brain, and translated into messages and actions. One of the 

most commonly used brain signals that are used to operate non invasive 

electroencephalogram (EEG)-based BCIs is the P300 event-related potential (ERP, 
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Donchin and Smith 1970). P300 is a positive deflection of a subject’s EEG potentials, 

occurring 250–400 ms after delivery of a rare or task-relevant stimulus (target), within 

a train of frequent or non relevant stimuli (nontarget) (Fabiani et al. 1987, Polich and 

Kok 1995).  

The largest hurdle that is impeding the practical application of BCIs in assistive 

solutions for persons with disabilities is the need to improve this technology from 

laboratory prototypes to devices that can be used in the user's environment. As opined 

by Riccio et al. (2011), the need for this translation has necessitated an evaluation of 

the system's usability, among other metrics. 

4.1.1.1 P300 Speller interface 

The most widespread approach of P300-based BCIs relies on the “P300 speller” 

(P3Speller) paradigm, proposed by Farwell and Donchin (1988). The subject can 

choose among 36 alphanumeric characters, arranged in a 6 by 6 matrix. The 

stimulation entails the random intensification of the rows and columns on a computer 

screen. 

During this stimulation, the subject is required to focus his attention on the character 

(target) that he intends to select (for instance, mentally counting the occurrences of the 

target stimulus). The intensification of the target elicits a P300 potential, which is not 

detected when other characters (nontargets) are intensified. Further, VEPs are relevant 

features for the P3Speller in the classification process (Krusienski et al. 2008, Sellers 

et al. 2006). In the P3Speller interface, stimuli have different spatial positions, 

allowing the subjects to gaze at the target letter and wait for its intensification, keeping 
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nontarget letters at the periphery of the visual field. Higher VEPs are thus elicited by 

stimuli versus nontargets. 

In studies on selective attention, 2 conditions are defined, wherein the subject can 

focus his attention on a specific target of the visual field overt and covert attention (de 

Haan et al. 2008). The former relates to the condition in which the subject turns his 

gaze toward the target, whereas in the latter condition, he focuses his attention on the 

target without gazing at it directly.  

Recently, Brunner et al. (2010) evaluated the performance of 15 healthy subjects using 

the P300 speller interface in overt and covert states that distinguished the ‘letter’ and 

‘center’ conditions, respectively. In the former, the subjects gazed at the intended 

letter (overt condition), and in the latter, the subjects gazed at a fixation cross in the 

center of a screen, paying attention to the target item (covert condition). Due to the 

consistent decrease in accuracy under the covert attention conditions, the authors 

concluded that the performance of the P300 speller depends on gazing. This 

conclusion has paramount relevance when P300-based BCIs are proposed as 

communication aids for completely locked-in people.  

This issue was addressed by Treder and Blankertz (2010), who developed the ERP-

based Hex-o-Spell, a 2-level speller that comprises 6 discs that are arranged on the 

vertices of an invisible hexagon, allowing subjects to focus their attention on the 

stimulation without moving their eyes. The authors compared this new speller with the 

classical matrix approach, using the interfaces under overt and covert conditions, 

evaluating their performance and the elicited potential waveforms of 13 healthy 

subjects. They noted that the Hex-o-Spell increased accuracy compared with the P300 
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speller under covert attention conditions, but insufficiently high (approximately 60%) 

to consider the interface an effective communication channel (Kübler and Birbaumer 

2008). 

In a subsequent study, the same authors improved the interface by introducing 3 

alternative gaze-independent spellers, wherein each group of letters was associated 

with a different color. Using this color code, the recognition accuracy exceeded 90% 

on average (Treder et al. 2011). However, to be effective, the proposed approach 

requires the subject to remember the color coding. Although this paradigm is effective 

for a speller interface in which the number and positions of characters are fixed a 

priori, it might fail to have sufficient flexibility in other contexts. This approach 

cannot be extended to paradigms in which the number of items on the interface 

changes dynamically, such as in Aloise et al. (2009).  

Further, Liu et al. (2010) proposed 2 gaze-independent brain-computer speller 

approaches, using the covert visual search task. With their system, subjects achieved 

an accuracy that was comparable with the classical Farwell and Donchin speller (95% 

on average). However, these results were obtained using a stimulus onset asynchrony 

(SOA) of 400 ms, which is significantly longer than the conventional time that is used 

for other P300-based BCIs (eg, 160–250 ms in Allison and Pineda 2006 and Treder et 

al. 2010) negatively affecting the written symbol rate (WSR, Furdea et al. 2009, Liu et 

al. 2010). 

The usability of BCIs has seldom been evaluated. Two studies (Riccio et al. 2012 and 

Zickler et al. 2011) compared the performance of the 2 P300-based BCI systems with 

regard to: 
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i) effectiveness, defined as the accuracy and wholeness with which users 

accomplished the tasks;  

ii) efficiency, the measure of the amount of human, economic, and temporal 

resources that are expended in attaining the required level of product 

effectiveness; and  

iii) satisfaction, a measure of the immediate and the long-term comfort and 

acceptability of the overall system. 

The efficiency was tested in terms of accuracy and WSR; the efficiency was assessed 

in terms of workload (Hart and Staveland 1988), using the NASA Task Load Index 

(TLX) workload assessment; and overall device satisfaction was scored on a visual 

analogue scale (VAS), ranging from 0 (not at all satisfied) to 10 (absolutely satisfied). 

The purpose of this study was to introduce and evaluate a novel P300-based speller 

interface, GeoSpell (Geometric Speller), which was designed for operation under 

covert attention conditions, even in protocols that contemplate a dynamically variable 

number of stimulus classes. We compared GeoSpell with the classical P300 speller 

(P3Speller) under overt attention conditions in terms of performance (accuracy and 

WSR) and usability (ISO 9241-210). 
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Figure 4.1: (a) The proposed GeoSpell (Geometric Speller) BCI. Each group 

contains 6 alphanumeric items that are presented in a random sequence in the center of 

a screen. (b) Group organization. Each group contains the characters of one row or one 

column of a matrix; thus, the new interface maintains a similar approach as the row-

by-column P300 Speller for the stimulation, but it can be used under covert attention 

conditions. 

4.1.2 Methods and Materials 

4.2.1.1 GeoSpell interface 

In the GeoSpell interface, characters are organized per the same logic as an N by N 

matrix of a P3Speller: a total of N2 characters are grouped into 2N sets of N characters 

(analogous to rows and columns of a P3Speller). In this arrangement, each character 

belongs to exactly 2 sets. In the visual layout of each set, characters are displayed at 

the vertices of a regular geometric figure. 

During the presentation, each set of characters is displayed transiently on the screen. 

Notably, each character is displayed at the same position for each of the 2 sets to 

which it belongs. All 2N sets are displayed in a pseudorandom sequence that is 

repeated several times in a trial (Figure 4.1). A fixation point is placed in its center to 

help the subject avoid eye movements. Classification of the attended character can be 

performed at the end of each sequence. As in the P3Speller, the selection of a 

character is given by the intersection of the 2 most likely selected sets.  



Mental states monitoring through passive brain-computer interface systems 

57 

 

The angular distance between the fixation cross and each character in the group was 

fixed; the subject sat 1 meter from a 17" LCD monitor, and the distance between the 

cross and letters was 2.64 cm, yielding a 0.90° angle. The visual angle that was 

subtended by the subject’s eyes did not exceed 1°, allowing stimuli to fall within the 

subject’s fovea (Sutter 1992). While we assembled the sets of characters, we ensure 

that the numbers of white pixels in each layout were comparable (mean 3274.33 

pixels; SD = 2.93%) to minimize the differences between the visual evoked potentials 

(VEPs) that were elicited by each set, preventing any influence on the system’s 

accuracy. This approach was conducted in order to avoid an unbalanced contribution 

of the VEP elicited by target and nontarget stimuli. 

4.2.2.1 Experimental protocol 

Ten healthy subjects (6 males, 4 females, mean age = 26.82, SD = 4.21) with previous 

experience with P300-based BCIs were recruited. Scalp EEG potentials were 

measured using 16 Ag/AgCl electrodes that covered the left, right, and central scalp 

(Fz, FCz, Cz, CPz, Pz, Oz, F3, F4, C3, C4, CP3, CP4, P3, P4, PO7, PO8) per the 10-

10 standard (Jurcak et al. 2007), arranged on an elastic cap (Electro-Cap International, 

Inc.). Each electrode was referenced to the linked earlobes and grounded to the right 

mastoid. The EEG was acquired using a g.USBamp amplifier (g.Tec, Austria), 

digitized at 256 Hz, high pass- and low pass-filtered with cutoff frequencies of 0.1 Hz 

and 20 Hz, respectively. The electrode impedance did not exceed 10 kΩ. Visual 

stimulation, acquisition, and online classification were performed with BCI2000 

(Schalk et al. 2004) using a stimulus presentation that was modified for this study. 
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During the recording sessions, eye movements were monitored on an eye tracker 

system with 0.5° spatial resolution. The system comprised an infrared light camera 

(iSlim 320, Genius corp., Taipei, Taiwan) that was managed by the open-source 

program ITU GazeTracker (San Agustin et al. 2010). Eye gaze coordinates (in pixels) 

were sent via UDP protocol to the BCI2000 program, which stored them, keeping the 

temporal correspondence with the EEG data and stimulation markers. This step 

allowed us to quantify ocular movements and eye blinks and correlate them with the 

stimuli during an offline analysis. The eye tracker system was mounted on a chinrest, 

on which the subject placed his head during the recording session to avoid head 

movements. 

The experimental protocol consisted of 5 recording sessions, during which we 

compared the P300 speller and GeoSpell interfaces with regard to reaction times, lost 

targets, ERP components, and usability (effectiveness, efficiency and satisfaction). 

Before describing the experimental protocol in detail, we introduce terms that will be 

used below. 

 Stimulation sequence: a series of presentations of all 2N stimuli (character 

sets), each stimulus being presented once; 

 Trial: a series of contiguous stimulation sequences during which the target is 

unchanged; 

 Run: a series of trials that entail the continuous acquisition of data; 

 Session: a series of one or more runs, acquired without removing the electrode 

cap (different sessions typically take place on different days).In the GeoSpell 
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Training sessions 

As discussed, each participant in the protocol had previous experience with the 

P3Speller interface. To avoid any bias due to greater familiarity with the classical 

interface, each subject participated in 4-6 training sessions to become accustomed to 

the GeoSpell interface, before the actual data were collected. Each training session 

consisted of 9 runs of 6 trials. The system prompted the target character at the 

beginning of each trial. Eight stimulation sequences were presented per trial; thus, 

each item was presented 16 times. No EEG data were acquired during these sessions, 

but subjects were instructed to attend the stimulation and push a button when they 

recognized the target character. New training sessions were scheduled for each subject 

until the number of missed targets stabilized. 

Offline sessions 

The offline sessions were categorized as Reaction Time and Copy Mode.  

 Reaction Time sessions (RT): These sessions were used to evaluate the 

response times, and no EEG data were acquired; the subject was required to 

attend the simulation and push a button each time a target stimulus appeared. 

The data acquired in these sessions were used to compare the subjects’ reaction 

times and relative missed targets using the P300 Speller in overt attention and 

the GeoSpell in covert attention. 

 Copy Mode sessions (CM): During these 2 sessions, subjects were required to 

pay attention to target stimuli. The EEG signal was acquired, but no feedback 

regarding the classification results was provided to the subjects. The data from 
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these sessions were used to evaluate the subjects’ ERP components (amplitude 

and latency of the P100, N100, P200, N200, and P300 potentials) and the 

offline accuracy of the classifier. 

Offline sessions were composed of 6 runs of 6 trials. The targets of each run formed 

random 6-character words (“AX6L1O”, “TVM3CH”, “2EWY_8”, “BJZN7G”, 

“DR5K9Q”, and “FU4SPI”). The characters in a word were chosen to encompass all 

possible positions through the sets of characters. At the end of a session, each 

character of the interface was prompted as the target exactly once. The Reaction Time 

and Copy Mode sessions were alternated (RT-CM-RT-CM); each pair of RT and CM 

sessions shared the same target word. 

During each session, the subject performed 3 runs with each of the stimulation 

interfaces. At the beginning of each trial, before the stimulation began, the system 

prompted the subject with the character that he had to attend. The target prompt 

appeared during a 2-second pretrial interval. The target appeared in the same position 

as in the following stimulation to allow the subject to focus his spatial attention before 

the trial started.  

A trial consisted of 8 stimulation sequences and, thus, 16 intensifications of the target 

character. Each stimulus was intensified for 125 ms, with an inter stimulus interval 

(ISI) of 125 ms, yielding a 250 ms lag between the appearance of 2 stimuli (SOA). To 

avoid the attentional blink phenomenon, which occurs when the target-to-target 

interval (TTI) is shorter than 500ms (Raymond et al. 1992), pseudorandom stimulation 

sequences were assembled so that each target intensification would not occur within 
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500 ms after the previous one. The same parameters were set for the GeoSpell and 

P3Speller.  

In the offline analysis, the EEG signal was segmented into overlapping epochs that 

lasted 800 ms, starting at the onset of each stimulus. The classification was performed 

by 3-fold cross validation, exploring all permutations of the training (2 runs) and 

testing (1 run) datasets for each interface. A series of 8 classification scores were 

obtained per cross validation fold, including only data that belonged to the first i 

sequences of each trial in the datasets, thus simulating various trial durations. 

Differences in the amplitudes of ERPs that were elicited by the stimulus types (target 

vs nontarget) were quantified using the coefficient of determination (R2). R2 values 

range from 0 to 1, wherein higher values correspond to larger explained variances (and 

thus separability of classes). A signed R2 index was derived by multiplying R2 by the 

sign of the slope of the corresponding linear model, which was positive when the 

amplitudes of the ERPs that were elicited by the target stimuli were higher than by 

nontargets, and vice versa. 

Online session 

The last session (online) compared the online performance of the GeoSpell and 

P3Speller. Data from the previous copy mode sessions of each subject constituted a 

training set that was to calibrate the classifier in the online session. Stepwise linear 

discriminant analysis (SWLDA) was used to select the most relevant features and 

estimate the weights of the linear classifier that was used to discriminate target and 

nontarget stimuli from the EEG data (Krusienski et al. 2006).  
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During the pretrial interval (6 s), the subject was prompted with a target character, 

which appeared in the same position on the screen as in the subsequent stimulation. 

The target appeared as a static intensification in the P3Speller interface, whereas in 

GeoSpell (in which only 6 characters can be shown simultaneously), 2 sequences of 

stimulation (ie, 4 target intensifications) were used. We chose 2 Italian words to be 

spelled in the run, which required subjects to select characters in different positions, 

for both interfaces (same as targets in the offline sessions): “ENFASI” (“emphasis”) 

and “NAPOLI” (“Naples”). The following 8 stimulation sequences were used to 

acquire EEG data for the online classification. At the end of each trial, the 

classification results were feedback to the subjects.  

During the online session, subjects performed 4 runs with each stimulation interface. 

4.2.3.1 Written Symbol Rate (WSR) 

To compare performance of the GeoSpell and P3Speller, we used the written symbol 

rate index (WSR, symbols/min, Furdea et al. 2009). Compared with the bit rate and 

information transfer rate index (McFarland and Wolpaw 2003), WSR accounts for 

corrections in erroneously selected letters; thus, it estimates the number of symbols 

that a subject spells correctly in a unit of time more accurately. 

For the WSR evaluation, the target prediction accuracy was assessed by leave-one-

word-out (LOWO) cross validation, considering the entire dataset for the offline and 

online sessions (Liu et al. 2010). Thus, the target stimuli of one run were tested by the 

classifier that was trained on the targets that were related to the remaining runs, 
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exploring all possible combinations, and the LOWO accuracy was computed as the 

average value at each stimulation sequence. 

4.2.4.1 NASA-Task Load Index (TLX) and Visual Analogue Scale (VAS) 

Workload has a direct effect on the usability of a software interface. If fewer mental 

resources are requested, the efficiency is higher, and the effectiveness and satisfaction 

that are associated with the interface also increase. Users’ subjective workload for 

both interfaces was assessed with the NASA-TLX index (Hart and Staveland 1988). 

NASA-TLX measures the workload by considering 6 factors: mental, physical, and 

temporal demands; frustration; effort; and performance.  

During each session, after runs with a specific interface, subjects were asked to 

complete the NASA-TLX. Participants were asked to rate subjective workload for 

each dimension on bipolar scales, scored from 0 to 100. The 6 subscales were then 

combined into 14 pairs, and for each pair of scales, the subjects were asked to indicate 

identify the factor that contributed more to their workload. A weighted average 

technique was used to compute an overall measure of workload (between 0 and 100) 

and the relative contribution of each subscale.  

We evaluated user satisfaction with each interface (GeoSpell and P3Speller). At the 

end of the GeoSpell- or P3Speller-related runs, subjects were asked to provide a 

satisfaction score by visual analogue scale (VAS), ranging from 0 (not at all satisfied) 

to 10 (absolutely satisfied).  

At the end of each session, users were asked to express their preference between the 

interfaces, marking their choice on a continuous line, ranging from -5 to 5. A score of 
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0 denoted no preference between the 2 interfaces, whereas -5 and 5 corresponded to a 

strong preference for the P3Speller and Geospell interface, respectively. Two labels 

that indicated the 2 interfaces were placed at the extremities of the VAS. 

4.1.3 Results 

4.3.1.1 Reaction times and Missed targets 

We compared the subjects’ reaction times and the relative missed targets that were 

detected during the 2 reaction time sessions using the P300 Speller and GeoSpell. To 

analyze the differences between the 2 interfaces, we used two-way repeated measures 

ANOVA (confidential interval = .95) with interfaces and sessions as factors. 

Mean reaction times in the GeoSpell test (Session 1: 454.63 ± 42.80 ms; Session 2: 

452.74 ± 30.51 ms) differed (Session 1: F = 21.848, p = .00019; Session 2: F = 48.408, 

p = .000002) from those using the P3Speller (Session 1: 372.14 ± 35.81 ms; Session 2: 

361.39 ± 28.17 ms). The number of missed targets increased (Session 1: F = 4.599, p = 

.004589; Session 2: F = 13.702, p = .00163) with the GeoSpell (Session 1: 3.09 ± 

3.34%; Session 2: 3.89 ± 2.31%) versus P3Speller (Session 1: 0.76 ± 0.78%; Session 

2: 1 ± 0.84%). 

4.3.2.1 Offline BCI accuracy 

Whitney-Mann-Wilcoxon test (α = .05/nr, where nr = 8 stimulation sequences - 

Bonferroni correction) was used to compare the accuracy of the 2 interfaces for each 

number of the stimulation sequences. We observed statistically significant differences 

in the fifth stimulation sequence in copy mode session 1 (z = 2.97, p = 0.003) and in 
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the second (z = 2.77, p = 0.006) and third (z = 2.82, p = 0.005) stimulation sequences 

in copy mode session 2. Figure 4.2a and 4.2b show the offline accuracy of both 

interfaces in the 2 copy mode sessions. We also noted differences in the fifth 

stimulation sequence in session 1 and in the second and third sequences in session 2. 
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Figure 4.2: (a,b) Mean accuracy and standard deviation of subjects’ 

performance for each interface and for each copy mode session. Asterisks denote that 

the 2 distributions are statistically different (p < .05/8, Bonferroni-corrected). (c) 

Online classification accuracy for each subject and interface. The subjects’ SD values 

denote the interrun variability, and the SD of the average value is related to the 

intersubject variability. 

4.3.3.1 Target/Nontarget stimulus-related potentials 

Data from the copy mode sessions were used to assess differences in amplitudes and 

latencies of the potentials between the 2 interfaces. In addition to the P300 and N200 

components, we considered the contributions from P100, N100, and P200. The grand 

averages of the waveforms on the best channel set for discriminating target versus 

nontarget evoked ERPs for all subjects (Fz, Cz, Pz, Oz, P3, P4, PO7, PO8, Krusienski 

et al. 2006) are shown in Figure 4.3. 

For the P300 and N200 components, the peak amplitudes and latencies (related to the 

target stimuli) were determined for each subject by selecting the largest positive or 

negative peak on channels Fz, Cz and Pz (Krusienski et al. 2008). The intervals were 
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selected using the grand average of the EEG signals of all subjects for the 2 interfaces. 

Three-way repeated measures ANOVA (confidential interval = .95) was used to 

analyze the differences, with interfaces, channels and amplitude/latency as factors.  

Overall, there were significant differences in N200 and P300 amplitude and latency 

for between interfaces (Amplitude: [Fz-N200] Interface, F(1.16) =.00676 p = .936; 

[Fz-P300] Interface, F(1.16) = 2.7346 p = .118 ; [Cz-N200] Interface, F(1.16) =.196 p 

= .664; [Cz-P300] Interface, F(1.16) = 4.757 p = .044; [Pz-N200] Interface, F(1.16) 

=.002 p = .966; [Pz-P300] Interface, F(1.16) =5.77 p = .0287); (Latency: [Fz-N200] 

Interface, F(1.16) = 25.698 p = .00011 ; [Fz-P300] Interface, F(1.16) = 33.18 p = 

.00003; [Cz-N200] Interface, F(1.16) = 25.853 p = .00011 ; [Cz-P300] Interface, 

F(1.16) = 41.773 p = .00001; [Pz-N200] Interface, F(1.16) = 33.279 p = .00003 ; [Pz-

P300] Interface, F(1.16) = 45.131 p = .00001) (see Figure 4.3).  

The respective contributions to classification of the VEPs using the 2 interfaces were 

determined by two way repeated measures ANOVA (confidential interval = .95) using 

interface (GeoSpell and P3Speller) and channels (Oz, P3, P4, PO7 and PO8) as factors 

and the signed-R2 of the 2 distributions (target and nontarget) of potentials in the first 

200 ms of the epoch  as dependent variable. 

The contribution of the VEPs to the classification stage using the GeoSpell interface 

was significantly lower (p < .05) compared with that of the P3Speller one ([Oz-VEP] 

Interface, F(1.104) = 44.254, p ~ 0; ([P3-VEP] Interface, F(1.104) = 89.922, p ~ 0; 

([P4-VEP] Interface, F(1.104) = 74.109, p ~ 0; ([PO7-VEP] Interface, F(1.104) = 

25.083, p ~ 0; ([PO8-VEP] Interface, F(1.104) = 30.102, p ~ 0). 
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Figure 4.3: Grand average of all subjects’ waveforms on channels Fz, Cz, Pz, Oz, 

P3, P4, PO7, and PO8. The EEG signal was reorganized in overlapping epochs lasting 

800 ms and following the onset of each stimulus; figure shows the potentials related to 

the target and nontarget stimuli for each interface in the 2 Copy Mode sessions. 

Two-sample t-test (α = .05/nr, where nr = 3 intervals x 5 electrodes = 15, Bonferroni 

corrected) of the R2 values that were evaluated with regard to the difference between 

the 2 target and nontarget classes, in terms of amplitude of elicited waveforms for each 
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subject, was used to analyze differences between the contribution of the N100, P100, 

and P200 components using GeoSpell and P3Speller. We considered the occipital and 

the parietal-occipital sites as test channels (ie, Oz, P3, P4, PO7 and PO8) (Krusienski 

et al. 2008) (Table 4.1) 

Table 4.1: t and p values (in red: p < α) of the two-sample t-test (α = .05/15, 

Bonferroni-corrected) for each subject and channel (Oz, P3, P4, PO7, PO8), performed 

on the signed R2 values of the amplitudes of the elicited waveforms, using the stimulus 

type (target vs. nontarget) as the independent variable, between the two interfaces 

(GeoSpell and P3Speller). Analysis was performed on data acquired in the 2 copy 

mode sessions. 

 

t-test  

(α = .05/15) 

Oz P3 P4 PO7 PO8 

p t p t p t p t p t 

Subj 1 2.1×10-5 -4.48 2.1×10-5 -4.48 0.13 -1.54 9.5×10-4 -3.45 6.0×10-4 -3.56 

Subj 2 5.7×10-6 -4.88 1.58×10-14 -8.98 6.2×10-7 -5.47 1.27×10-9 -6.74 1.3×10-17 -10.45 

Subj 3 4.8×10-3 -2.89 0.0077 -2.73 0.377 -0.89 0.031 -2.20 7.3×10-7 -5.27 

Subj 4 1.00×10-3 -3.40 1.61×10-11 -7.58 1.61×10-9 -6.65 5.2×10-8 -5.94 2.8×10-8 -6.02 

Subj 5 4.0×10-6 -4.88 0.32 -1 0.0017 -3.22 0.07 -1.82 5.1×10-6 -4.84 

Subj 6 3.9×10-5 -4.32 1.21×10-14 -9 1.09×10-14 -9.17 5.2×10-5 -4.22 7.7×10-10 -6.78 

Subj 7 1.90×10-9 -6.66 1.93×10-8 -6.13 8.4×10-10 -6.76 4.8×10-10 -6.88 1.6×10-6 -5.12 

Subj 8 0.052 -1.96 0.0078 -2.71 1.7×10-5 -4.52 9.3×10-14 -8.59 3.0×10-16 -9.89 

Subj 9 4.4×10-4 -3.63 4.2×10-5 -4.28 3.5×10-7 -5.52 0.19 -1.32 0.06 -1.87 

Subj 10 1.09×10-5 -4.69 5.7×10-9 -6.39 6.0×10-5 -4.19 2.9×10-9 -6.50 3.1×10-7 -5.56 

  

4.3.4.1 Online BCI accuracy 

The accuracy in the online session for each subject and the mean accuracy are shown 

in Figure 4.2c. 
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By two-way repeated measures ANOVA, with interfaces and runs as factors (CI = 

.95), we observed a significant difference in accuracy between interfaces (F = 17.388, 

p = .00058). 

The results of the online session confirmed those of the copy mode sessions: the P300 

Speller effected better performance (Mean = 96.17%, SD = 3.68) than GeoSpell 

(Mean = 77.82%, SD = 5.63); the SD value of the accuracy with GeoSpell showed 

greater intersubject variability in performance compared with the P300 Speller. 

4.3.5.1 WSR analysis 

Figure 4.4 shows the target classification accuracies (Figure 4.4a) and the 

corresponding WSRs (Figure 4.4b) for the GeoSpell and P3Speller with regard to the 

LOWO cross validation (error bars – CI = .95). GeoSpell WSR values were lower 

overall compared with the P300 Speller, differing significantly (p < .05) from the 

second to sixth stimulation sequence. This result was confirmed by the LOWO target 

classification accuracies. With GeoSpell, the performance on the first 3 stimulation 

sequences was significantly lower (p < .05) compared with the P300 Speller. WSR 

peaks of 1.86 symbols/min and 3.76 symbols/min in the seventh and the third 

stimulation sequences were achieved with the GeoSpell and P300 Speller, 

respectively. Mean time to select a character was 21 seconds and 9 seconds, 

respectively. Mean LOWO target classification accuracy was 91.6% and 86.3%, 

respectively. 
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Figure 4.4: (a) Mean and confidence intervals (α = 0.05) of the LOWO target 

classification accuracies and (b) the corresponding WSRs for the GeoSpell and the P300 

Speller interfaces, for each stimulation sequence. Labels on the plots indicate the peak 

WSR values and the related system accuracies for the GeoSpell and P300 Speller 

interface. The peak WSR values were, respectively, 1.86 Symbols/min (91.62% of 

accuracy) for the seventh stimulation sequence and 3.76 Symbols/min (86.35% of 

accuracy) for the third stimulation sequence. 

4.3.6.1 Workload and overall device satisfaction analysis 

Two analyses by repeated measures ANOVA (CI = .095) were performed separately 

for the workload scores that were assessed using NASA-TLX and for overall device 
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satisfaction by VAS scale of the online and copy mode sessions, with GeoSpell 

interface and P300 speller interface as independent factors. 

Although the workload scores of the GeoSpell interface (Copy Mode sessions: 

Mean=45.584 SD=16.447; Online session: Mean=45.801 SD=19.009) were higher 

versus the P300 speller interface (Copy Mode sessions: Mean=32.400 SD=21.592; 

Online session: Mean=30.699 SD=21.066), there was no significant difference 

between them in the copy mode (p=.142) or online sessions (p=.109).  

The mean VAS scores with the P300 Speller were higher compared with GeoSpell for 

the copy mode and online sessions (Copy Mode sessions: GeoSpell_VAS=7.2±2.05; 

P300 Speller_VAS=7.94±1.55; Online session: GeoSpell_VAS=7.04±2.17; P300 

Speller_VAS=7.71±1.40), but this difference was not significant (Copy Mode 

sessions: p=.296; Online session: p=.398). 

These results were confirmed by the observation that overall, users did not have a 

preference of interface in the copy mode or online sessions (Copy 

Mode_Preference=0.041; Online Preference=-0.04). 

4.1.4 Discussion 

In this study, a novel P300-based BCI text writer that required no eye gaze was 

developed and validated with regard to effectiveness, efficiency, and satisfaction, 

comparing the P3Speller interface in the overt attention condition and GeoSpell in the 

covert attention condition. We decided to compare the new interface with the 

P3Speller, because the latter is used widely in studies that include end users (Nijboer 

et al. 2010, Aloise et al. 2011). Our analysis of offline accuracy demonstrated that 
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despite the lower accuracy with the GeoSpell versus the P3Speller for the first 

stimulation sequences, the performance of the 2 interfaces was comparable when the 

number of stimulation sequences increased. 

In addition, we demonstrated that the stimulation modality of the GeoSpell, in which 

the luminance of all stimuli was matched, allowed us to avoid the contributions of the 

early components of VEPs in the classification process. In contrast, the P3Speller, 

used under overt attention conditions, relied on these components, which depended on 

the subject gazing at the target. This result is consistent with Krusienski et al. (2008), 

who showed that these potentials improve the classification by the P3Speller. Based 

on our data and previous findings, the term “P300-based interface” is an inaccurate 

description of this interface (Treder and Blankertz, 2010). 

To compare the speed of selection of the GeoSpell with the system that was described 

by Liu et al. (2010), we performed a WSR analysis, evaluating the given target 

prediction accuracy by LOWO cross validation using data from both offline sessions. 

Our interface showed a higher peak WSR and related accuracy (WSR = 1.86 

symbols/min; Accuracy = 91.6%) with respect to one of their approaches (WSR = 1.38 

symbols/min; Random Position (RP) Accuracy = 87.8%; Fixed Position (FP) 

Accuracy = 84.1%). In the online session, subjects spelled with an average accuracy of 

77.8%, lower than our study’s offline accuracy and Liu’s online accuracy. These 

differences might be attributed to the choice of the calibration data, which, in our 

online session, were obtained from the previous session rather than from data that 

were acquired on the same day. 
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Due to the GeoSpell’s need for a higher number of stimulation sequences versus the 

P3Speller, the former had lower WSR values, but the performance of the 2 interfaces 

was comparable when the number of stimulation sequences increased. The offline and 

online performance with the GeoSpell interface exceeded 70% the threshold above 

which an interface is defined as efficient with regard to communication (Kübler and 

Birbaumer 2008). 

We observed a significant increase (p < .05) in reaction time and lost targets using the 

GeoSpell versus the P3Speller. Further, by ERP analysis, we noted lower amplitudes 

for the P300 component and longer latency values of the N200 and P300 waveforms 

that were elicited by the GeoSpell stimulation compared with the P3Speller. Allison 

and Pineda (2003) demonstrated that changes in ERP component latency between 

groups and conditions reflect changes in the processing of the stimulus a high P300 

latency often correlates with task difficulty; in particular, P300 latency is directly 

proportional to the task difficulty.  

Our most significant result regards the workload scores that were assessed by NASA-

TLX using the 2 interfaces, which were statistically comparable, demonstrating that 

although the GeoSpell interface requires a higher level of concentration than the 

P3Speller, the user’s workload is not impacted. This finding is an important aspect, as 

it relates to the effective usability of the interface with actual end users (Riccio et al. 

2011). This result was qualitatively confirmed by the users’ preferences, which did not 

differ significantly between the interfaces. 

The above mentioned approach, which highlights the importance of user feedback in 

the evaluation of the usability of a device, spurs us toward a user-centered approach. 
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The needs and feedbacks of end users should be taken into account during the 

development of the system. Considering that potential end users could encounter 

problems, such as fatigue and fluctuations in attention, the usability of the system 

should be improved through an asynchronous approach (Aloise et al. 2011). The 

potential advantages of a new interface should be tested online with potential end 

users. As discussed by Aloise et al. (2011) with patients, an approach that confers 

minor advantages to healthy users could have a robust impact on the end user 

acceptability of the device. 

Eye movements toward the target stimuli that were detected during the EEG recording 

sessions were considered irrelevant for the purposes of this study due to their 

negligible number (~1% of presented target stimuli). Moreover, based on their timing, 

they might be interpreted as involuntary and nontarget-related movements. For this 

reason, we chose not to eliminate trials with eye movements from our analysis. 

Quantitative assessment of the absence of eye movements confirmed the hypothesis 

that users are able to operate GeoSpell under covert attention conditions. 

People with severe motor disabilities, such as those who are locked in by amyotrophic 

lateral sclerosis (ALS), use their remaining resources to communicate with the outside 

world; in general, their control over their eye muscles is maintained, even in the 

advanced stages of the disease, and until it is compromised, they can use  eye tracker 

systems, which have several advantages over the classic P300-based BCI systems (eg, 

P3Speller). Eye movements are detected quicker, more easily, and more accurately 

than ERPs; also, the bit rate of eye tracker systems is higher compared with BCIs eg, 
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an eye tracker-based text writing system has a spelling rate of 10 words per minute 

with unimpaired eye movements (Majaranta et al. 2006).  

Conversely, a BCI system that is operable during covert attention may be the sole 

method of communication for ALS subjects who have lost the ability to control their 

eye movements. 

Thus, the GeoSpell approach is a valid solution of restoring communication for such 

patients; this interface can also be used with impaired eye movement, performing 

above the 70% threshold and handling a workload that is comparable with that of the 

classical Speller matrix.  

The 2 interfaces have been used under disparate conditions of attention; under covert 

attention conditions, the P3Speller causes a decrease in performance (Brunner et al. 

2010), rendering it unsuitable as a “communicative mean” (Kübler and Birbaumer 

2008, Furdea et al. 2009). 
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4.2 Influence of P300 latency jitter over ERPs based BCIs 

performance 

4.2.1 Introduction 

The Farwell and Donchin’s P300 Speller (Farwell and Donchin, 1988) is among the 

most widely validated Brain Computer Interface (BCI) paradigms for communication 

applications. Brunner and colleagues (Brunner et al., 2010) have recently shown that 

the P300 Speller recognition accuracy was significantly decreased if the subject was 

not allowed to gaze at the target stimulus. Several user interfaces designed to be used 

in covert attention modality, (i.e. in the absence of eyes movements) have been 

implemented and tested (Fabio Aloise et al., 2012; Liu et al., 2010; Treder and 

Blankertz, 2010) with the overall result of a lower system performance in covert with 

respect to overt attention usage. The observed superiority in the system performances 

under overt usage modality was mainly ascribed to the contribution of visual evoked 

potential (VEP) components recorded at occipital and parieto-occipital sites (Fabio 

Aloise et al., 2012; Treder and Blankertz, 2010). In this regard, it has been clearly 

demonstrated that short latency VEPs represent relevant features for successful control 

of the P300 Speller interface (Krusienski et al., 2008; Sellers et al., 2006). In fact, in 

the P300 Speller interface the stimuli are arranged in a way that the users can gaze the 

target letter and wait for its intensification while the non-target letters are spatially 

distributed at the periphery of the visual field. Higher amplitudes of these VEP 
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components are elicited by target as compared with non-target stimuli since only the 

former stimuli fall in the foveal part of the retina. Reducing the visual crowding, that 

is similarly as in the covert modality, would greatly affect the VEP component 

amplitude while leaving the P300 component amplitude almost unaffected due to its 

independence from whether the target is foveated or not (Brunner et al., 2010). More 

specifically, in the covert attention-based interfaces there is no spatial difference 

between target and non-target stimuli, thus there is no difference between VEP 

amplitude elicited by target and non-target stimuli.  

Other factors might be also relevant in influencing the classification accuracy of P300-

based BCI paradigms, such as the trial-by-trial stability of latencies of the potentials 

elicited by the visual stimulation (Thompson et al., 2013). Specifically, the P300 is a 

positive deflection of the EEG signal elicited in the process of decision-making 

(Fabiani et al., 1987). The P300 latency and amplitude can be influenced by several 

internal and external factors such as exercise, fatigue (Yagi et al., 1999), age and 

gender (Polich and Kok, 1995). Greater latency variations were also observed when 

the attention is divided between two tasks (Polich, 2007). This phenomenon, known as 

latency jitter, occurs when the lag between each target stimulus onset and the related 

potential peak is not constant for the different stimulus repetitions. Kutas and 

colleagues (Kutas et al., 1977) showed that for a P300 potential elicited by means of 

an odd-ball paradigm, measures of the peak amplitude performed on the averaged 

potential are biased because of the inter-trial variability (i.e. the jitter) of the peak 

latency. In fact, the latency jitter would induce a decrease in P300 amplitude (peak 

height) and a lengthening of the P300 latency window (peak width) (Fjell et al., 2009). 

The inter-trial variability was ascribed to the stimulus evaluation time defined as the 
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amount of time to perceive and categorize the relevant stimulus. A probabilistic 

method to estimate the P300 latency across trials and to realign the P300 potentials in 

order to obtain an unbiased peak amplitude was also proposed in (Kutas et al., 1977). 

In the context of ERP-based BCI paradigms, each stimulus is presented to the subject 

several times (e.g. ten times) and a signal average is performed (e.g. by means of the 

output scores of the classifier) before a classification decision is generated. Thompson 

and colleagues (Thompson et al., 2013) demonstrated that the accuracy achieved with 

the P300 Speller was strongly correlated with the jitter in the P300 latency.  

In this study we addressed the issue of whether the accuracy of BCIs used in covert 

attention modality i) is fully explained by the lack of VEP contribution to the 

classification accuracy and/or ii) is correlated with a lower stability of the P300 

potential elicited in the covert attention with respect to the overt attention modality. 

We hypothesize that i) the jitter would be significantly greater when a specific BCI is 

utilized relying on covert rather than overt visual attention; ii) a negative correlation 

would exist between BCI performance and latency jitter in a wide combination of 

visual interfaces and attention modalities; iii) compensating for the P300 latency jitter 

through an analysis of single trials would significantly improve the performance of a 

BCI classifier. 

To test our hypotheses, we first evaluated the effect of presenting stimuli through a 

given visual interface (i.e. the GeoSpell) in either covert or overt modality. Secondly, 

we evaluated the influence of the P300 latency jitter on the performance of a BCI 

classifier, in a set of 3 different BCI visual interfaces, and tested whether the expected 
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differences could be reduced by pre-processing single trials to compensate for the 

P300 latency jitter. 

4.2.2 Materials and Methods 

4.2.1.2 Data collection 

Subjects were requested to complete a spelling task using a BCI. For this purpose, 

visual stimuli containing 36 alphanumeric characters for the GeoSpell and the P300 

Speller interface, and 2 characters for the Visual Oddball interface, were delivered in 

different arrangements, through three alternative visual interfaces. EEG potentials 

were acquired for offline analysis. The study protocols were approved by the local 

Ethics Committee and all subjects gave their informed consent. 

4.2.2.2 Stimulation interfaces 

P300 Speller. In the first interface ((Farwell and Donchin, 1988), Figure 4.5a, cues are 

organized in a 6 by 6 matrix and each character is always visible on the screen and 

spatially separated from the others. By design, no fixation cue is provided, as the 

subject is expected to gaze the target character. Stimulation consists in the 

intensification of whole lines (rows or columns) of 6 characters.  

GeoSpell. In the second interface (Fabio Aloise et al., 2012, Figure 4.5b only six 

characters at a time are presented at the vertices of a hexagon, at the same angular 

distance (0.9°) from a central foveation point, marked by a fixation cross. Thus, in its 

intended operation, stimuli must be attended by the subject using covert attention only. 

New sets of 6 characters are presented in a sequence, until all 36 have been delivered 
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after 6 intensifications; sequences are designed so that a given character is only 

presented at a specific vertex, which the subject had previously learned by practicing. 

Oddball. A simple Visual Oddball paradigm interface (Figure 4.5c) was also tested 

being a conventional paradigm to elicit P300 potentials. Only two characters (‘O’ and 

‘X’) were successively presented at the same spatial location (corresponding to the 

foveation point), the former being the target ‘rare’ stimulus.  

For all interfaces, the frequency of target stimuli was 16.7% (i.e. 1/6).  

4.2.3.2 BCI settings 

Scalp EEG signals were recorded (g.USBamp, gTec, Austria) from 8 Ag/AgCl 

electrodes (Fz, Cz, Pz, Oz, P3, P4, PO7 and PO8, referenced to the right earlobe and 

grounded to the left mastoid; electrode impedance not exceeding 10 kΩ) according to 

the 10-10 standard (Jurcak et al., 2007) at 256 samples/second. Visual stimulation and 

acquisition were operated by means of the BCI2000 software (Schalk et al., 2004). At 

the beginning of each trial the system suggested to the subject the character to be 

written before the stimulation started. No feedback regarding the classification results 

was provided to the subjects. 

4.2.4.2 Experimental task 

Recordings took place in four sessions (on separate days). In the first two sessions, the 

experimental task was carried out using the GeoSpell interface (see section 4.2.2.2) in 

the overt attention modality, i.e. the fixation cross was removed and subjects were 

allowed to gaze the specific spatial location where the target character was designed to 
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appear during the stimulation sequence, as described in Experiment I. In the third and 

the fourth sessions, the experiment was carried out using the GeoSpell interface in the 

covert attention modality. In these two sessions, further measurements were 

performed, as described in Experiment II. 

Each session consisted of 3 runs for each interface and 6 trials (i.e. characters) per run. 

Subjects were required to spell 6 words (3 words per session) chosen so that the spatial 

position of the target characters covered as much as possible all the positions on the 

screen, using either the GeoSpell and the P300 Speller interfaces; subjects were 

required to spell the sequence “OOOOOO” (all ‘rare’ stimuli) using the Visual 

Oddball interface. This latter sequence was repeated for six runs. Each trial consisted 

of 8 stimulation sequences and corresponded to the selection of a single character 

displayed on the interface. With the term stimulation sequence we refer to a single 

intensification of all the available items. In summary, for each subject and interface we 

collected a total of 576 target stimuli (2 sessions x 3 runs x 6 trials (i.e. characters) x 8 

stimulation sequences x 2 target stimuli (e.g. in the P300 Speller 1 row and 1 column) 

and 2880 non-target stimuli (2 sessions x 3 runs x 6 trials x 8 stimulation sequences x 

10 non-target stimuli (e.g. in the P300 Speller 5 rows and 5 columns)). Each character 

was intensified for 125ms (Stimulus duration), with an Inter Stimulus Interval (ISI) of 

125ms, yielding a 250ms Stimulus Onset Asynchrony (SOA). 

4.2.5.2 Experiment I 

In Experiment I, we preliminarily tested the effect of using the GeoSpell interface in 

either overt or covert attention modalities on the P300 latency jitter. The aim was to 

describe the effects of the attention modality on latency and jitter of P300 regardless of 
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the stimulation interface, and provide the rationale for experiment II. Furthermore, a 

comparison with the P300 Speller and the Visual Oddball interfaces was performed. 

Six healthy subjects (3 females and 3 males, mean age 31±5 years) participated in the 

experiment.  

4.2.6.2 Experiment II 

Experiment II aimed to investigate the influence of the P300 latency jitter on the BCI 

spelling accuracy when each of the visual interfaces described in Section 4.2.2.2 were 

used. According to their original design, the P300 Speller and the Oddball interfaces 

were used in overt attention modality whereas the GeoSpell was tested under the 

covert attention modality. 

Twenty healthy volunteers (14 females and 6 males, mean age 28±5 years) were 

involved in the study including those who participated in Experiment I. All subjects 

had normal or corrected to normal vision. Each of them had previous experience with 

P300-based BCIs and with the interfaces used in this study.  

In the following we will refer to the GeoSpell interface used in covert and overt 

attention modality as Covert GeoSpell and Overt GeoSpell, respectively.  
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Figure 4.5: The three visual interfaces: a) P300 Speller; b) GeoSpell; c) Visual 

Oddball 

4.2.7.2 EEG pre-processing 

The EEG signals were segmented into 800 ms overlapping epochs following the onset 

of each stimulus. 

Two runs of each recording session were considered as training set while the 

remaining run provided the data for the testing set, exploring all possible permutations. 

This procedure was applied in both the waveform and the performance analyses, 

which were based on an offline cross-validation (see below). 
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4.2.8.2 Waveform analysis 

To evaluate the influence of the P300 latency jitter on the classification accuracy, it 

was necessary to reconstruct the P300 potential waveform for each single epoch. To 

this aim, we applied a method described in (Hu et al., 2010), based on the use of a 

wavelet transform to increase the signal to noise ratio (SNR) of the P300 potentials 

recorded during the experimental tasks. Figure 4.6 shows a schematic overview of the 

signal processing procedure applied to estimate the P300 latency jitter. We 

decomposed each single target epoch into its time-frequency representation by 

evaluating the continuous wavelet transform (CWT) for each channel, both for the 

training and testing runs. In the CWT we used a complex Morlet wavelet, with 

frequency content ranging from 1 to 20 Hz with a frequency resolution of 0.5 Hz and a 

time window of 800 ms. We computed the power spectrum (PWT) for each 

transformed single epoch of the training runs, defined as the squared magnitude of the 

CWT. Finally, we computed the average PWT over all epochs, to identify the wavelet 

coefficients with the highest power. Coefficients below a specified power threshold 

were filtered out, according to the following procedure: the empirical cumulative 

distribution function (CDF) of the power spectrum was calculated through the 

Kaplan–Meier estimation (Lawless, 1982); the filtering model consisted of a matrix 

(PMask) whose time–frequency elements were set to 1 when the CDF of the 

corresponding wavelet coefficient was greater than the threshold, and set to 0 

otherwise. We computed the best threshold value referring to the original method used 

in (Hu et al., 2010), aiming to eliminate as much noise as possible while preserving the 

shape of the P300 potential. A filtered version of the target single epochs (training and 

testing sets) was finally obtained by evaluating the inverse CWT (ICWT) of the 
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coefficient of each single epoch, multiplied for the PMask. When employed in a cross-

validation, PMask was estimated from data belonging on the training set. 

We estimated the latency of the reconstructed single-trial P300 potential as the latency 

of the highest peak of the signal falling within a predefined interval (e.g. between 

300ms and 600ms). The latter had been manually selected from the averaged 

waveforms, to embrace the whole P300 shape.  

Once the epoch-by-epoch latency of the P300 potential had been estimated, the 

wavelet-filtered signals were discarded; all amplitude analyses were performed on the 

original signal (band-pass filtered between 0.1 Hz and 20 Hz, eighth-order 

Butterworth filter).  

For each visual interface, we compared the P300 responses evoked during the different 

BCI interfaces in terms of amplitude, latency and latency jitter. The P300 peak 

amplitude was measured both on the original average waveform (Non-Realigned 

amplitude) and on the waveform obtained by averaging the realigned single epochs 

(Realigned amplitude), whose time course was shifted according to the estimated P300 

latency values. We quantified the jitter of the P300 latency as the difference 

betweenthe 3rd and the 1st quartile of each distribution for each testing run. We 

performed the waveform analyses only considering the Cz electrode as representative 

channel. It should be stressed that the realignment process requires information on the 

labels of epochs (i.e. target vs. non-target). While it could be a useful analysis method 

to interpret the timing of single trial ERPs, in its present formulation it cannot be used 

online. 
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Figure 4.6: Overview of the waveform processing computation. Steps 1: 

computation of a time-frequency representation of the single target related epoch, 

based on the continuous wavelet transform (CWT) power spectra; step 2: average of 

the time-frequency power spectra; step 3: PMask computation starting from the 

cumulative distribution function (CDF) of the power spectra; step 4: application of the 

PMask and calculation of the inverse CWT; step 5: evaluation of the P300 latency 

jitter as the difference between the 3rd and the 1st quartile of the P300 latency 
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distribution. In the reported example, the Cz electrode for a representative subject was 

computed.   

4.2.9.2 Performance analysis 

For each participant, we assessed the BCI accuracies offline, as a function of the 

number of stimulation sequences averaged during each trial. We used a Stepwise 

Linear Discriminant Analysis (SWLDA, Krusienski et al., 2006) to select the most 

relevant features that allowed to discriminate between target and non-target stimuli. 

We performed a three-fold crossvalidations exploring all possible combinations of 

training (2 runs) and testing (1 run) data set for each session and interface.  

We evaluated the performance of the subjects for each interface in the following 

conditions:  

 Whole epoch: the entire time length of the epoch (0-800 ms) is considered. 

This is the baseline condition against which we compared all others; 

 Whole epoch decimated: same epoch length as above, reducing by a factor of 

12 the number of time samples (each new sample is the average of 12 original 

samples). Downsampling is a commonly used procedure to prevent overfitting 

of the classifier by reducing the number of features (F Aloise et al., 2012; 

Krusienski et al., 2006), and we considered this condition when referring to 

state-of-the art performance of a classifier; 

 P300 epoch non-realigned: only the epoch segment containing the P300 

potential is considered, thus disregarding those VEPs components influenced 
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by gazing at the target stimuli. The interval extent is subject- and interface-

specific; 

 P300 epoch realigned: same epoch length as above, using potentials obtained 

after realignment of the single epochs. In this condition, the effect of latency 

jitter is compensated. 

4.2.10.2 Correlation between P300 latency jitter and performance 

The information transfer rate (ITR, bit/min) was calculated at each fold of cross-

validation as a function of the number of sequences in the trial. The formula described 

in Pierce (1980) was used to compute the number of bits transmitted per trial. The 

number of bits transmitted for each stimulation sequence is expressed as: 

 

 

(4.1) 

where N is the number of possible characters (in our case N = 36), i is the specific 

stimulation sequence, Pi is the probability that the target is accurately classified at the 

end of sequence i. From the equation (4.1) the ITR at each stimulation sequence is 

determined as: 

 

 

(4.2) 

Where Timei, represents the time expressed in seconds for the ith stimulation sequence 

and M is the number of total stimuli (M = 12, e.g. 6 rows and 6 columns for the P300 



Mental states monitoring through passive brain-computer interface systems 

92 

 

Speller interface). From equation (4.2) we calculated the mean value of the ITR along 

the 8 stimulation sequences, in order to have a synthetic measure of the system’s 

performance (4.3): 

 

 

(4.3) 

To assess the correlation between the ITRMean and the P300 latency jitter, we estimated 

the non-parametric Spearman’s rank correlation coefficient between these variables. 

For each subject and for each interface, we considered (i) the latency jitter and (ii) the 

ITRMean values calculated at each fold of cross-validation (2 sessions times 3 testing 

runs). 

4.2.3 Results 

4.3.1.2 Experiment I 

Waveform analysis 

We performed two one-way repeated measures ANOVA (Confidential Interval = .95) 

considering the interfaces (Overt GeoSpell, Covert GeoSpell, P300 Speller and Visual 

Oddball) as factors and P300 latency and latency jitter as dependent variables. A 

significantly influence of interfaces factor was found on both the P300 latencies and 

the P300 latency jitters (P300 Latency: F(3, 140)=56.18; p=1.2x10-5, P300 Latency 

jitter: F(3, 140)=9.3; p=10-5). A post-hoc analysis (Duncan test) revealed that the P300 

latency mean values elicited by the Overt GeoSpell (470±16ms), Covert GeoSpell 
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(476±23ms) and Visual Oddball (451±65ms) interfaces were significantly longer 

(p<1.1x10-5) than the values obtained with the P300 Speller (360±50ms). The same 

analysis returned a significantly (p<5x10-4) larger P300 latency jitter in the Covert 

GeoSpell (136±33ms) as compared with those observed with the Overt GeoSpell 

(111±34ms), the P300 Speller (98±18ms) and the Visual Oddball (110±36ms) 

interfaces. No significant differences (p>.05) were found between the Overt GeoSpell, 

the P300 Speller and the Visual Oddball interfaces in terms of latency jitter. 

4.3.2.2 Experiment II 

Waveform analysis 

Figure 4.7 shows, for a representative subject, the average of the waveforms extracted 

from the testing runs and generated with and without realignment of the single-epoch 

P300 potentials elicited by the target stimuli delivered by each visual interface. 

 

Figure 4.7: Averaged P300 potential waveforms at the Cz electrode position 

obtained from a representative subject using the 3 visual interfaces. 

Significant differences of latency and amplitude of the P300 potential elicited by the 3 

interfaces were explored by means of 4 one-way repeated measures ANOVAs 
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(Confidential Interval = .95) where interface was considered as factor and Realigned 

P300 amplitude/Not-realigned P300 amplitude/P300 latency/P300 latency jitter were 

the dependent variables. Also, a two-way repeated measures ANOVA (Confidential 

Interval = .95) was performed, where interface and P300 Realignment (P300 

Realigned or not) were considered as factors, and the P300 amplitude was the 

dependent variable.  

The analysis revealed a significant difference across the interfaces for latencies (F(2, 

357)=73.56; p=1.1x10-5), the non-realigned amplitudes (F(2, 357)=6.9; p=1.1x10-3); 

and latency jitters (F(2, 357)=52.58; p=9x10-6).  

Post-hoc analysis (Duncan test) showed that the P300 Speller elicited P300 waves with 

lower mean latency than the Covert GeoSpell and the Visual Oddball (353±90 ms, 

434±100 ms, and 426±113 ms, respectively; p<10-4).  

The GeoSpell produced a latency jitter significantly larger than the P300 Speller and 

the Visual Oddball (mean values: 108±24ms , 76±24ms, and 74±38ms, respectively; 

p<10-4). 

The GeoSpell elicited P300 waves with lower amplitudes than the P300 Speller and 

the Visual Oddball (mean values: 4.7 ±2.0 µV, 6.1 ±3.6 µV, and 5.4 ±3.0 µV, 

respectively; p<0.05). 

No significant influence was found on the P300 Realigned amplitude (P300 Speller 

(9.52 ±3.9µV), GeoSpell (9.58±2.4µV) and Visual Oddball (9.12±3.8µV)) variable 

(F(2, 357)=.13; p=.88). 

Furthermore, the P300 amplitudes estimated after the realignment exhibited 

significantly higher values than those evaluated without the realignment, for all the 

interfaces (F(1, 714)=380,93; p=10-5). 
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Figure 4.8 illustrates for an exemplary subject data set, the target epochs relative to 

each interface with and without realignment. 

 

Figure 4.8: Target epochs relative to each interface with (dashed blue boxes) 

and without (red boxes) realignment. Only one exemplary subject data set over Cz 

electrode is shown. 

Performance accuracy analysis 

Differences in the classification accuracy achieved with each of the 3 visual interfaces 

and each of the 4 conditions introduced in Section 2.2.2 (epochs). Figure 4.9 shows the 

accuracy for (a) each stimulation sequence and (b) averaged over all the stimulation 

sequences. 
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Figure 4.9: Mean and confidence intervals (CI = 0.95) of the cross-validation 

target classification accuracies achieved with the Covert GeoSpell, P300 Speller and 

Visual Oddball interface, relative to each epoch choice; (a) as a function of the number 

of stimulations; (b) averaged over all stimulations. 

A two-way repeated measures ANOVA (Confidential Interval = .95) was performed 

with interfaces and conditions as factors and the accuracy per stimulation sequences 

as dependent variables. 

The analysis revealed a significant interaction between the factors (F(6, 1428)=42.57; 

p=10-9). The Duncan's multiple range test was used for post hoc comparison. The 

differences in the epoch choices and the interfaces are summarized in Figure 4.10 and 

described in detail in the remainder of this section. 

 

Figure 4.10: Graphical representation of the differences between the epochs 

(WE: Whole epoch; WD: Whole epoch decimated; P3: P300 epoch non-realigned; 
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P3r: P300 epoch realigned) and the interfaces (GS: Covert GeoSpell; PS: P300 

Speller; VO: Visual Oddball) in terms of accuracy, highlighted by the post hoc test. 

Each solid line indicates a significant difference (p<.05) between the considered 

epochs or interfaces. Each arrow points to the factor with higher mean value. Dashed 

lines indicate non significant (p>.05) differences between the epochs or interfaces. 

Numbers in the circles indicate the percent mean accuracy value. 

In the Whole epoch and Whole epoch decimated conditions, the accuracy of the 

GeoSpell differed significantly from each of the other two interfaces (p<10-5). Instead, 

the Visual Oddball interface exhibited significantly higher accuracy than the P300 

Speller only in the Whole epoch condition (p<10-3).  

In the P300 Epoch Non-realigned condition, accuracy was higher for the P300 Speller 

and the Visual Oddball than the GeoSpell interface (p<10-6). In addition, the accuracy 

of the Visual Oddball interface was significantly higher than the P300 Speller  

(p<10-5). 

In the P300 Realigned condition, only the Visual Oddball interface differed 

significantly from the P300 Speller (p<.05).  

Both for the GeoSpell and the P300 Speller interfaces, realignment of the P300 

potentials (P300 Realigned), yielded a significant increase (p<10-2) of the accuracy 

with respect to the Whole epoch condition. Moreover, the decimation of samples 

(Whole epoch decimated) yields a significantly higher accuracy than using the original 

(p<10-5) samples (Whole epoch condition) and the P300 Epoch Non-realigned 

condition (p<10-4). 

Only using the P300 Speller, accuracy in the Whole epoch condition is significantly 

higher (p<10-4) than in the P300 Epoch Non-realigned (p<10-4). 
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Only for the Covert Geospell interface, accuracy in the Whole epoch decimated is 

significantly lower than in the P300 Epoch Realigned condition (p<10-5). 

Only when the Covert GeoSpell and the P300 Speller interfaces were used, was a 

significantly higher accuracy obtained in the P300 Epoch Realigned with respect to 

the P300 Epoch Non-Realigned condition (p<10-6). 

 

Correlation between P300 latency jitter and classification accuracy 

The non-parametric Spearman’s rank correlation coefficient was used to evaluate the 

correlation between the classification accuracy as expressed by the ITRMean values and 

the P300 latency jitter obtained for each interface. We found a significant negative 

correlation between the latency jitter and the accuracy achieved by the subjects with 

all 3 interfaces (GeoSpell: r=.17 p=.04; P300 Speller:  

r=.35 p=10-4; Visual Oddball: r=.18 p=.03). 

Figure 4.11 shows the scatter plot and the related regression lines of the P300 latency 

jitter values and the ITRMean values for the Covert GeoSpell, the P300 Speller and the 

Visual Oddball interfaces. 
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Figure 4.11: Scatter plot and regression lines of the P300 latency jitter and the 

ITRMean values relative to Covert GeoSpell, P300 Speller and Visual Oddball 

interface. 

4.2.4 Discussion 

The overall aim of this study was to investigate whether and to what extent the 

decrease of BCI accuracy using the covert attention based GeoSpell interface can be 

explained by the two following phenomena: (i) the lack of contribution of short 

latency VEPs (whose amplitude is mainly determined by foveation of the stimuli) in 

the tasks performed in covert attention modality; (ii) the lower temporal stability of the 

single-trial P300 potential when compared to corresponding potentials generated by 
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interfaces based on overt attentive tasks, such as the P300 Speller and a Visual 

Oddball interface.  

In line with previous studies (Brunner et al., 2010; Treder and Blankertz, 2010), our 

findings on the first phenomenon clearly indicate the significant contribution of the 

early VEP components to the classification accuracy only for the overt (i.e. P300 

Speller) interface. Also, removing the VEP contribution from ERPs elicited using the 

P300 Speller and the GeoSpell interface, the latter still performed significantly worse 

than the former, suggesting that the lack of VEPs is not the only reason for the 

performance decrement in the tasks performed in covert attention modality. 

To test the relevance of the second phenomenon, we preliminarily contrasted covert 

vs. overt attentional tasks using a given visual interface (i.e. the GeoSpell). This first 

experiment proved that when the user operates a BCI using covert attention, the 

latency jitter is greater than using overt attention.  

Capitalizing on this preliminary result, we evaluated the influence of the P300 latency 

jitter on the performance of a BCI classifier in a set of 3 different BCI visual 

interfaces, and tested whether the expected differences are reduced by pre-processing 

single trials to compensate for the P300 latency jitter. 

As the main finding of this experiment, we found that for two out of three interfaces 

the reduced stability of the P300 potential evoked during the task is a significant 

contributor to the reduced accuracy. 

4.4.1.2 ERPs and (c)overt attention 

According to the waveform analysis, we found that the latency of the P300 evoked by 

the GeoSpell visual interface was significantly longer with respect to that elicited by 
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the P300 Speller interface, regardless of the required attention modality (i.e. covert vs. 

overt). In addition, an increase in the P300 latency also occurred when using the 

Visual Oddball interface as compared to the P300 Speller. 

The finding of an influence of the stimulation interface on the P300 latency was 

somehow expected if one considers that in the case of the Overt and Covert GeoSpell 

and the Visual Oddball interfaces, the target and the non-target stimuli appear at the 

same spatial location of the screen. This implies that the subject cannot use the 

position of the stimulus as a feature to discriminate target types. Rather, discrimination 

must happen on the basis of the stimulus’ shape only. On the other hand, in the P300 

Speller the target and non-target stimuli are arranged in distinct positions in the matrix 

and the subject is allowed to foveate the target stimulus; in this case, discrimination is 

performed on the basis of a change of luminance occurring in the foveal region. 

Differences in latency can thus be plausibly ascribed to the timing of the 

categorization process, which would introduce longer delays with the GeoSpell and 

the Visual Oddball interfaces with respect to the P300 Speller. 

The waveform analysis also revealed that the P300 latency jitter was significantly 

greater when using the Covert GeoSpell interface than using the Overt GeoSpell, the 

P300 Speller and the Visual Oddball interfaces. This result indicates that the attention 

modality does influence the magnitude of the jitter in the P300 latency. The latter may 

be partially ascribed to the dual task nature intrinsic to the covert attention modality 

(Peterson et al., 2004), which would make the task highly demanding. In fact using the 

Covert GeoSpell interface the users had to maintain gaze on the center of the screen 

(fixation cross) and simultaneously she/he had to pay attention to the surrounding 

stimuli. This interpretation is in line with previous evidence (Polich, 2007) of a larger 
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deviation in the P300 latency values that occur when attention is divided between two 

tasks. Additionally, we note that the specific succession of the presented shapes 

(characters) can facilitate or delay recognition of the target, which plausibly makes 

categorization timing less deterministic. 

In agreement with Experiment I, the waveform analysis in Experiment II confirmed 

with an enlarged group of subjects that the P300 elicited by the Covert GeoSpell and 

the Visual Oddball (categorization of shapes) display longer latencies with respect to 

those evoked by the P300 Speller (categorization of luminance). The latency jitter was 

significantly higher for the Covert Geospell (covert attention) than the other two 

interfaces (overt attention). 

As for the amplitude of the P300, the Covert GeoSpell interface elicited P300 

responses of significantly lower amplitude with respect to the P300 Speller and the 

Visual Oddball interfaces. After the introduction of the single trial realignment 

procedure, the amplitude values of the P300 did not differ significantly (p>.05) 

between covert and overt interfaces. Also, the P300 amplitude estimated after 

realignment displayed significantly higher values than those calculated without 

realignment, regardless the type of interface. In fact, as expected, a natural 

consequence of the jitter in the temporal onset of the P300 is a ‘smearing out’ of the 

grand average ERPs, resulting in a decrease in P300 amplitude and an increase in the 

width of the P300 (Chennu et al., 2009; Handy, 2005; Kutas et al., 1977). 
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4.4.2.2 BCI performances and latency jitter 

The main hypothesis of this study predicts that the usage of a covert attention-based 

BCI visual interface such as the GeoSpell would lead to a greater jitter of the P300 

latency, which in turn would negatively affect the classification accuracy.  

In fact, we confirmed that short latency VEPs, which are modulated by gazing at a 

flashing target, are a relevant feature when classifying ERPs acquired during an overt 

attention task: the accuracy of the P300 Speller deteriorates significantly (-19%) when 

only the P300 component is fed into the classifier. On the other hand, the accuracy 

attained by the P300 Speller is still significantly higher than the GeoSpell (+13%). 

Thus, we conclude that the modulation of early VEPs does not entirely account for the 

lower performance of BCI controlled in covert attention, 

On the other hand, we showed that: (i) the attention modality significantly influences 

the amount of jitter in otherwise fixed experimental conditions (Experiment I); (ii) 

accuracy negatively correlated with the P300 latency jitter for all interfaces 

(Experiment II). In other words, covert attention increases the P300 latency jitter, and 

the greater the jitter the lower the accuracy of the classifier.  

To further quantify to what extent the greater jitter accounts for the BCI loss of 

accuracy (as compared to other possible causes), we introduced an offline single trial 

analysis which realigns the P300 peaks following each stimulus, thus compensating 

the latency jitter. Comparing the classifier’s performance with such post-processing, 

we observed a significant increase of the averaged P300 amplitude, and a substantial 

increase of performance of the BCI classification for both the Covert GeoSpell and 

P300 Speller interfaces. More importantly, the average accuracy of the Covert 

GeoSpell using realigned epochs is almost identical to the best performance of the 
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P300 Speller (94% vs. 92%). Taken together, these results lead to confirm our working 

hypothesis – the larger latency jitter associated to the tasks performed in covert 

attention modality largely explains the reduced performance of BCIs designed to be 

operated in absence of eye movements. 

The improvement in performance produced by the realignment procedure may be 

simply explained by the consequent increase of the P300 peak’s amplitude, even if for 

BCI classification purposes the averaging procedure is only carried out on a small 

number (5-20) of epochs, i.e. those acquired while a single character is selected. More 

effectively, the higher discriminability of P300 response may be directly accounted by 

the higher epoch-by-epoch stability of the feature vectors fed into the classifier; in fact 

this vector contains the values of the potential at a given latency, and the lower jitter 

implies more reproducible (less dispersed) features for the classifier. 

It is worth noting that the realignment process requires information on the labels of 

epochs (i.e. target vs. non-target). While it is a useful analysis method to interpret the 

timing of single trial ERPs, in its present formulation it cannot be employed to 

improve performances of online BCIs. 
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5 EVALUATION OF THE OPERATORS’ MENTAL 

WORKLOAD USING EEG RHYTHMS AND THE HEART 

RATE SIGNAL 

5.1 Towards an EEG and HR based framework for realtime 

monitoring of mental workload 

5.1.1 Introduction 

A Brain-Computer Interface (BCI) is a communication system, which relies on brain 

activity to control an external device bypassing muscular and nerves pathway (e.g., 

using electroencephalogram (EEG) technique, Wolpaw et al., 2002). BCI research was 

originally driven by the goal to provide an alternative/additional channel to restore 

communication and interaction with the external world in people with severe motor 

disabilities. Recently, researchers suggested new application fields for BCI systems, 

developing applications that also involve subjects in operational environments, as 

military and commercial pilots and car drivers (Kohlmorgen et al., 2007; Borghini et 

al., 2012; Müller et al., 2008). Originally, the scope of the term BCI only included the 

translation of the users’ intentions through the classification of their voluntarily 

modulated brain activity. In the new acceptation, the BCI meaning was broadened to 

comprise monitoring of cognitive states (e.g. mental workload, attention levels) 
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identified through the users’ spontaneous brain activity. This kind of BCI was recently 

defined “passive” BCI (Zander and Kothe, 2011). 

Mental workload monitoring is of particular interest in safety-critical applications 

where human performance is often the last controllable factor. In general as cognitive 

workload increases, maintaining task performance within an acceptable range becomes 

more difficult. Increased cognitive workload may demand more cognitive resources 

than that available in the human brain, resulting in performance degradation and errors 

(Norman and Bobrow, 1976). Objective measures of mental workload based on 

biomarkers could be used to evaluate alternative system designs, to appropriately 

allocate imposed workload to minimize errors due to overloads, or to intervene in real-

time before operators become overloaded while performing safety-critical tasks (Byrne 

and Parasuraman, 1996). For example, some studies investigated neurophysiological 

indexes about the user states in safety-critical applications, such as driving (Welke et 

al., 2008), industrial environments or security surveillance (Venthur et al., 2010). With 

respect to driving assistance applications, recent studies have explored the use of 

psychophysiological measures in a driving simulation for assessing driving 

performance and inattentiveness (Schubert et al., 2008), as well as for robust detection 

of emergency brakes before braking onset (Welke et al., 2009). Another example of 

operative environment where a lack of performance or overloads of the work could be 

fatal is airplane-flying contexts. Mental workload of pilots could be too high due to 

complexity of the flying tasks to be performed simultaneously. In fact, besides control 

of the airplane, the pilot has to navigate, communicate and monitor the system. In these 

situations, a real-time system to estimate the mental workload of an operator can be 

useful in a future to avoid possible fatal consequences, by warning the operators or the 
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system that the task demands are going to be too much for the pilot. In addition, such a 

future system can be useful for facilitating training of operators by controlling a degree 

of cognitive efforts to be spent for accomplishing the required tasks. 

The mental workload is a measure of the cognitive resources required to process 

information during a specific task (Nordwall, 1998). Several approaches have been 

proposed to evaluate the mental workload: i) subjective evaluation, ii) performance 

evaluation, and iii) psychophysiological variables assessment (Borghini et al., 2012). 

Firstly, the subjective evaluation is a measure assessed by subjective introspections, 

providing a rate for the perceived workload during the performed task (e.g. NASA-

TLX; Hart and Staveland, 1988). Secondly, the performance evaluation provides a 

direct relationship between the performance achieved by the subject and the required 

mental workload (e.g. reaction times evaluation, number of lost targets; Colle and Reid, 

1999). Finally, the psychophysiological measure consists in the evaluation of the 

variability (and of the correlation) of one or more neurophysiological signals (EEG, 

ECG, EOG, etc.) with respect to the mental workload required to the subject during the 

task. The assumption here is that modulations in psychophysiological features reflect 

changes in the operator mental states.  

In this work, the EEG rhythms and the Heart Rate (HR) signals are taken into account, 

thus, only these features are briefly reviewed in the following. 

 Several studies have associated the correlation of spectral power of the 

electroencephalogram (EEG) with the complexity of the task. For example, an 

increase of the theta band spectral power (4-7 Hz) especially on the frontal sites 

and a decrease of spectral power in alpha band (8-12 Hz) over the parietal sites 

have been observed when required mental workload increased (Mogford et al., 
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1994; Pawlak et al., 1996). Although these changes in spectral power of the 

EEG signal are reproducible across subjects and stable over the time, their 

estimations are often slow (more than five minutes in order to highlight 

differences between different mental workload levels). In order to address this 

computational issue, different approaches have been adopted in other studies, 

e.g., the use of machine learning techniques employing linear and nonlinear 

classifiers allowed the system to assess subjects' mental workload in a short 

time (few seconds), reaching a high accuracy (>90%). To the best of our 

knowledge, only few studies have proposed on-line systems for assessments of 

the mental workload using the EEG signal (Kohlmorgen et al., 2007; Wilson 

and Russell, 2002). These systems are capable of predicting only two different 

workload levels (low and high workload).  

 Since the hearth rate (HR) measure is easy to obtain and less sensitive to 

artefacts (Kramer, 1991), it is one of the most popular physiological parameters 

for mental workload assessments within various environments (Backs & Seljos, 

1994; Wilson, 2002; Brookhuis & De Waard, 1993, 2001, 2010; Mehler et al., 

2009). Also, cardiac measures can be used in real-world environments because 

they are unobtrusive and continuously available (Wilson, 1992). Here, it is 

assumed that an increased mental workload leads to an increased cardiovascular 

activity, a heightened cortical energy transformation, and corresponding 

enhanced metabolic demands (Backs & Seljos, 1994). Although this 

generalization is widely accepted, not all studies agree with these findings. It is 

known that HR is also sensitive to mental effort that is defined as the cost of the 

cognitive processing (Mulder, 1986). Numerous studies have found correlations 
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between cognitive demands and HR (Roscoe, 1992; Veltman & Gaillard, 1996, 

1998; Caldwell et al., 1994). HR is also influenced by the contamination from 

physical effort, emotions and stress (Kramer, 1990). In a study on multitasking 

performance, Fairclough et al. (2005) explored the interaction between learning 

and task demand on psychophysiological reactivity. Authors found that a 

sustained learning effect was observed during the high demand condition only. 

In another study, Wilson (2002) evaluated cardiac, electrodermal and electrical 

brain activities of ten pilots during a 90-minute simulated flight in an 

experimental flight scenario. To test the reliability of psychophysiological 

measures of workload, each pilot performed the same scenario. It was shown 

that cardiac, electrodermal and electrical brain activity measures were highly 

correlated and exhibited changes in response to the demands of the flights. 

Recently, Raphaëlle et al. (2013) used HR for assessment of the mental 

workload of the users performing a modified Sternberg task (Sternberg, 1966), 

reaching a 57% of accuracy in discriminating two levels of workload. Taken 

together, the majority of previous researches have consistently demonstrated 

that an increase of workload led to an increase of HR (Borghini et al., 2012; 

Subhani et al., 2012; Larue et al., 2010).  

Although several works have tried to use the psychophysiological measures to assess 

the mental workload, on-line systems are used in only few cases. In addition, the most 

of them were able to classify mental workload at maximum only two levels using EEG 

or ECG activity (e.g. low and high, Kohlmorgen et al., 2007; Wilson, 2002; Raphaëlle 

et al., 2013). Only a few studies succeeded in classification of three levels of mental 

workload using the EEG activity (Hope et al., 2011; Aricò et al., 2013). The purpose 
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of the present work is to examine whether the integration of the information derived 

from different biosignals (e.g. EEG, HR) can be a more reliable measure of the mental 

workload with respect of using just one physiological measure (e.g. EEG or ECG 

alone). For the purpose, an online passive BCI system to quantify the mental workload 

of subjects involved in multiple parallel tasks using the combination of the EEG and 

the HR biosignals was designed, implemented and evaluated. The framework was 

tested while subjects were performing a multitasking task at different difficulty levels 

with a clear relevance for the flight control. In addition to the capability to detect 

multiple levels of mental workload, stability of the system is of a great importance for 

a practical use of such device in real working contexts. In fact, the need to recalibrate 

the performance level of the subjects' limits through preliminary recordings each day 

made such kind of system unusable. Recent attempts were made to use the 

classification parameters estimated from EEG subjects in the previous day for the on 

line classification of the cerebral performance (Christensen et al., 2012). However, it 

was found that the performance of three different classifiers was significantly 

negatively impacted across days, raising the to classify over extended times. Here, 

using the combination of EEG and HR signals for the generation of the proper 

classification parameters, the stability of the estimated workload indexes over the time 

has been investigated. Results, showing a high reliability of the system for up to one 

week without recalibration, are reported.  
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5.1.2 Methods 

5.2.1.1 Subjects 

Ten healthy male subjects (mean age = 25±3) have been involved in this study. All 

subjects were students and/or staff members of the National University of Singapore 

(NUS). The study protocol was approved by the local Ethics Committee and all 

subjects gave their written informed consent. In addition, all the subjects have been 

paid to take part at the experimental protocol. 

5.2.2.1 Experimental protocol 

Scalp EEG has been recorded by the Waveguard© amplifier (ANT-neuro, Netherlands) 

with a sample frequency of 256 Hz from 16 EEG electrodes (FPz, F3, Fz, F4, AF3, 

AF4, C3, Cz, C4, P3, Pz, P4, POz, O1, Oz, O2) referenced to the earlobes and 

grounded to the AFz electrode. Also, the ECG and the vertical EOG activity were 

recorded at the same time of the EEG. The task performed by the subjects was the 

Multi-Attribute Task Battery (MATB, Comstock, 1994, see the section below for 

further details), which provides a benchmark set of tasks about operator performance 

and workload. In this study, we introduced three conditions characterized by different 

task difficulty levels (described successively in the text) to induce different mental 

workload levels in the subjects. Before the beginning of the protocol, the subjects have 

been trained to use the MATB software for five days and all the subjects reached a 

performance level above 90% on average over all the MATB subtasks in a single day, 

as stated in Borghini et al., (2013). The online evaluation protocol was composed of 6 

recording sessions. The first four sessions were performed in two consecutive days 
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named hereafter as Day 1 and Day 2.  Sessions were one in the morning and the other 

one in the afternoon for each day. The last two sessions were performed after about 

one week from the fourth session (Day 9). Each session consisted of 7 runs with two 

baseline conditions. During the first 3 and the last 3 runs (offline runs), the subjects 

performed the three MATB difficulty levels (easy, medium and hard subtasks). The 

fourth run (online run) consisted in a sequence of random combination of the three 

subtasks (easy, medium, hard). Each subtask with different difficulty levels has been 

presented twice in the sequence. This online run has been used for testing the online 

workload evaluation system. In order to avoid habituation effect, some task parameters 

have been randomly changed across the experimental sessions (e.g. tasks order 

presentation, radio frequencies, active emergency lights, etc). Each subtask lasted 2.5 

minutes. Thus, the online sequence lasted 15 minutes in total. At the end of each run, 

the subjects were required to fill the NASA-TLX (Task Load Index, Hart and 

Staveland, 1988) in order to evaluate the perceived workload during the different 

tasks. Figure 5.1 shows the scheme of the experimental protocol. 

 

Figure 5.1: Experimental protocol scheme: each subject performed 6 

recording sessions in three separate days, two sessions per day. The first four sessions 
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were performed within two consecutive days, whilst the remaining two sessions were 

performed after about one week from the fourth session in order to test the stability of 

the system over time. Each session consisted of 7 runs. During the first 3 and the last 

3 runs (offline runs), the subjects performed the three MATB difficulty levels (easy, 

medium and hard subtasks). The fourth run (online run) consisted in a sequence of 

random combination of the three subtasks (easy, medium, hard). Each subtask has 

been presented twice in the sequence, so that the total duration of the online run was 

15 minutes (2.5 min each subtask). 

5.2.3.1 Multi Attribute Task Battery 

The Multi-Attribute Task Battery (MATB, version 2.0, Figure 5.2) provides a 

benchmark set of tasks for use in a wide range of laboratory studies about operator 

performance and workload (Comstock, 1994; Wilson and Russell, 2003). The MATB 

simulates the activities inside an aircraft’s cockpit and provides a high degree of 

experimental tasks control in terms of complexity and difficulty. The task features 

include an auditory communications task (to simulate Air-Traffic-Control 

communications), a fuel resources management task of maintaining target 

performance (e.g. to keep the fuel level around 2500 lbs), an emergency lights control 

and a task of cursor tracking that simulates the control of the aircraft flight level (this 

can be switched from manual to automatic mode). In this study, we introduce three 

conditions characterized by different task difficulty levels to induce different mental 

workload levels in the subject. The chosen tasks simulated three classic showcases in a 

flight scenario. In easy condition, subjects simply watched the MATB interface and its 

stimuli as the cruise flight phase. In medium condition, subjects had to maintain the 
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cursor in the center of the screen by manipulating the joystick to maintain the flight 

level. Finally, in hard condition, subjects had to perform all the MATB sub-tasks at the 

same time to simulate a few emergencies. As described in Borghini et al., (2013), four 

indices have been defined for each sub-task to evaluate performance of the MATB. In 

particular, the TRCK index is defined by considering the the ratio between the cursor’s 

distance and the maximum of this distance (fixed) from the center of the screen. The 

indexes of the COMM and SYSM tasks are defined as a linear combination of 

accuracies in terms of correct answers (e.g., correct frequency selected) and the 

complement of the ratio between the subject’s reaction time and the maximum time 

for answering.. Finally, the index for the RMAN task is defined as the mean value of 

the fuel’s levels in the tank A and B. The results have been multiplied by “100” in 

order to obtain a percentage. In order to get a global index for the hard condition, the 

average of the previous indexes is calculated as single index as a percentage. Instead, 

the TRCK performance index has been considered for scoring the medium difficulty 

level condition. No performance index was evaluated for the easy condition because 

the subject was not to make an active control on the interface. 
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Figure 5.2: Screenshot of the Multi Attribute Task Battery (MATB) interface. 

On the top left corner (a, little dashed red box), there is the emergency lights task; on 

the top, in the center (b, medium dashed green box), there is the task of cursor 

tracking; on the left bottom corner (c, big dashed silver box), there is the radio 

communication task and, finally, in the center on the bottom (d, solid yellow box), 

there is the fuel levels managing. 

5.2.4.1 System development 

The developed system is capable of online estimation of the mental workload of the 

user based on the relevant features of the EEG and the HR signals highlighted by 

means of the SWLDA. The system is implemented under Matlab® using the TOBI 

interfaces (Breitwieser et al., 2012), which standardizes the information exchange 

procedures between different processing modules of the system. Particularly, the Tobi 

interface A (TiA) is a standardized interface to transmit raw biosignals (e.g. EEG, 
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EOG, ECG signals), Tobi interface C (TiC) is used to exchange messages between 

modules (e.g. output of classifier modules) and Tobi interface D (TiD) is used to 

exchange standardized high-level events between modules (e.g. time line of the 

experiment, start/stop events, markers, etc.). Data acquisition is driven by the TOBI 

Signal Server, which sends the acquired data to the following processing blocks 

(biosignal-signal- processing) in data streams compliant to the TOBI Interface A (TiA) 

format. The signal processing and classification modules deal with filtering, feature 

extraction and classification of the input signals. Classification results (further details 

about the classification process are provided in the EEG classifier for mental workload 

evaluation section and following) are transmitted to the Fusion application in TOBI 

Interface C (TiC) format. The Fusion module receives classification outputs from both 

the EEG and the other biosignal classifiers, by transforming them into “fusion classes” 

and then by transferring the information to the visualization module. The latter uses 

these signals (classifier output and biosignals) to provide a feedback to the operator 

and/or to the user. Finally, the controller module provides the clock to the whole 

system (TiD messages), according to the parameters previously set by the operator 

(initialization and finalization of each module, the time line of the experiment, 

markers, synchronization events, etc.). The communication between the modules is 

managed using the network protocol TCP / IP. A schematic overview of the developed 

system is provided in the Figure 5.3. 

In this study, this online system was tested offline by simulating bio-signals using 

acquired data during online runs. For the purpose, all the offline runs (i.e., the first 3 

runs and the last 3 runs of each session) were used to estimate parameters of 

classifiers, and the derived classifiers were used to evaluate mental workload during 
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online runs. To assess efficacy of the different biosignals, we compared workload 

indices derived from EEG, HR and a combination of EEG and HR as described in 

details below.  

 

Figure 5.3: Workload measurement system architecture. The system has been 

entirely implemented in Matlab®, using the TOBI interfaces, that allow exchanging 

information between all the modules in a standardized way. Biosignals coming from 

the amplifier (EEG, EOG and ECG) are transmitted to the TOBI Signal Server, which 

sends the acquired data to the following processing blocks (biosignal-signal- 

processing). The signal processing modules deal with filtering, feature extraction and 

classification of the input signals. Classification results are transmitted to the Fusion 

application. The Fusion module receives classification outputs from both the EEG and 

the other biosignals classifiers, transforms them into “fusion classes” and then by 

transfers the information to the visualization module. Finally, the controller module 
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provides the clock to the whole system in accordance with the parameters previously 

set by the operator. 

5.2.5.1 EEG classifier for mental workload evaluation 

To train EEG classifiers to be used in the online mental workload evaluation, EEG-

based mental workload index (WEEG) was derived offline as follows. The EEG signal 

was band-pass filtered (0.1-40 Hz) and then segmented into epochs of 2 seconds, 

overlapping by 0.125 seconds. The EOG signal has been used to remove eyes-blink 

contribution from each epoch of the EEG signal, by using the Gratton and Coles 

(1983) algorithm available in the EEGLab toolbox (Delorme & Makeig, 2004). After 

that, for each epoch, the power spectral density (PSD) was calculated using a 

periodogram with Hanning window (2 seconds length), and a spectral features matrix 

for all the EEG channels was obtained within the frequency bands involved in the 

mental workload estimation (i.e., theta and alpha bands). A Stepwise Linear 

Discriminant Analysis (SWLDA, see the appendix A for further details) was used to 

select the most relevant spectral features to discriminate the mental workload levels 

from the training set (the first and the last 3 runs of the experimental session). Several 

moving average samples (NMA) were applied to the output of the classifier (EEG based 

mental workload index, WEEG: NMA(1) = 0.125 (s), NMA(8) = 1 (s), NMA(16) = 2 (s), 

NMA(32) = 4 (s), NMA(64) = 8 (s)) to evaluate the stability and the accuracy of the 

index with the drawback of introducing delays in the workload estimation, inducing a 

decreasing of the workload refresh time (Figure 5.4a). 
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5.2.6.1 HR classifier for mental workload evaluation 

As well for the EEG, HR-based mental workload index (WHR) was derived as below. 

The ECG signal for each subtask (easy, medium and hard) was first band-pass filtered 

(0.1-40 Hz) to remove low frequency contributions, and then segmented into epochs of 

8 seconds, with 0.125 seconds overlapped. The epoch length of 8 seconds was chosen 

to have enough R-peaks to calculate the HR. For each epoch, only the R-peaks have 

been extracted from the ECG signal, by using the method explained in Bhoi et al., 

(2012). The peak amplitudes of all the conditions were normalized by dividing them 

with the mean values of the peaks recorded during the easy condition. At this point, 

for each epoch, the PSD was evaluated using a periodogram with Hanning window (8 

seconds length), considering only the frequencies bins closed to the HR (Figure 3b). 

As for the EEG analysis, using data from the training set (the first and the last 3 runs 

of the experimental session), a Stepwise Linear Discriminant Analysis (SWLDA) was 

used to select the most relevant spectral features to discriminate different levels. The 

same moving average samples (NMA) showed in the EEG analysis were applied to the 

output of the classifier (HR based mental workload index, WHR, Figure 5.4b). 
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Figure 5.4: (a) EEG based workload index assessment (WEEG). The figure 

explains the algorithm of the evaluation of the EEG-based workload index. The band-

pass filtered (0.1-40 Hz) EEG signal was segmented into epochs of 2 seconds, with 

0.125 seconds overlapped. The EOG signal was used to remove the eyes-artefact 

contribution from the EEG signal. Then, the power spectral density (PSD) was 
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evaluated for each EEG channel, taking only the frequency bands involved in the 

mental workload estimation (i.e., theta and alpha bands) into account. After that, a 

Stepwise Linear Discriminant Analysis (SWLDA) was used to select the most 

relevant spectral features to discriminate the mental workload levels. Several moving 

average samples (NMA) were tested to the output of the classifier in order to evaluate 

the stability and the accuracy of the index. (b) HR based workload index assessment 

(WHR). The ECG signal for each subtask was first band-pass filtered (0.1-40 Hz), 

and then segmented into epochs of 8 seconds, with 0.125 seconds overlapped. The R-

peaks were extracted from each epoch. The peak amplitudes of all the conditions 

were normalized by dividing them with the mean values of the peaks recorded during 

the easy condition. At this point, for each epoch, the power spectral density (PSD) 

was calculated using a periodogram with Hanning window (8 seconds length), 

considering only the frequencies bins closed to the heart rate. The SWLDA classifier 

was used to select the most relevant spectral features to discriminate different mental 

workload levels. The same moving average samples (NMA) showed in the EEG were 

applied to the output of the classifier. 

5.2.7.1 Fusion of the classifiers for mental workload evaluation 

A fusion-based workload index (WFusion) was computed as a combination of the EEG 

and the HR based workload indices. The two classifiers outputs were first 

synchronized with each other to eliminate delays, and then a new score (Fusion based 

workload index, equation 1, WFusion) was computed as a linear combination of the 

WEEG and the WHR scores (Figure 5.5). 
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(5.1) 

Here, the coefficients a and b of the equation (1) were estimated for each subject, 

depending on individual contributions of the WEEG and the WHR scores to 

classifications. For each subject, these coefficients were calculated by means of a 

simple linear discriminant analysis (LDA), considering the EEG (WEEG) and the HR 

score (WHR) distributions over the offline cross validations for the three different 

difficulty levels. In particular, for each subject, the classifier was trained using the 

different difficulty levels, and the weights in output from the LDA were those who 

maximized the separation between the three difficulty levels. 

 

Figure 5.5: Fusion based workload index assessment (WFusion). The Fusion 

workload index (WFusion) has been calculated as a linear combination of the EEG and 

the HR based workload indices. The two classifiers outputs were synchronized 

before the computation of the fusion-based index. 
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5.2.8.1 Performed analyses 

The analyses described below were organized in two categories; Offline runs analyses 

and Online runs analyses. The Offline runs analyses refer to the analyses on data 

collected during offline runs (the first three and the last three runs for each session) 

and were performed to see behavioral and electrophysiological difference between 

different mental workloads, while the Online runs analyses refer to those on data 

collected during online runs (the fourth run for each session) were conducted to 

evaluate the online mental workload evaluation system we developed. The Offline 

runs analyses consisted of i) NASA-TLX assessment of the workload, ii) power 

spectra analysis and iii) performance analysis. NASA-TLX analyses were used to 

assess the subjective perceived workload to be sure that the psychophysiological 

behavior was consistent with the perceived one; power spectra analyses highlighted 

the EEG and HR patterns that were modulated by the mental workload changes. 

Finally, performance analyses assessed how the system was able to discriminate 

different workload levels. In the Online runs analyses, classification parameters 

derived from the EEG, the HR, or a combination of them were estimated using data 

during off-line runs (the first three and the last three runs for each session), and then 

applied to data collected during the on-line run (4th) to estimate the fusion based 

mental workload index (WFusion). Visualization of trends of the workload index is 

possible in real-time on the visual interface (Figure 5.6). Furthermore, different 

workload indices (WEEG, WHR) were computed, and analyzed their distribution 

provided by the system. Finally, the performances of the MATB task were evaluated 

to highlight any differences between experimental sessions and difficulty levels 

conditions. 
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5.2.9.1 Offline runs analyses 

i) NASA-Task Load Index (TLX): Subjective perceived workload evaluation was 

obtained by filling the standard NASA-TLX questionnaire for each subtask 

(easy, medium and hard). The given subjective scores were used to estimate 

the perceived workload by considering six different factors: Mental 

Demand, Physical Demand, Temporal Demand, Frustration, Effort and 

Performance. The workload scores ranged from 0 to 100 were obtained for 

each factor at the end of the questionnaire. The subjective scores of the 

perceived workload were compared with the workload indices estimated 

using the system. A one-way ANOVA (CI=.95) was performed on the 

NASA-TLX scores with the subtask (Easy, Medium, Hard) as an 

independent variable. In addition, Duncan post-hoc tests were performed to 

test the differences between all the levels. 

ii) Power Spectrum analyses:  

a. EEG: The differences in the power spectra were evaluated between each 

couple of conditions; LOW vs. HIGH (i.e., easy vs. hard, easy vs. 

medium and medium vs. hard). For each couple, the signed Coefficient 

of Determination (R2 value; see appendix B for further details) was 

quantified. The R2 values range from 0 to 1, and higher values 

correspond to larger explained variance: an higher discriminability of 

classification among conditions. The signed R2 indices were derived by 

multiplying the R2 by the sign of the slope of the corresponding linear 

model; positive sign is obtained when the PSD values of the signals 

considered during the HIGH (e.g. hard) subtasks are higher than that 
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related to the LOW (e.g. easy) subtasks, and vice versa for a negative 

sign. The signed R2 values calculated for the theta (3-7 Hz) and alpha 

(8-12 Hz) frequency bands at all the scalp positions were subjected to 

one-way repeated measures ANOVAs (CI = .95) with the three couple 

of conditions (easy vs. hard, easy vs. medium and medium vs. hard ) as 

an independent variable. In addition, a Duncan post-hoc tests were 

performed to highlight differences between all the levels. 

b. HR: In order to highlight the differences in the HR signal between the 

different subtasks (easy, medium and hard), a dimensionless index 

taking into account the contribution of both the power spectrum of the 

HR signal correspondent to the heart beat and the related frequency was 

calculated. For comparison of these two values, the values were first 

normalized, dividing them by the maximum value in the easiest 

condition. After that, they were averaged to have a synthetic index of 

the HR signal (HRindex). In order to analyze the differences between the 

HR signals recorded during the different subtasks, the derived HRindex 

values were subjected to a one-way repeated-measures ANOVA (CI = 

.95) with the subtasks (easy, medium and hard) as an independent 

variable. In addition, a Duncan post-hoc test was performed in order to 

highlight the difference between all the factors. 

iii) Performance analyses: In order to evaluate the performance of the system, the 

dataset has been re-organized into 12 triplets of runs (easy, medium and 

hard subtasks; 2 triplets per session). All the possible cross-validations were 

considered, training a classifier with one of the triplets and testing the 
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extracted features over the remaining triplets. To evaluate the accuracy of 

the system, values of the Area Under Curve (AUC) of the Receiver 

Operating Characteristic (ROC, Bamber, 1975) were calculated from the 

outputs of the classifiers (for each different refresh rate). The AUC values 

represent how well the classifier separated two different subtasks, and so 

how well the classifier could predict the difficulty of the task directly related 

to the subject’s workload level. These kinds of analyses were performed on 

the WEEG, the WHR and the WFusion workload indices. A three-way repeated 

measures ANOVA (CI = .95) was performed on the AUC values using the 

types of bio-signals used for the classifiers (EEG, HR and Fusion based), 

the couple of subtasks (easy vs. hard, easy vs. medium, and medium vs. 

hard), and the moving average lengths (NMA(x), x={1, 8, 16, 32, 64}) as 

dependent variables. In addition, Duncan post-hoc tests were performed to 

test the difference between all the levels. 

5.2.10.1 Online runs analyses 

i) Workload score distributions: As described before, in the Online runs analyses, 

the score distributions of the single subtasks were simulated offline within 

the 4th run (online run). First, the classifiers were trained with every 

combination of the triplet (easy, medium and hard subtasks) during the 

offline runs (1st-3rd; 5th-7th) within each session. Thus, three classifiers (Day 

1, Day 2 and Day 9) were derived for each subject. Then, the extracted 

features were tested for the online runs (4th). To investigate short- (INTRA) 

and medium-term (INTER) stability of the classifiers for the workload 
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evaluation, we performed two types of cross-validations. For the short-term 

stability test (INTRA), the classifiers trained with the offline data on Day 1, 

Day 2 or Day 9 were tested with the online data on the same day. For the 

medium-term stability test (INTER), the classifiers trained with the offline 

data collected on Day 1 and Day 2 were tested with the online data on Day 

9 while the classifier trained with the offline data on Day 9 was tested with 

the online data on Day 1 and Day 2. Figure 5.7 depicts a schematic overview 

of the INTRA and INTER type cross-validations. These analyses were 

performed separately for the WEEG, the WHR and the WFusion workload 

indices. The online system was tested during the simulated MATB-

sequence based on the data collected from the subjects by visualizing in 

real-time the output of the classifier onto the visual interface. Moreover, the 

discriminability between the three estimated workload distributions (easy, 

medium and hard) was evaluated for the three mental workload indices 

(WEEG, WHR and WFusion). Also, the short- (INTRA) and the medium-term 

(INTER) changes of the workload indices were tested. Three two-way 

repeated measures ANOVAs (CI = .95) were performed on the workload 

index distributions (WEEG, WHR and WFusion) with subtask (easy, medium 

and hard) and cross-validation type (INTRA and INTER) as independent 

variables. 

ii) MATB performances: The MATB performances achieved online by the subjects 

within conditions (medium and hard) and sessions were evaluated, 

following the procedure described in Borghini et al., (2013). A two-way 

repeated-measures ANOVA (CI = .95) was performed on the MATB 
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performances with the session number of the offline runs (from 1 to 6) and 

the subtasks (medium and hard) as independent variables. 

 

Figure 5.6: Screenshot of the visual interface provided to the operator that 

allow visualizing the fusion based workload index (WFusion) over time. In the upper 

side of the screen the workload index for the low and the high refresh rates are 

visualized. In the bottom part the NMA(x), x={8, 16, 32, 64} are visualized in real 

time. It is possible to note the variation of the index level related to the occurrence of 

the task difficulties. 
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Figure 5.7: Schematic overview of the INTRA and INTER type cross-

validations. The INTRA type refers to the cross-validations performed considering as 

training sessions those related to Day 1 and Day 2, reported in the yellow bold boxes 

(Day 9, reported in the green boxes) and as testing sessions those performed in the 

same days, Day 1 and Day 2, reported in the yellow bold box (Day 9, reported in the 
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green box). Contrariwise, the INTER type refers to the cross-validations performed 

considering as training sessions those related to Day 1 and Day 2, reported in the 

yellow bold boxes (Day 9, reported in the green boxes) and as testing sessions those 

performed in the Day 9, reported in the yellow bold box (Day 1 and Day 2, reported 

in the green box) and vice versa. 

5.1.3 Results 

5.3.1.1 Offline analyses 

NASA-Task Load Index (TLX) 

Figure 5.8 shows the changes in the perceived workload estimated by the NASA-TLX 

scores for the different subtasks. Roughly speaking, the perceived workload increased 

as the difficulty of the task increased as can be seen in the figure. The repeated-

measures ANOVA revealed a main effect of the difficulty levels (F(2,18)=27.68, 

p=10-6). The post-hoc test showed that the hard subtask showed a significantly higher 

workload than the other two subtasks (all p<10-3). Although the perceived workload 

for the medium task was higher than the easy task on average, there was no significant 

difference between the two subtasks (p=.56). 
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Figure 5.8: Mean and standard error of the perceived workload estimated by 

the NASA-TLX workload scores over the different subtasks. 

EEG Power Spectrum analyses 

Differences of the EEG power spectral density between LOW and HIGH subtasks 

(easy vs. hard, easy vs. medium, and medium vs. hard) was evaluated using the signed 

Coefficient of Determination (R2), for each channel and each frequency bin. The 

Figure 5.9 represents the grand average of the signed R2 indices of the EEG power 

spectral density evaluated between the three pairs of LOW and HIGH conditions over 

all the experimental sessions. The results showed an increment of R2 in the theta bands 

over all the scalp positions, especially in the easy vs. medium and the medium vs. hard 

conditions, and a decrement of R2 in the alpha band especially over the centro-parietal 
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areas in all the three conditions. However, the differences between the power spectrum 

of the frequency bands are smaller for the easy vs medium pairs of conditions, for each 

considered band (Theta: F(2,18)=20.54, p=2x10-4; Alpha: F(2,18)=8.85, p=.002). The 

Duncan post-hoc test showed that both the signed R2 values related to the theta and 

alpha bands are significantly different between the easy and hard and medium and 

hard conditions (all p<.05), but not between the easy and medium conditions. 

 

Figure 5.9: Grand average over all the subjects of the signed R2 indexes of the 

EEG PSD evaluated between the three pairs of LOW and HIGH conditions (easy vs 

hard, easy vs medium, medium vs hard) over all the experimental sessions. Abscissa 

is the frequency (Hz), while on the ordinate represent the scalp electrode locations. 

The first panel from the top showed the statistical variation of the signed R2 index 
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relative to the Easy versus Hard task condition. The central panel is instead related to 

the variation of the index in the Easy versus Medium condition and the lower panel 

for the Medium versus Hard condition. Red (blue) colors in the first panel represents 

a particular conditions between frequency band and scalp electrode location in which 

the estimated R2 index  is higher (lower) in the Hard condition than in the Easy one. 

In general, the R2 analysis shows an increasing value of the EEG PSD in theta band 

related to the HIGH conditions with respect to the LOW ones, and a decreasing value 

of EEG PSD in the alpha band. 

5.3.2.1 HR Power Spectra analyses 

The ANOVA shows a main effect of the subtasks on the combined HR index (HRindex) 

values (F(2,18)=5.95, p=.01). The Duncan post-hoc test showed that the HRindex values 

during the hard task were significantly higher than the easy and medium ones (all 

p<.05). No significant difference was found between the easy and the medium 

conditions (p=.25), though an increasing in the HRindex values of the medium task with 

respect to the easy one (Figure 5.10). 
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Figure 5.10: Mean values and related standard errors (CI = .95) of the HR 

index calculated over all the subjects, and the experimental sessions for the three 

subtasks (easy, medium and hard) for each component of the HR index (the 

frequency, the power spectrum and the combined). 

5.3.3.1 System performance analyses 

Figure 5.11 represents the accuracy of the system revealed by AUC values calculated 

using the different moving average lengths for the EEG, the HR and the Fusion based 

workload indexes. The ANOVA analyses revealed no main effect of the classifiers 

(F(2, 18)=.27, p=.76), a main effect of conditions (F(2, 18)=28.76, p=10-5) and a main 

effect of refresh time (F(4, 36)=256.21, p=10-6). The post-hoc test showed that AUC 

values calculated using the EEG based classifier in the “easy vs medium” couple were 

significantly lower (all p<10-6) than the other two ones. Also, increasing the refresh 
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rate, the AUCs of the system significantly increase (all p<.05). The same behaviors 

have been obtained using the Fusion based classifier. For the HR based classifier, the 

AUC values for all the refresh time values and couples of tasks are not significantly 

different (all p>.05). Finally, the analysis revealed that the HR and the Fusion based 

classifiers performed significantly better than the EEG classifier (all p<.05) for the fast 

refresh rates. Instead, the EEG and the Fusion based classifiers performed better than 

the HR based classifier (all p<.05) for the high refresh (Figure 5.12). 

 

Figure 5.11: Mean values and related standard errors (CI = .95) of the AUC 

values achieved using the different classifiers (EEG, HR and Fusion-based) for each 

refresh time value. 
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Figure 5.12: Mean values and related standard errors (CI = .95) of the AUC 

values of the three classifiers (EEG, HR and Fusion based) over the different refresh 

time values. 

5.3.4.1 Online analyses 

Workload score distributions 

The ANOVA analysis revealed that the score distributions related to the different 

subtasks (Easy, Medium and Hard) for all the three classifiers were significantly 

separated (EEG-based: F(2,18)=37.84, p=10-6; HR-based: F(2,18)=13.69, p=2.4x10-3, 

Fusion-based: F(2,18)=36.52, p=10-7). Furthermore, no significant differences were 
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found between the workload scores related to the INTER and the INTRA cross-

validations, for each classifier (EEG-based: F(1,9)=.20, p=.67; HR-based: F(1,9)=.85, 

p=.38, Fusion-based: F(1,9)=10-4, p=.99). Figure 5.13 shows the error bars related to 

the distributions of the workload indexes (WEEG, WHR and WFusion) evaluated by means 

of the three classifier (EEG, HR and Fusion-based). 

 

Figure 5.13: Mean values and related standard errors (CI = .95) of the 

distributions of the workload indices (WEEG, WHR and WFusion) evaluated by the three 

classifier (EEG, HR and Fusion based). 

MATB performance 

The repeated-measure ANOVA revealed no main effects of task difficulty and days 

(F(5, 45)=.52, p=.76), suggesting that the subjects were trained well with the MATB 

task by Day 1. The ANOVA revealed no significant differences between the MATB 

performances (Mean values: 92.7 ± 2.4) achieved by the subjects within the different 
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experimental sessions (F(1,9)=.51, p=.49) and medium (92.9 ± 1.5) and hard (92.4 ± 

3.1) conditions. 

5.1.4 Discussion 

In this work, an online passive BCI system to classify subject’s mental workload online 

has been demonstrated using the brain and heart activities. The system has been tested 

with ten healthy subjects performing the MATB task which simulates the cockpit of an 

airplane. In particular, the employed tasks run over three different difficulty levels 

(Easy, Medium and Hard) resembling different flight conditions (cruise flight phase, 

flight level maintaining, and emergencies). Three different classifiers have been 

simulated and tested offline, by using the EEG (EEG based classifier) the HR (HR 

based classifier) signals alone and the combination of them (Fusion based classifier). 

Results demonstrate that the EEG spectra show an overall increase in the theta band 

and a decrease in the alpha band as the difficulty level of the task increased. 

Furthermore, the HR activity increased in the same way as the difficulty level of the 

task increased. In particular, the spectral analysis showed less discriminability between 

the autopilot (easy) and the tracking (medium) conditions associated with the 

emergencies one. As the mental resources required to perform the autopilot and the 

tracking tasks are less demanding than in an emergency condition, these neuroelectrical 

results were expected, as confirmed by the NASA-TLX questionnaire analyses. In 

addition, it was already demonstrated that the increase of the mental workload induced 

an increase of the EEG spectral power on the frontal areas as well as a decrease of the 

EEG spectral power in parietal areas (Mogford et al., 1994; Pawlak et al., 1996; 

Borghini et al., 2012).  
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The performance analyses, as well the workload distribution analyses for all the 

classifiers showed a significant discriminability (p<.05) between the different difficulty 

levels when considering all the classifiers. Furthermore, the statistical analyses of the 

stability of the computed workload score in the short and medium terms did not show 

any significantly difference (p>.05), demonstrating that the features extracted by the 

classifiers are stable over the time, and that even after a week may not be necessary to 

recalibrate the system with new data. Also the MATB performances showed that after a 

week the performances remained stable and in general within all the experimental 

sessions. These results demonstrate that the classification features chosen by the 

classifier do not change significantly after a week and that the system is able to 

differentiate significantly among the three imposed difficulty levels. These aspects 

related to stability and accuracy are highly important for the usability point of view of 

the system. In fact, to use such system in real environments it could be enough to 

calibrate the system with the specific parameters of the operator once and then just use 

it without further adjustments maintaining a high reliability over at least a one week 

period. 

Since the refresh time of the system decrease until reaching an AUC of around 0.9 

related to the slower refresh rate, the EEG-based classifier finally showed a statistical 

increase in the performance. The HR based classifier showed no significant 

improvements, also decreasing the refresh rate of the system, and allowed AUC to 

reach higher than 0.7 for all the conditions. The fusion-based classifier reached an 

AUC higher than the EEG-based classifier at fast refresh time values, the same as the 

EEG-based classifier at fast refresh times and higher than the HR-based classifier at 

the fast refresh times. These results demonstrate that by combining information 
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coming from different biosignals (e.g. EEG and HR), it is possible to have more 

reliable and faster information about the mental states of the user. This multi-modality 

approach can be used in real operating environments for improving the human 

machine interaction, not only for pilots, but also for other users, such as air traffic 

controllers, car drivers or more in general for all the contexts, in which the high stress 

conditions can cause a critical drop in performance. It is worth of noting that the overt 

behavior of the subjects did not differ in terms of MATB scores between the Medium 

and Hard conditions (e.g. they perform the tasks in a statistically similar manner) 

while their cerebral and cardiac activity across such conditions changes significantly. 

This implies that the overt behavior measurements of the subject’s performance is not 

a reliable indicator of the mental workload perceived during the task while the link 

between the mental workload perceived and the increase changes in EEG PSD and HR 

activity are more robust and stable. In conclusion, a human mental state classification 

system using the neurophysiological information has been demonstrated with a fairly 

realistic scenario aircraft pilots may encounter. Our system able to do online 

estimation of the mental workload by using the combination of EEG rhythms and HR 

signals has been proposed. We have demonstrated that i) the system is able to 

significantly differentiate three workload levels related to three difficulty level tasks 

with a high reliability; ii) the subjective features used for the evaluation of the mental 

workload remain stable over one week and iii) an online implementation of mental 

workload assessment if feasible using our approach. Mental states monitoring is of 

particular interest especially in safety-critical applications where human performance 

is often the least controllable factor. In this way, the proposed system could be useful 

during the operator’s training to measure its cognitive workload and spare capacity 
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while facing specific operative and emergency conditions. The innovation with respect 

to the present literature is the possibility to predict online the mental workload of the 

user over three difficulty levels, using the combination of multiple biosignals (EEG 

and HR), that improve the reliability of the estimated mental states as compared with a 

single measure. Another relevant aspect of innovation of the presented results is that 

the classification features chosen by the system are stable after a week. This aspect can 

be very important when using such system in a real work environment scenario. 

Further experiments will be performed to even further test and extend the long term 

use of the system, and whether some unsupervised recalibration can be carried out 

when any decrement in the performance is observed. 
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6 CONCLUSION 

The main purpose of this PhD thesis was to demonstrate how the passive Brain 

Computer Interfaces (BCIs) concepts could be used to assess the mental states of the 

users, in order to use them for improving the human machine interaction (HMI, 

Zander, 2011). For this purpose, different methodologies have been proposed and 

validated. Two main studies have been reported. 

In the first proposed study (section 4), it has been estimated the morphological 

variations in the Event Related Potentials (ERPs), such as latency, latency jitter and 

amplitude using two reactive BCI systems in two different attention modalities (overt 

e covert attention). It was demonstrated as these variations can be used as an objective 

index to assess the attentional resources and the mental workload perceived by the user 

during the BCI tasks. Furthermore, they can also be used as a predictor of how well 

the subjects are performing the BCI task itself. In the perspective of the passive BCI 

systems, these physiological indexes could be used in closed loop for improve the 

ergonomics of the reactive BCI interfaces, or also for automatically stop the BCI 

system control when the mental workload became too high, or more in general to 

improve the human machine interaction. The innovation respect to the present 

literature is the concept to use the covert mental states of the user (e.g. mental 

workload) to act directly to the system, and improve its usability. 
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In the second study (section 5), it has been proposed a passive BCI system able to 

estimate online the mental workload of the user by using the EEG rhythms and the 

ECG signals. It was demonstrated that the system is able to significantly differentiate 

three workload levels related to three difficulty level tasks with a high reliability. In 

addition, another relevant aspect is that the classification features chosen by the system 

are stable after a week. This aspect is strictly required in the perspective of using such 

system in a real environment scenario. Mental states monitoring is of particular 

interest especially in safety-critical applications where human performance is often the 

least controllable factor. In this way, the proposed system could be useful during the 

operator’s training to measure his cognitive workload and spare capacity while facing 

specific operative and emergency conditions. The innovation respect to the present 

literature is the possibility to predict online the mental workload of the user, using the 

combination of several biosignals (EEG and ECG), that allows to improve the 

reliability of the estimated mental states with respect to using just one information.  

In conclusion, an accurate analysis of the human mental states using the 

neurophysiological information can be employed to optimize the mental states 

dependent man–machine interaction, and this thesis allowed demonstrating the 

powerful of using the passive BCI applications in two different scenarios (reactive 

BCI for communication and control and mental states evaluation in the operative 

environments). Future improvements have to be performed for making these systems 

usable in real contexts, such as ease of use, minimal calibration of the system, general 

usability, wearability and reliability. 
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